用户名: 密码: 验证码:
湘江与洞庭湖水体氮素时空变化特征及湘江水体中氮浓度预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湘江是湖南的母亲河,水体污染日趋严重引起社会的广泛关注,随着点源污染的有效控制和治理,农业非点源造成的氮污染成为水体污染的主要因素。
     本文在全面分析湘江与洞庭湖水体氮素时空变化特征的基础上开展水稻合理施氮研究,为防止湘江发生富营养化、抑制水体氮进一步恶化提供科学依据;同时,优选出湘江水体中氮浓度最佳预测模型,为今后在水环境规划管理和水污染综合防治过程中对湘江水质模拟预测提供一种新的方法和思路。研究主要内容与结论如下:
     对湘江、洞庭湖水环境因子(水温、pH值、溶解氧)与水体中总氮、氨氮、硝态氮的年度变异特征进行分析,研究结果表明:2006年4月-2007年3月,湘江、洞庭湖水体中水温和溶解氧均表现出显著的季节性变化特征、pH值年内变化不显著;湘江水体中氨氮、硝态氮、总氮浓度变化范围分别为0.03-1.76mg/L、0.02-1.68mg/L、1.11-7.62mg/L,洞庭湖水体中氨氮、硝态氮、总氮浓度变化范围分别为0.03-1.56mg/L、0.04-1.72mg/L、0.04-9.81mg/L;非点源污染对湘江、洞庭湖水体中总氮浓度影响比较大,年内峰值出现在农忙且降水较多的7月或8月;湘江熬洲、乔口以及洞庭湖的万子湖、目平湖等四个断面水体中总氮浓度与水温之间存在显著正相关;湘江熬洲、乔口、鹿角以及洞庭湖的万子湖、目平湖等五个断面水体中氨氮浓度与水温之间存在显著负相关;湘江熬洲、乔口、鹿角三个断面水体中氨氮浓度与溶解氧与之间存在显著正相关。
     对湘江水环境因子与水体中氨氮、硝态氮、总无机氮的年际变异特征进行分析,研究结果表明:1990~2005年,湘江水体中氨氮、硝态氮、总无机氮浓度年际变化范围分别为0.01-1.50mg/L、0.02-1.28mg/L、0.26-2.29mg/L,硝态氮浓度随年际变化略有上升,大部分年份硝态氮年均浓度高于氨氮;氨氮、硝态氮、总无机浓度与水环境因子年际变化之间相关性均不显著。
     以湘江干流归阳至衡山段集雨控制区为研究范围,采用灰色系统理论预测法、指数平滑预测法、模糊线性回归预测法、神经网络预测法等四种能捕捉非线性变化规律的预测方法分别构造了控制区输出断面水体中总氮浓度及其有关影响因素的预测模型。以该断面水体中2002~2005年总氮浓度的预测值和已有的实测值为基础数据,以最大拟合误差值、平均误差、平均绝对误差、平均相对误差、平均相对误差绝对值、均方根误差、Theil不等系数等7个衡量预测方法精度的评价指标为依据,运用因子分析法对所建模型进行综合评判,优选出BP神经网络预测模型为该断面水体中总氮浓度未来变化预测的最优拟合模型。并对所优选出的模型进行预测效果分析,可知BP神经网络预测模型在水体总氮浓度预测中完全能满足实际应用对误差的要求,预测合格率为100%。
     研究表明湘江水体中来源于研究区域内人类活动所产生的非点源总氮负荷量与区域内单位耕地面积氮肥施用量相关性极显著(R=0.899);并且,研究发现水稻生产中总氮的径流损失总量(y,kg·hm-2)与氮施用量(x,kg·hm-2)存在极显著的线性相关:y=0.0087x+3.5248(r=0.9585,p=0.0036)。基于农业生产中氮肥施用量及施肥方法是影响氮流失的两个能被种植者控制的因子,本文开展水稻生产有机无机肥配合施用以及适宜生态、经济施氮量研究。有机无机肥配合施用大田试验研究结果表明:有机-无机肥料配合施用比纯化肥处理增产135.00-562.OOkg/hm2,增幅9.87%~23.68%;有机无机肥料配合施用比例对水稻产量影响较大,五个有机-无机肥料配合施用处理中,以施50%有机肥:50%无机肥的处理产量最高、达7050.00 kg/hm2,以施60%有机肥:40%无机肥用的处理平均氮素累积量、平均氮素回收率、平均氮素农学利用率最高,分别为:124.25 kg/hm2、31.44%、20.91%。适宜生态、经济施氮量大田试验结果表明:湘江流域水稻生产氮素经济最佳施用量为132.31kg/hm2;在估算出湘江干流归阳至衡山段集雨控制区域内水稻生产中氮肥施用的环境成本的基础上,得到水稻生产氮素生态效益最佳施肥量为129.31kg/hm2。
Xiang Jiang is the mother river of Hunan province, and increasing, serious pollution of Xiang Jiang river has been paid much attention by the society. The nitrogen pollution of water has been mainly caused by agricultural non-point source pollution. A general analysis of the temporal and spatial variation characteristics of nitrogen in Xiang Jiang river and Dong Ting lake, and study on the amounts of rational nitrogen application of rice, can provide scientific foundation for avoiding eutrophication of water in Xiang Jiang river, inhibit nitrogen pollution in water, and select a better prediction technique of nitrogen concentration in Xiang Jiang river, and can also offer a new method for the pollution control and management. The main research contents and results from our studies are as follows.
