用户名: 密码: 验证码:
电站锅炉管氧化层在溶氧超临界水中生长机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超超临界发电是国际上先进的洁净煤燃烧技术之一,主要是通过提高主蒸汽温度和压力来提高转换效率,进而实现节能减排。超临界水处于临界点以上,其密度、扩散系数、粘度、介电常数、溶解度等物性较亚临界发生了明显变化。加氧处理是国内外超临界电站广泛采用的给水处理方式之一,因此锅炉管材料处于溶氧超临界水中。近年来锅炉管氧化层生长过快出现剥落现象较为普遍,导致爆管事故频发,原因复杂。溶解氧对超临界水中金属氧化机理影响的研究将有助于揭示氧化层生成机理,进而为预防锅炉管爆管提供理论依据。因此开展电站锅炉管氧化层在溶氧超临界水中生长机理的研究,意义重大。
     论文对铁素体钢T24、铁马氏体钢P92和奥氏体钢Super304H、TP347HFG、HR3C五种钢种在550℃和600℃,25MPa超临界水中进行了氧化试验研究。为了研究溶解氧对氧化过程的影响,溶解氧浓度分别控制为无氧、100ppb、300ppb和2000ppb。氧化时间分别为200h、400h、600h、800h和1000h。得到了不同温度和不同溶解氧浓度超临界水环境中五种材料的氧化动力学曲线。分析了氧化物表面形貌和成份,观察了氧化层横截面结构和元素分布。
     分析研究了温度、溶解氧、铬含量、水环境等因素对氧化过程的影响,其中溶解氧对氧化增重和裂纹有明显影响。研究中发现加氧处理抑制腐蚀的作用机理在超临界水环境中是不适用的。分析了水的扩散系数、溶解度等对氧化过程的影响。
     基于溶解氧在不同工况下对电站系统管道的作用不同,提出了一种针对火力发电机组给水处理新工艺。该工艺在精处理后母管或除氧器下降管加氧气,在高压加热器后、省煤器前加联胺,除掉氧气。该给水处理工艺既可以抑制低压加热器和高压加热器中的流动加速腐蚀,又可降低溶解氧对超临界水中金属氧化的加速影响。
     铁素体钢和铁马氏体钢在超临界水中生成均匀的双层结构的氧化层,由于超声波在两层中的传播速度不同,因此提出了一种超声波测量氧化层厚度的修正方法,该方法可以更准确的测量锅炉管内壁氧化层厚度。
Ultra supercritical power generation is one of the most advanced clean coal technologies. Operating the water medium in the supercritical state in ultra supercritical (USC) power plant improves the energy conversion efficiency and fuel usage, thus a reduction of pollutant emissions. In comparison to the subcritical state, the physical properties of the water medium including density, diffusion coefficient, kinematic viscosity and dielectric constant change more greatly when it works above the thermodynamic critical point. Oxygenated treatment (OT) is widely used in USC power plant. So the materials of boiler tube are working in supercritical water (SCW) with dissolved oxygen (DO).
     In recent years, the tube explosion resulting from the excessively growth rate and all-pervading exfoliation of oxide scale occurs frequently. The reasons for this appearance is rather complex. Consequently, the research on growth mechanism of oxide scale of boiler tube in supercritical water with dissolved oxygen has important significant and academic value。
     The corrosion experiments of the ferritic (T24), ferritic-mantensitic (P92) and austenitic steel (Super304H, TP347HFG, HR3C) were investigated in supercritical water at the temperature of550℃and600℃under a pressure of25MPa. To probe the influence of DO content on corrosion, the DO contents were controlled at0,100,300and2000ppb, respectively. The exposure time were200,400,600,800and1000h. After obtaining the weight gain curves under different conditions, the surface morphologies and composition were observed using SEM and EDS technologies. At the same time, the cross structures and element distribution of the oxide scales were analyzed.
     The influences of Cr concentration, temperature, DO and water on oxidation were also investigated. The results indicated DO can have an obvious effect on weight gain and exfoliation of oxide scale. FAC avoided in OT method proposed by EPRI was proved to be non-controlled in SCW. The growth and exfoliation mechanism of oxide scale was changed when the water was present. So the influence of diffusion coefficient and solubility on oxidation were also discussed in this paper.