     The annual variation characteristics of water environmental indexes (water temperature, pH value, dissolved oxygen) and total nitrogen, ammonia nitrogen, nitrate nitrogen of water in Xiang Jiang river and Dong Ting lake were analyzed and the results showed that, the water temperature and dissolved oxygen value in Xiang Jiang river and Dong Ting lake had obviously seasonal characteristics, and the change of pH value was not significant from April of 2006 to March of 2007. The concentrations of ammonia nitrogen, nitrate nitrogen and total nitrogen of water in Xiang Jiang river were 0.03~1.76 mg/L,0.02~1.68 mg/L and 1.11~7.62 mg/L respectively, and the concentrations of ammonia nitrogen, nitrate nitrogen and total nitrogen of water in Dong Ting lake were 0.03~1.56 mg/L,0.04~1.72 mg/L and 0.04-9.81 mg/L respectively. The effect of agricultural non-point source pollution on total nitrogen concentrations of the Xiang Jiang river and Dong Ting lake was higher with the peak values appearing in July and August. There was significant correlation between total nitrogen concentrations and water temperatures of AoZhou, QiaoKou sections in Xiang Jiang river and WanZi lake, MuPing lake in Dong Ting lake. There existed significantly, negative correlation between ammonia nitrogen concentrations and water temperatures of AoZhou, QiaoKou and LuJiao sections in Xiang Jiang river and WanZi lake, MuPing lake in Dong Ting lake. There was significant correlation between NH4+-N concentrations and dissolved oxygen values of AoZhou, QiaoKou and LuJiao sections in Xiang Jiang river.
     The annual variation characteristics of water environmental indexes and ammonia nitrogen, nitrate nitrogen, total inorganic nitrogen concentrations of water in Xiang Jiang river were analyzed and the results showed that, the changes of ammonia nitrogen, nitrate nitrogen and total inorganic nitrogen concentrations of water in Xiang Jiang river were 0.01~1.50 mg/L,0.02~1.28 mg/L,0.26~2.29 mg/L respectively during years of 1990~2005 and the nitrate nitrogen concentration was observed to be increased a little annually. In most of the years monitored, the average annual concentration of nitrate nitrogen was higher than that of ammonia nitrogen. There was no significant correlation between total inorganic nitrogen, nitrate nitrogen concentrations and water environmental indexes.
     The catchment area of Xiang Jiang mainstream from Guiyang to Hengshan was the main focus of our studies, and we adopted the grey system forecast model, triple exponential smoothing forecast model, fuzzy linear regression forecast model and BP neural network forecast model, which could efficiently describe nonlinear regularities of water body, to identify the relationship between the total nitrogen concentration and related factors. Based on the predicted and monitored values of total nitrogen concentrations, the prediction precision was assessed with seven indexes including root mean squared error, average error, average absolute error and so on. The BP neural network was found to be the best model to predict the water total nitrogen concentration and all the relative errors were less than 20% of the difference between predicted and measured values and the qualified rate of prediction was 100%.
     Our studies on the correlation between the fertilizer input per unit arable area and the non-point source TN load of anthropogenic activity contribution to Xiangjiang river showed that they had obvious linear relationship and the coefficient of correlation was 0.899. moreover, the studies on the effects of different fertilization treatments on total nitrogen loss with runoff,it showed that There was very significant correlation between them and the linear equation is y=0.0087χ+3.5248 (r=0.9585,p=0.0036).Based on controlled nitrogen fertilizer application amount and application method to increase the nitrogen use efficiency in agriculture production, the combined application of organic and inorganic fertilizers and ecological and economical nitrogen application for rice were studied. The results from combined application of organic and inorganic fertilizers in the rice field experiment demonstrated that, the yield from combined application was 135.00-562.00 kg/hm2 higher than that from pure nitrogen application treatment, with an increase of 9.87~23.68%. The effect of combined application of organic and inorganic fertilizer on yield of rice was bigger, and the highest yield of rice among the five combined application treatments was from the 50% organic fertilizer and 50% inorganic fertilizer treatment with a yield of 7050.00 kg/hm2. The average nitrogen accumulation amount, nitrogen recovery percent and nitrogen agriculture rate of the 60% organic fertilizer and 40% inorganic fertilizer treatment were the highest, and they were 124.25 kg/hm2,31.44%,20.91% respectively. The results of ecological and economical nitrogen application experiment in the field showed that, the economical nitrogen application of rice cultivation in Xiang Jiang valley was 132.31 kg/hm2. Based on the estimate of the environmental cost of nitrogen application in rice cultivation between GuiYang and HengShan sections of Xiang Jiang river, it could be concluded that the best nitrogen application amount for the ecological and economical nitrogen benefit is 129.31 kg/hm2.
引文
[1]Brown L R, Halweil B. China's water shortages could shake world food securing [J].World-Watch,1998, July/August:10~18.
    [2]张寿金,黄巍.中国水资源的可持续利用研究[J].中国人口·资源与环境,1999,9(2):21-25.
    [3]戴志军,彭晓春,黄鹄.灰色模型理论在河流水污染预测中的应用[J].环境保护,2002,(1):28~29.
    [4]Novotny V.Diffuse pollution from agriculture-a world wide outlook [J].Water Science and Technology,1999,39(3):1~13.
    [5]Dennis L C,Peter J V,Keith L.Modeling non-point source pollution in vadose zone with GIS[J].Environmental Science and Technology,1997,(8):2157~2175.
    [6]Miller G T, Jr. Living in the Environment:An Introduction to Environmental Science[M].Seventh Edition Belmont:Wadsworth Publishing Company,1992,602~611.
    [7]Oenema O, Roest C W J. Nitrogen and phosphorus losses from agriculture into surface waters; the effects of policies and measures in the Netherlands [J].Water Science and Technology, 1998,37(3):19~30.
    [8]全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施[J].生态学报,2002,22(3):291-299.