     Based on the different effect of DO on corrosion of tubes under different operating conditions, a new treatment method of feed water was proposed. In this method, the oxygen was fed in the site of the main pipe after precision treatment or the vertical pipe after the deareator, and the diamide was fed in the site of the pipe after high pressure heater and before economizer. The oxygen and diamide were reacted each other in the pipe. The deareated water was fed into the tube of the boiler. The treatment method proposed in this study can avoid of the occurring of FAC in high and low pressure heaters, as well as can decrease the corrosion of boiler tubes enhanced by DO in SCW.
     Based on observations on the uniform dual-layered structure oxide scale formed on ferritic and ferritic-martenistic steels, a correction method of the thickness of the oxide scale on the boiler tube using supersonic measurement system was proposed because of the different propagation velocity of supersonic in the above two layers. The more accurate thickness of oxide scale on boiler tube can be measured by this method.
引文
[1]C.Z. Wagner. Beitrag Zur Theory des Anlaufvorgangs [J]. Physical Chemistry,1933, B21:25.
    [2]C.Z. Wagner. Atomic Movements [M]. Cleveland:American Society of Metals,1951.
    [3]N. Cabrera and N.F. Mott. Theory of the oxidation of metals [J]. Reports on progress in physics,1949,12:163.
    [4]E.A. Gulbranson, K.F. Andrew. The Kinetics of Oxidation of High Purity Nickel [J]. Journal of the Electrochemical Society.1954,101(3):128-140.
    [5]C. Zener. Theory of Do for Atomic Diffusion in Metals [J]. Journal of Applied Physics,1951, 22(4):372.
    [6]W. Jost. Diffusion in solids, liquids, and gas [M]. New York:Academic Press,1952.
    [7]T.P. Hoar, L.E. Price. The electrochemical interpretation of Wagner's theory of tarnishing reactions [J]. Transactions of the Faraday Society,1938,34:867-872.
    [8]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003:50-55.
    [9]P. Kofstad. High Temperature Corrosion [M]. London:Elsevier,1988.
    [10]V. Lepingle, G. Louis, D. Petelot, B. Lefebvre and J.C. Vaillant. High Temperature Corrosion Behaviour of Some Boiler Steels in Pure Water Vapour [C]. in:High Temperature Corrosion and Protection of Materials 5. Materials Science Forum, Trans Tech Publications, Switzerland,2001, p.369-372.
    [11]S.R.J. Saunder, L.N. McCartney. Current understanding of steam oxidation power plant and laboratory experience [J]. Material Science Forum,2006,119:522-523.
    [12]D.J. Young. High temperature oxidation and corrosion of metals [M], in:T. Burstein (Ed.), Corrosion Series, Vol.1. Amsterdam:Elsevier Science,2008.
    [13]U.R, Evans. An Introduction to Metallic Corrosion [M]. London:Arnold,1948.
    [14]A. Fry, S. Osgerby, M. Wright. Oxidation of alloys in steam environments:A Review [R], NPL Report MATC(A)90, Sep.2002.
    [15]I.G. Wright, B.A. Pint. An assessment of the high temperature oxidation behavior of Fe-Cr steels in water vapor and steam [C]. Proceeding of NACE Corrosion 2002, Denver, CO, 2002,No.02377.
    [16]陈戎,沈保中.火电厂蒸汽通流部件高温氧化的调查分析[J].电力设备,2006,7(11):21-26.
    [17]钟万里,王伟,梁永纯,等.超临界机组金属高温蒸汽氧化[M].北京:中国电力出版设,2010.
    [18]C.T. Fujii, R.A. Meussner. The Mechanisms of the High-Temperature Oxidation of Iron-Chromium Alloys in Water Vapour [J]. Journal of the Electrochemical Society,1964, 111:1215.
    [19]C.T. Fujii, R.A. Meussner. Oxide Structures Produced on Iron-Chromium Alloys by a Dissociative Mechanism [J]. Journal of the Electrochemical Society,1963,110:1195.
    [20]Y. Ikeda, K. Nii. Mechanism of Accelerated Oxidation on Fe-Cr Alloys in Water Vapour Containing Atmospheres [J]. Boshoku Gijutsu,1982,31:156.