    [9]Boers P C M. Nutrient Emissions from Agriculture in the Netherlands: Causes and Remedies[J].Water Science and Technology,1996,33(4/5):183~189.
    [10]Corwin D L, Vaughan P J, Loague K.Modeling nonpoint source pollutants in the vadose zone with GIS[J].Environmental Science and Technology,1997,31(8): 2157-2175.
    [11]Lena B V. Nutrient preserving in riverine transitional strip [J]. Journal of Human Environment,1994,3(6):342~347.
    [12]Uunk E J B.Eutrophication of surface waters and the contribution of agriculture[M]. Proceeding of the Fertilizer Society,1991,55.
    [13]Sharpley A N, Chapra S C,Wedepohl R,et al. Managing agricultural phosphorus for protection of surface waters, issues and options[J].Journal of environmental Quality,1994,23(3): 437~451.
    [14]马立珊,张水铭,张桂英.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学 报,1997,17(1):39~47.
    [15]吴天马.太湖流域农业面源污染防控策略新思路[J].环境导报,2001(6):1-4.
    [16]宋蕾,王永胜,张鸿涛.关中抽渭灌区农田面源污染对渭河水体的影响[J].环境保护,2001,(8):24~26,28.
    [17]EPA.Meeting the environment challenge [M]. USA:EPA,1990,46.
    [18]EPA.National water quality inventory:Report to congress executive summary[M].Washington DC:USEPA.1995,497.
    [19]Deletic A B, Maksimovic C T. Evaluation of water quality factors in storm runoff from Paved areas [J].Journal of Environmental Engineering (New York),1998.124(9):869~879.
    [20]车伍,刘燕,李俊奇.国内外城市雨水水质及污染控制[J].给水排水,2003,29(10):38-42.
    [21]蒋海燕,刘敏,顾琦,等.上海城市降水径流营养盐氮负荷及空间分布[J].城市环境与城市生态,2002,15(1):15-17.
    [22]Winchester J W,Escalona L,Fu J M,et al.Atmospheric deposition and hydrog-eologic flow of nitrogen in northern Florida watersheds[J].Geochimica et Cosmochimica ACTA, 1995,59(11):2215~2222.
    [23]Jaworski N A, Howarth R W, Hetling L J. Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the northeast United States [J].Environmental Science and Technology,1997,31(7):1995~2004.
    [24]Sheeder S A, Lynch J A, Grimm J.Modeling atmospheric nitrogen deposition and transport in the Chesapeake Bay watershed[J] Journal of Environmental Quality,2002,31(4):1194~1206.
    [25]Whitall D, Hendrickson B, Paerl H.Importance of atmospherically deposited nitrogen to the annual nitrogen budget of the Neuse River estuary, North Carolina [J].Environment International, 2003, (29):213,393~399.
    [26]Scudlark J R,Jennings J A,Roadman M J,et a/.Atmospheric nitrogen inputs to the Delaware Inland Bays:the role of ammonia[J].Environmental Pollution,2005,135(3):433~443.
    [27]Fisher D C, Oppenheimer M.Atmospheric nitrogen deposition and the Chesapeake Bay estuary[J].Ambio,1991,20(3/4):102~108.
    [28]Boynton W R,Garber J H,Summers R,et al.Inputs,transformations and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries[J]. Estuaries,1995, (18):285~374.
    [29]Sheeder S A, Lynch J A, Grimm J. Modeling atmospheric nitrogen deposition and transport in the Chesapeake Bay watershed[J].Journal of Environmental Quality,2002,31(4):1194~1206.
    [30]宋玉芝,秦伯强,杨龙元等.大气湿沉降向太湖水生生态系统输送氮的初步估算[J].湖泊科学,2005,17(3):226-230.
    [31]EPA.Deposition of air pollutants to the great waters-3rd report to congress [M].Electronic.Federal/National.Government publication, Bibliographies 2000,2000.
    [32]Asman W A H, Hertel O, Berkowicz R, et al.Atmospheric nitrogen input to the Kattegat Strait[J].Ophelia,1995, (42):5~28.
    [33]Beddig S, Brockmann U, Dannecker W, et al.Nitrogen fluxes in the German Bight[J].Marine Pollution Bulletin,1997,34(6):382~394.
    [34]Rosenberg R, Elmgren R, Fleischer S, et al. Marine eutrophication case studies in Sweden [J].Ambio,1990,19(3):102~108.
    [35]Clark H, Kremer J N. Estimating direct and episodic atmospheric nitrogen deposition to a coastal waterbody [J].Marine Environmental Research,2005,59(4):349~366.
    [36]Nakamura T, Matsumoto K, Uematsu M.Chemical characteristics of aerosols transported from Asia to the East China Sea:an evaluation of anthropogenic combined nitrogen deposition in autumn[J].Atmospheric Environment,2005,39(9):1749~1758.
    [37]王保栋,单宝田,战闰,等.黄、渤海无机氮的收支模式初探[J].海洋科学,2002,26(2):33-36.
    [38]金相灿,叶春,颜昌宙,等.太湖重点污染控制区综合治理方案研究[J].环境科学研究,1999,12(5):1-5.
    [39]王宁,朱颜明,李顺.松花湖水体营养物质动态变化及成因分析[J].环境科学研究,1999,12(5):27~30.
    [40]毛伟兵.水土流失对东平湖水质的影响研究[J].水土保持通报,2001,21(5):27-29.
    [41]Funge-Smith S J, Briggs M R P. Nutrient budgets in intensive shrimp ponds:implications for sustainability [J].Aquaculture,1998,164 (1/4):117~133.
    [42]黄文钰,许朋柱,范成新.网围养殖对骆马湖水体富营养化的影响[J].农村生态环境,2002(1):22~25.
    [43]Foy R H, Rosell R,Foy R H. Fractionation of phosphorus and nitrogen loadings from a Northern Ireland fish farm[J].Aquaculture,1991,96(1):31~42.
    [44]Penczak T, Galicka W, Molinski M, et al. The enrichment of a mesotrophic lake by carbon, phosphorus and nitrogen from the cage aquaculture of rainbow trout, Salmo Gairdneri[J].Journal of applied ecology,1982,19(2):371~393.
    [45]吴庆龙,陈开宁,高光,等.大水面网围精养对水环境的影响及其对策[J].水产学报,.1995,19(4):343-349.
    [46]刘鸿志.新时期全国水污染防治工作的分析和建议[J].环境保护,2002,(2):9-11.
    [47]国家环保局.中国2003年环境状况公报[J].环境保护,2004(7):1-17.
    [48]张之源,王培华,张崇岱.巢湖营养化状况评价及水质恢复探讨[J].环境科学研究,1999,12(5):45~48.
    [49]秦伯强,朱广伟,张路,等.大型浅水湖泊沉积物内源营养盐释放模式及其估算方法,以太湖为例[J].中国科学D辑,2005,35(增刊2):33-44.
    [50]Claret C, Marmonier P, Bravard J P.Seasonal dynamics of nutrient and biofilm in interstitial habitats of two contrasting riffles in a regulated large river [J]. Aquatic Sciences,1998.60(1):33~55.
    [51]Denis L, Grenz C, Alliot E.et al.Temporal variability in dissolved inorganic nitrogen fluxes at the sediment-water interface and related annual budget on a continental shelf(N W Mediterranean) [J].Oceanologica Acta,2001, (24):85~97.
    [52]张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2002,48-51.
    [53]张丽萍,袁文权,张锡辉.底泥污染物释放动力学研究[J].环境污染治理技术与设备,2003,4(2):22~26.
    [54]孙亚敏,董曼玲,汪家权.内源污染对湖泊富营养化的作用及对策[J].合肥工业大学学报(自然科学版),2000,23(2):210~213.
    [55]王健,王方华,吴虹.小清河底泥污染物释放对西水东调水质的影响研究[J].重庆环境科学,2003,25(12):59-61.
    [56]蒋佰权.人工神经网络在水环境质量评价与预测上的应用[D].首都师范大学硕士学位论文,2006,9-13.
    [57]史根香,郭海生.指数平滑法在地下水水质预测中的尝试[J].湖北地矿,1998,12(1):35-40.
    [58]唐宗鑫,简文彬.闽江下游水质预测的时间序列模型[J].水利科技,2002,(2):7-9.
    [59]Inoul T.Prediction of nitrogen oxide concentration by a regression model [J].Atmospheric Environment,1986, (20):2325~2337.
    [60]卢崇飞,高惠璇,叶文虎.环境数理统计应用及程序[M].北京:高等教育出版社,1988,33-38.
    [61]史复有.黄河兰州段耗氧有机污染物浓度统计预测模型的建立[J].环境科学,1989,10(3):72~74.
    [62]柏文,吴建伟,郭磊,等.灰色预测在水质预测中应用[J].科技信息,2008, (15):362~363.
    [63]苗成林,周宏.基于灰色模型的水质预测[J].中国农村水利水电,2007,(2):126-128.
    [64]戴志军,彭晓春,黄鹄.灰色模型理论在河流水污染预测中的应用[J].环境保护,2002,(1):28-29.
    [65]陈娟,谢玲玲,马淑兰.灰色系统在水质预测中的应用[J].科教文汇,2008(7):275.
    [66]Campolo M, Soldati A, Andreussi P.Forecasting river flow rate during low-flow period using neural network[J].Water resource research,l999,35(11):3547~3552.
    [67]Bin Zhang.Prediction of water runoff using Bayesian concepts and modular neural network[J].Water resource research,2000,36(3):753~762.
    [68]T R Neelakantan, N V Pundarikanthan.Neural network-based simulation-optimization model for reservoir operation[J] Journal of water resources planning and management,2000,126(2):51~64.
    [69]Sharad Kumar Jain.Development of integrated sediment rating curves using ANNs[J]. Journal of Hydraulic Engineering,2001,127(3):181~193.
    [70]Nagy H M,Watanabe M, Hirano M.Prediction of sediment load concentration in rivers using artifical neural network model[J] Journal of Hydraulic Engineering,2002,128(6):588~595.
    [71]魏文秋,孙春鹏.神经网络水质预测模型[J].中国农村水利水电(农田水利与小水电)1996,(1/2):26~29,83.
    [72]常沁春.BP神经网络改进算法预测水质浓度的应用[J].甘肃环境研究与监测,2002,15(3):186~188.
    [73]陈丽华,常沁春,陈兴国,等.BP网络应用于黄河水质的预测研究[J].兰州大学学报(自然科学版),2003,39(2):53~56.
    [74]王晓萍,孙继洋,金鑫.基于BP神经网络的钱塘江水质指标的预测[J].浙江大学学报(工学版),2007,41(2):361-364.
    [75]李峻,孙世群.基于BP网络模型的青弋江水质预测研究[J].安徽工程科技学院学报,2008,23(2):23-26.
    [76]Jobson H E. Predicting travel time and dispersion in rivers and streams [J] Journal of Hydraulic Engineering,1997,123(11):971-977.
    [77]徐祖信,廖振良.水质数学模型研究的发展阶段和空间层次[J].上海环境科学,2003,22(2):79~85.
    [78]Cammara A S, Randall C W.The qual Ⅱmodel[J] Journal of Environmental Engineering, A SCE,1984,110(5):993.