    [21]K. Honda, T. Maruyama, T. Atake and Y. Saito. Oxidation Behaviour of SUS430 Stainless Steel in Moist Atmospheres at 873K [J]. Oxidation of Metals,1992,38:347.
    [22]J. Ehlers, D.J. Young, E.J. Smaardijk, A.K. Tyagi, H.J. Penkalla, L. Singheiser and W.J. Quadakkers. Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments [J]. Corrosion Science,2006,48:3428-3454.
    [23]Y. Ikeda, K. Nii. Microcrack Generation and its Healing in the Oxide Scale Formed on Fe-Cr Alloys [J]. Oxidation of Metals,1978,12:487.
    [24]P.L. Surman, J.E. Castle. Gas Phase Transport in the Oxidation of Fe and Steel [J]. Corrosion Science,1969,9:771.
    [25]P.L. Surman, The Oxidation of Iron at Controlled Oxygen Partial Pressures:I Hydrogen/Water Vapour [J]. Corrosion Science,1973,13:113.
    [26]I. Klein, A.E. Yaniv and J. Sharon. The Oxidation Mechanism of Fe-Ni-Co Alloys [J]. Oxidation of Metals,1981,16:99.
    [27]F. Armanet, A. Vejux and G. Beranger. High Temperature Corrosion of Pure Nickel, and Ni-Cr, Fe-Ni-Cr or Co-Cr-W-Ni Alloys:Influence of Water Vapour Contents, in I. Kirman et al, (Eds), Behaviour of High Temperature Alloys in Aggressive Environments, EUR-6814 [M]. The Metals Society, London,1980,423.
    [28]N.K. Othman, J. Zhang, D.J. Young. Temperature and water vapour effects on the cyclic oxidation behaviour of Fe-Cr alloys [J]. Corrosion Science,2010,52:2827-2836.
    [29]A. Galerie, Y. Wouters, M. Caillet. The Kinetic Behaviour of Metals in Water Vapour at High Temperatures:Can General Rules Be Proposed [J]. Materials Science Forum,2001, 369-372:231-238.
    [30]R.K.S. Raman. Metallurgical and Materials Transactions A [M],1999,30(A).
    [31]L.O. Bueno, L Marino. High-Temperature Oxidation Behaviour of 2 1/4Cr-1Mo Steel in Air-Part 2:Scale Growth, Metal Loss Kinetics, and Stress Enhancement Factors During Creep Testing [J]. Journal of Pressure Vessel Testing,2001,123:97-104.
    [32]王志武,邓芳,王玉山,等.20 g钢高温高压水蒸汽氧化行为研究[J].中国腐蚀与防护学报,2008,20(3):170-172.
    [33]李婷,赵钦新,王云刚,等STBA24钢管蒸汽氧化的微观特征研究[J].动力工程学报,2010,30(4):293-303.
    [34]王止品,张路,刘江南,等.电站用T22及与T91管高温蒸汽氧化的失效分析[J].铸造技术,2004,25(7):523-525.
    [35]M. Mongomery, A. Karlsson. Survey of Oxidation in Steamside Conditions [J]. VGBKraftwerkstechnik,1995,75:235-240.
    [36]刘江南,赵彦芬,耿波,等.T91钢高温高压水蒸汽氧化膜微观组织结构研究[J].铸造技术,2005,26(3):202.
    [37]D.V. Thornton, K.H. Mayer. New Materials for Advanced Steam Turbines, Proceedings of the 4th International Turbine Conference.
    [38]Y. Otoguro, M. Sakakibara, T. Saito, H. Ito and Y. Inoue. Oxidation behaviour of austenitic heat-resisting steels in a high temperature and high pressure steam environment. Transactions ISIJ,1988,28:761-768.
    [39]J.E. Croll, G.R. Wallwork. The high-temperature oxidation of iron- chromium- nickel alloys containing 0-30% chromium [J]. Oxidation of Metals,1972,4:121-140.
    [40]马强,梁平,杨首恩,等.TP347H钢高温水蒸气氧化研究[J].材料热处理学报,2009,30(5):172-176.