    [79]Thomann R V. The future'Golden Age'of predictive models for surface water quality and ecosystem management[J].Journal of Environmental Engineering,1998,124(2):94-103.
    [80]刘国东,丁晶.水环境中不确定性方法的研究现状和展望[J].环境科学进展,1996,4(4):46-53.
    [81]Loucks D P, Lynn W R.Probabilistic models for predicting stream quality [J]. Water Resources Research,1996, (3):593~605.
    [82]Baffaut C, Chamean J L. Estimation of pollutant loads with fuzzy sets [J]. Civil Engineeering Systems,1990,7(1):51~61.
    [83]夏军,张祥伟.河流水质灰色非线性规划的理论与应用[J].水利学报,1993,(12):1-9.
    [84]李如忠,王超,汪家权,等.基于未确知信息的河流水质模拟预测研究[J].水科学进展,2004,15(1):36~40.
    [85]徐敏,曾光明,谢更新,等.混沌理论在河流溶解氧预测中的应用初探[J].环境科学学报,2003,23(6):776-780.
    [86]李祚泳.污染物浓度预测的PPR模型[J].环境科学,1997,18(4):38~40.
    [87]易顺民.河流水环境有机污染物的自组织预测模型及应用[J1.环境科学研究,1999,12(4):46-49.
    [88]曾宪坤.中国化肥工业的现状与展望[J].土壤学报,1995 32(2):117-125.
    [89]FAO. Food balance sheets.1978~198 laverage[M]. Rome:FAO,1984.
    [90]马朝红,方建坤.蔬菜土壤养分积累状况与环境分险[J].长江蔬菜,2000(12):43-45.
    [91]张夫道.化肥污染的趋势与对策[J].环境科学,1985,6(6):54~58.
    [92]马立珊.太湖流域水环境硝态氮和亚硝态氮污染的研究[J].1987,环境科学,8(2):60~65.
    [93]武志杰.化学肥料与生物圈[J].农业环境保护,1994,13(6):279~252.
    [94]孙绍荣.北京降雨和土壤下渗水中氮素研究[J].土壤肥料.1993,(2):8-10.
    [95]张明泉.兰州马滩水源地N03污染环境条件分析[J].环境科学,1990,11(5):79~82.
    [96]Cassman K G, Kropff M J, Gaunt J, Peng S. Nitrogen use efficiency of rice reconsidered: What are the key constraints? [J]. Plant and soil,1993,155/156:359~362.
    [97]凌启鸿.改革肥料运筹优花水稻群体质量,水稻高产高效理论与新技术——第五届全国水稻高产与技术研讨会论文集,124-135.
    [98]中国农业科学院土壤肥料研究所.中国肥料[M].上海:上海科学技术出版社,1994,20-27.
    [99]聂军.水稻控释肥的氮素释放特性及农田应用效应研究[D].湖南农业大学硕士论文,2002,8.
    [100]陈坚.1993~1998年湘江长沙段水质污染指标动态监测结果分析[J].实用预防医学,1999,6(3):216-217.
    [101]刘晶,刘强,荣湘民,等.湖南湘江半年水质评价[J].湖南农业科学,2007,(2):3-6.
    [102]王秋衡,王淑云,刘美英.湖南湘江流域污染的安全评价[J].中国给水排水,2004,20(8):104~106.
    [103]林希建,朱彩明,谭亮.湘江长沙段2000~2005年水质监测情况动态分析[J].实用预防医学,2008,15(4):1122-1125.
    [104]邹桂香,戴友芝,宋建昕.湘江干流衡阳段水环境质量现状分析与评价[J].南华大学学报(自然科学版),2008,22(3):39~43.
    [105]孙树青,胡国华,王勇泽,等.湘江干流水环境健康风险评价[J].安全与环境学报,20066,6(2):12-15.
    [106]詹晓安,曹希,李广源.湘江水系水环境状倪及保护对策[J].湖南水利水电,1999,(4):35~37.
    [107]龙歆孜,李颂,涂建清,等.株洲市生活饮用水水质监测结果分析[J].实用预防医学,2004,11(1):143~144.
    [108]唐文清,曾荣英,冯泳兰,等.湘江(衡阳段)河流沉积物中重金属潜在生态风险评价[J].环境监测管理与技术,2008,20(5):25~27.
    [109]彭利,罗钰,朱奕,等.湘江长沙段沉积物重金属污染状况及潜在生态风险评价[J].环境研究与监测,2009,22(3):1-4.
    [110]杜鹃,何飞,史培军.湘江流域洪水灾害综合风险评价[J].自然灾害学报,2006,15(6):38-44.
    [111]包晓风,秦普丰,朱利权,等.“十五”期间湘江株洲段水质环境监测与分析[J].环境科 学与管理,2009,34(1):152-155,168.
    [112]陈咏淑,吴甫成,吕焕哲.近20年来湘江水质变化分析[J].长江流域资源与环境,2004,13(5):508~512.
    [113]易诚,陈津端,湛含辉,等.湘江干流衡阳段水质变化[J].水资源保护,2009,25(2):55-58,63.
    [114]邓健,许金生,陈文,等.湘江衡阳段水体中氮含量的动态变化及成因分析[J].中国卫生检验杂志,2001,11(4):398~399.
    [115]李彩霞,李彩亭,翟云波,等.湘江衡阳段水质污染现状及对策分析[J].环境保护科学,2007,33(6):31-34.
    [116]欧阳素芳,曾怀才.湘江衡阳市区段水质卫生状况及变化趋势[J].实用预防医学2003,10(5):751~752.
    [117]陈瀚,彭放,陈朝猛.应用灰色理论预测衡阳市环境质量变化趋势[J].环境卫生工程,2008,16(2):4-7.
    [118]郭振华,吴苏喜,胡可信,等.长株潭湘江段生态经济带建设水环境容量研究[J].湖南师范大学自然科学学报,2005,28(2):80-83.
    [119]申春香,赵寿云.湘江衡阳市段纳污能力分析[J].湖南水利水电,2003,(6):32-33.
    [120]史伦娜.湘江水资源质量评价及纳污能力浅析[J].中国水运,2007,(4):114~115.
    [121]刘文华,刘芬,李方文,等.湘江铜霞段镉环境容量模型研究[J].安全与环境学报,2005,5(6):72~75.
    [122]刘芬,刘文华,娄涛.湘江霞湾段汞环境容量模型研究[J].环境工程,2002,20(6):58-61.
    [123]刘华平,李广源.湘潭市城区湘江段水域纳污能力分析[J].湖南水利水电,2001.(1):37-38.
    [124]李军,刘云国,许中坚.湘江长株潭段底泥重金属存在形态及生物有效性[J].湖南科技大学学报(自然科学版),2009,24(1):116-121.
    [125]邱丽君,杨喆.湘江衡阳段底泥重金属沉积现状分析[J].科技资讯,2008,(8):166-168.
    [126]黄钟霆,周振,罗岳平.湘江霞湾港段底泥的含镉量分布研究[J].环境污染与防治,2009,31(7):56-58.
    [127]黄钟霆,罗岳平,周振.湘江霞湾港段底泥的铅含量与分布研究[J].环境科学与管理, 2009,34(6):34-36.
    [128]唐晓燕,彭渤,余昌训,等.湘江沉积物重金属元素环境地球化学特征[J].云南地理环境研究,2008,20(3):26-32.
    [129]肖仲晋.衡阳市湘江水污染特征及其治理[J].湖南地质,1998,17(3):178~183.
    [130]张蕴华.污染综合治理是实现湘江流域可持续发展和水域功能目标的必由之路[J].科技咨询导报,2007,(18):69~70.
    [131]李颂,谭利人,罗建平,等.湘江株洲城区段水质监测、评价及污染因素调查分析[J].实用预防医学,2006,13(3):582-585.
    [132]李惠全.湘江流域枯水期饮用水水质状况分析与对策[J].企业技术开发,2004,23(6):14-15.
    [133]周国逸,周青山,谢锦云.湘江上游东江水库水质状况及分析[J].环境科学进展,1994,2(5):67-74.
    [134]邓仁健,任伯帜,李文健.湘江水体污染治理采用BOT模式的探讨[J].长沙交通学院学报,2005,21(3):63-66.
    [135]苏小康,曾光明,秦肖生,等.湘江水质随机模拟与风险分析[J].湖南大学学报(自然科学版),2006,33(2):106-109.
    [136]葛飞,唐受印,田文荣,等.湘江湘潭段水源水中有机污染物的分析与鉴定[J].湘潭大学自然科学学报,2001,23(2):70~73.
    [137]李惠萌,袁兴中,曾光明,等.基于MATLAB的湘江流域工业固体废物灰色预测[J].环境科学与技术,2008,31(8):136-140.
    [138]龚玲兰,奚小双,孔华,等.湘江悬浮物的稀土元素地球化学研究[J].沉积学报,2009,27(3):529~535.
    [139]黄坚,李建文,陈胜福,等.湘江(长沙段)水中铬的形态分布及其迁移[J].分析测试学报,2007,26(3):335-338.
    [140]蒋昭凤,齐庆临.应用模糊评判法划分湘水环境功能[J].云南环境科学,1995,14(3):36-39.
    [141]陈波,方伟华,何飞,等.湘江流域洪涝灾害与降水的关系[J].自然灾害学报,2008,17(1):92~96.
    [142]孙海燕.湘江流域水灾特征分析[J].武陵学刊,1996,17(3):44~49.
    [143]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境出版社,2002: 6~7,37~43.
    [144]Dodds W K,Priscu J C,Ellis B K.Seasonal uptake and regeneration of inorganic nitrogen and phosphorus in a large oligotrophic lake:Size-fractionation and antibiotic treatment[J].Journal of Plankton Research,1991,13(6):1339~1358.
    [145]李文红,陈英旭,孙建平.不同溶解氧水平对控制底泥向上覆水体释放污染物的影响研究[J].农业环境科学学报,2003,22(2):170-173.
    [146]Garland J H N. Nit rification in the River Trent[C].Mathematical Models in Water Pollution Control.NewYork:Wiley,1978:167.
    [147]李恭臣,夏星辉.黄河无机氮形态组成影响因素的灰色关联度分析[J].北京师范大学学报(自然科学版),2005,41(6):632~635.
    [148]廖卫兵,熊明辉,黎小军.仙女湖水体中氮素变化特征分析[J].安徽农业科学,2008,36(17):7405~7406,7444.
    [149]Trussell R T.The percent unionized ammonia in aqueous ammonia solution at different pH levels and temperatures [J].Fish Research Board Can,1972,29(10):1505~1507.
    [150]庄源益,戴树桂,张明顺.水中氨挥发因素探讨[J].环境化学,1995,14(4):343~346.
    [151]王秀丽,杨萍,吴玲玲,等.原水藻类监测及富营养化状况的调查[D].含藻水处理研究技术研讨会,2006.
    [152]孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2003:212.
    [153]张学青,夏星辉,杨志峰.黄河水体氨氮超标原因探讨[J].环境科学,2007,28(7):1435-1441.
    [154]Lucey K J, Goolsby D A.Effects of climatic variations over 11 years on nitrate-nitrogen concentrations in the raccoon river, Iowa[J]. Journal of Environ-mental Quality,1993,22(1):38~46.
    [155]Mueller D K, Ruddy B C, Battaglin W A. Logistic model of nitrate in streams of the upper-midwestern United States [J] Journal of Environmental Quality,1997,26(5):1223~1230.
    [156]吕耀.农业生态系统中氮素造成的非点源污染[J].农业环境保护,1998,17(1):35~39.
    [157]冯绍元,郑耀泉.农田氮素的转化与损失及其对水环境的影响[J].农业环境保护,1996,15(6):277-279.
    [158]李怀恩,李越,蔡明,等.河流水质与流域人类活动之间的关系[J].水资源与水工程学报,2004,15(1):24~28.
    [159]H Morita, T Kase, Y Tamura, et al. Interval prediction of annual maximum demand using grey dynamic model[J].International Jounral of electrical Power & enegry systems,1996,18(7): 409~413.
    [160]Fang-Mei Tseng, Hsiao-Cheng Yu, Gwo-Hsiung, et al. Applied hybrid gery model to forecast seasonal time series[J]. Technological forecasting and social change,2001, (67):291~302.
    [161]Che-Chiang Hsu, Chia-You Chen.Applications of improved grey prediction model for power demand forecasting[J].Energy conversion and management,2003, (44):2241~2249.
    [162]Li-Chang Hsu.Applying the grey prediction model to the global integrated circuit industry [J].Technological forecasting and social change,2003,70(6):563~574.
    [163]曾光明,张国强,曾北危.河流水质系统灰色模型的识别、模拟和应用[J].中国环境科学,1994,14(1):57~61.
    [164]郭原,徐宏亮.水质变化灰色预测方法的探讨[J].中国环境监测,1996,12(2):42-43..
    [165]赵雪辉,郑新秀,朱菌,等.灰色系统GM(1,1)残差模型在水质预测中的应用与探讨[J].干早环境监测,1997,11(2):118-120.
    [166]王国平.地表水COD浓度灰色预测的GPPM(1)模型[J].干旱环境监测,2000,14(1):39-42,49.
    [167]李如忠,王超.灰色动态模型群法在河流水质预测中的应用初探[J].中国农村水利水电,2003,(1):76~75.
    [168]教案十五预测分析[EB/OL]. http://jwc.ahmu.edu.cn/jpkc/yc/dzja/15.doc.
    [169]谭冠军.GM(1,1)模型的背景值构造方法和应用(Ⅰ)[J].系统工程理论与实践,2000,20(4):98~103.
    [170]谭冠军.GM(1,1)模型的背景值构造方法和应用(Ⅱ)[J].系统工程理论与实践,2000,20(4):125~127,132.
    [171]谭冠军.GM(1,1)模型的背景值构造方法和应用(Ⅲ)[J].系统工程理论与实践,2000,20(6):70~74.
    [172]张大海,江世芳,史开泉.灰色预测公式的理论缺陷及改进[J].系统工程理论与实践,2002,22(8):1-3.
    [173]李俊蜂,戴文战.基于插值和Newton-Cotes公式的GM(1,1)模型的背景值构造新方法及应用[J].系统工程理论与实践,2002,22(10):122-126.
    [174]骆公志,崔杰,谢乃明.灰色GM(1,1)模型新的改进方法[J].统计与决策,2008, 274(22):11~13.
    [175]唐万梅.几个预测方法及模型的研究[D].内蒙古大学博士学位论文,2006,47.
    [176]任秀峰.预测模型在河南省干线公路网规划中的应用[D].大连理工大学硕士学位论文,2000,24-26.
    [177]Holger R Maier, Nicolas Morgan, Christopher W K Chow. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters [J].Environmental Modeling & Software,2004, (19):485~494.
    [178]屈忠义,陈亚新,史海滨,等.地下水文预测中BP网络的模型结构及算法探讨[J].水利学报,2004,(2):88~93.
    [179]郭劲松,霍国友,龙腾锐.BOD-DO耦合人工神经网络水质模拟的研究[J].环境科学学报,2001,21(2):140-143.
    [180]邵东国,王忠静,李元红,等.干旱内陆河流水质预测人工神经网络模型研究[J].灌溉排水,1999,18(4):7-9.
    [181]张延华,Yang ming xu.面向多学科的新一代程序设计语言[J].计算机应用研究,1998,16(8):76-79.
    [182]王南兰,潘湘高.MATLAB/NNTool在神经网络系统仿真中的应用[J].计算机仿真,2004,(4):125-128.
    [183]刘易平,马邕文.模糊数学法在电子行业清洁生产水平评价中的应用[J].青岛科技大学学报(自然科学版),2008,29(5):467~470.
    [184]方东权,吴天吉.基于模糊数学决策理论构建网络农业信息资源综合评价模型[J].安徽农业科学,2008,36(29):12979~12982.
    [185]朱红玉,杜少少,谷媛媛,等.模糊数学在地表水水质评价中的应用[J].水科学与工程技术,2008,(5):77-79.
    [186]王博,杨志强,李慧颖,等.基于模糊数学和GIS的松花江流域水环境质量评价研究[J].环境科学研究,2008,21(6):124-129.
    [187]侯素霞,刘新铭,钟秦.模糊数学在丹河水环境综合评价中的应用[J].生态环境,2008,17(4):1411~1414.
    [188]Lee Y W, Chung S Y, Bogardi I, et al.Dose-response assessment by a fuzzy linear-regression method[J]. Water Science and Technology,2001,43(2):133~140.
    [189]向红艳,肖盛燮.模糊数学方法在交通流预测评价中的应用[J].重庆交通学院学报,2006, 25(4):106~108,112.
    [190]耿光飞,郭喜庆.模糊线性回归法在负荷预测中的应用[J].电网技术,2002,26(4):19-21.
    [191]游仕洪,程浩忠,谢宏.应用模糊线性回归模型预测中长期电力负荷[J].电力自动化设备,2006,26(3):51-53.
    [192]陈南祥,徐海洋.模糊线性回归法在用水量预测中的应用[J].人民黄河,2007,29(5):33-34.
    [193]Meng LiLi, Chi DaoCai, Cui Shen, et al. The alpha-weighted fuzzy linear regression model in reference crops water demand forecasting application [J]. Journal of Shenyang Agricultural University,2008,39(5):603~606.
    [194]程利军,高丽.模糊线性回归分析在发病率预测中的应用[J].滨州教育学院学报,2007,6(3):74-75.
    [195]Bardossy A, Bogardi I, Duckstein L.Fuzzy regression in hydrology [J].Water Resources Research,1990,26(7):1497~1508.
    [196]Ronald E G, Robert E Y.A parametric representation of fuzzy numbers and their arithmetic operators[J].Fuzzy Sets and Systems,1997,91(2):185~202.
    [197]曾文艺,李洪兴,施煜.模糊线性回归模型(Ⅰ)[J].北京师范大学学报(自然科学版),2006,42(2):120-125.
    [198]杨威,卢文喜,李平,等.因子分析法在伊通河水质评价中的应用[J].水土保持研究,2007,14(1):113~114.
    [199]徐国祥,胡清友.统计预测与决策[M].上海:上海财经大学出版社,2004,243~249.
    [200]庄咏涛.渭河临潼断面以上流域非点源总氮负荷研究[D].西安理工大学硕士学位论文,2002,36-38.
    [201]梁常德,龙天渝,李继承,等.三峡库区非点源氮磷负荷研究.长江流域资源与环境,2007,16(1):26-30.
    [202]P. J.Johnes, A.L.Heathwaite. Modelling the impact of land use change on water quality in agriculture catchments [J]. Hydyologicalprocesses,1997(11):269~286.
    [203]吕耀,程序.太湖地区农田氮素非点源污染及环境经济分析[J].上海环境科学,2000,19(4):143~145.
    [204]高学民,陈静生,王立新.Logistic Regression在我国河流水系氮污染研究中的应用[J]. 环境科学学报,2000,20(6):676-681.
    [205]陈静生,高学民,夏星辉,等.长江水系河水氮污染[J].环境化学,1999,18(4):289~293.
    [206]夏星辉,周劲松,杨志峰,等.黄河流域河水氮污染分析[J].环境科学学报,2001,21(5):563-568.
    [207]段水旺,章申,陈喜保,等.长江下游氮磷含量变化及其输送量的估计.环境科学,2000,21(1):53-56.
    [208]晏维金,章申,王佳惠.长江流域氮磷的生物地球化学循环与其对输送无机氮的影响.地理学报,2001,56(5):505~514.[209]徐嵩龄.环境污染的经济成本分析[J].数量经济技术,1995,(7):25~38.[210]向平安,周燕,江巨鳌,等.洞庭湖区氮肥外部成本及稻田氮素经济生态最佳投入研究[J].中国农业科学,2006,39(12):2531-2537.
    [211]向平安,黄璜,燕惠民,等.湖南洞庭湖区水稻生产的环境成本评估[J].应用生态学报,2005,16(11):2187-2193.
    [212]卜跃先.洞庭湖氮污染的环境损益分析[J].内陆水产,2001,(6):5-6.[213]武深树,谭美英,龙岳林,等[J].洞庭湖区畜禽粪便中氮素污染及其环境成本.农业工程学报,2009,25(6):229-234.
    [214]纪雄辉.洞庭湖区双季稻养分流失规律及模拟研究[D].湖南农业大学博士学位论文,2002,104.
    [215]卜跃先,柴铭.洞庭湖水污染环境经济损害初步评价[J].人民长江,2001,32(4):27-28.
    [216]朱发庆,高冠民,李国倜,等.东湖水污染经济损失研究[J].环境科学学报,1993,13(2):214-222.
    [217]FAO, IFA.Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land. Rome:published by International Fertilizer Industry Association (IFA)and Food and Agriculture Organization of the United Nations(FAO).2001,1~84.
    [218]苏成国,尹斌,朱兆良,等.农田氮素的气态损失与大气氮湿沉降及其环境效应[J].土壤,2005,37(2):113~120.
    [219]郑良永.农业施肥与生态环境[J].热带农业科学,2004,24(5):79~84.
    [220]Dentener F J, Crutzen P J.A three-dimensional model of the global ammonia cycle[J].Atmos.Chem,1994,41(4):770~771.
    [221]高洪军,朱平,彭杨.浅析氮肥对生态环境负效应及对策[J].吉林农业科学,2004,29(6):37-42.
    [222]徐从燕,赵善伦.2002年山东省大气污染造成的经济损失估算[J].上海师范大学学报(自然科学版),2004,33(1):102~107.
    [223]钟汉珍,袁泉.长江流域酸雨危害及对策分析[J].华中农业大学学报(社会科学版),2002,45(3):18~21.
    [224]王文兴,卢筱凤,庞燕波,等.中国氨的排放强度地理分布[J].环境科学学报,1997,17(1):2-7.
    [225]陈秋.温室气体与全球变暖[J].电力环境保护,2003,19(3):11-13.
    [226]李伟波,吴留松,廖海秋.太湖地区高产稻田氮肥施用与作物吸收利用的研究[J].土壤学报,1997,34(1):67~73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700