    [41]Jia Jianmin, Montgomery M, Larsen O H, et al. Investigation of steam oxidation behaviour of TP347H FG Part II:Exposure at 91 bar [J]. Materials and Corrosion,2005,56(8): 542-549.
    [42]Jia Jianmin, Montgomery M, Larsen O H, et al. Investigation of steam oxidation behaviour of TP347H FG, Part I:Exposure at 256 bar [J]. Materials and Corrosion,2005,56(7): 459-467.
    [43]P. Kritzer. Corrosion in high-temperature and supercritical water and aqueous solutions:a review [J]. Journal of supercritical fluids,2004,29(1-2):1-29.
    [44]G.S. Frankel. Pitting corrosion of metals-A review of the critical factors [J]. Journal of the Electrochemical Society,1998,145(6):2186-2198.
    [45]G.S. Was. Grain-boundary chemistry and intergranular fracture in austenitic nickel-base alloys-a review [J]. Corrosion,1990,46(4):319-330.
    [46]G. Gupta, P. Ampornrat, X. Ren, etal. Role of grain boundary engineering in the SCC behavior of ferritic-martensitic alloy HT-9 [J]. Journal of Nuclear Materials,2007,361(2-3): 160-173.
    [47]P. Kritzer, N. Boukis, E. Dinjus. Factors controlling corrosion in high-temperature aqueous solutions:a contribution to the dissociation and solubility data influencing corrosion processes [J]. Journal of Supercritical Fluids,1999,15(3):205-227.
    [48]P. Kritzer, N.Boukis, E. Dinjus. Corrosion of alloy 625 in aqueous solutions containing chloride and oxygen [J]. Corrosion,1998,54(10):824-834.
    [49]T.R. Allen, K. Sridharan, Y. Chen, L. Tan, X. Ren, and A. Kruizenga. Research and Development on Materials Corrosion Issues in Supercritical Water [C], ICPWS XV, Berlin, September 8-11,2008.
    [50]T.R. Allen, L. Tan, J. Gan, G. Gupta, G.S. Was, E.A. Kenik, S. Shutthanandan, S. Thevuthasan. Microstructural development in advanced ferritic-martensitic steel HCM12A [J]. Journal of Nuclear Materials,2006,351:174-186.
    [51]Lizhen Tan, Ying Yang, Todd R.Allen. Porosity prediction in supercritical water exposed ferritic-martensitic steel HCM12A [J]. Corrosion Science,2006,48(12):4234-4242.
    [52]L. Tan, T.R. Allen. Localized corrosion of magnetite on ferritic-martensitic steels exposed to supercritical water [J]. Corrosion Science,2009,51(11):2503-2507.
    [53]Y. Chen, K. Sridharan, T.R. Allen. Corrosion of Candidate Austenitic Stainless Steels for Supercritical Water Reactors [J]. Journal of Nuclear Materials,2007,37:118-128.
    [54]Y. Chen, K. Sridharan, S. Ukai, T.R. Allen. Oxidation of 9Cr oxide dispersion strengthened steel exposed in supercritical water [J]. Journal of Nuclear Materials,2007,371(1-3): 118-128.
    [55]K. Yin, S. Qiu, R. Tang, Q. Zhang, L. Zhang. Corrosion behavior of ferritic/martensitic steel P92 in supercritical water [J]. Journal of Supercritical Fluids,2009,50:235-239.
    [56]S.S. Hwang, B.H. Lee, J.G. Kim, J. Jang. SCC and corrosion evaluations of the F/M steels for a supercritical water reactor [J]. Journal of Nuclear Materials,2008,372:177-181.
    [57]J.A. Bischoff, T. Motta, R.J. Comstock. Evolution of the oxide structure of 9CrODS steel exposed to supercritical water [J]. Journal of Nuclear Materials,2009,392:272-279.
    [58]C. Sun, R. Hui, W. Qu, S. Yick. Progress in corrosion resistant materials for supercritical water reactors [J]. Corrosion Science,2009,51:2508-2523.
    [59]R.B. Dooley. Cycle chemistry guidelines for fossil plants:Oxygenated Treatment [R], EPRI, California,2005.
    [60]Y. Chen, K. Sridharan, T.R. Allen. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corrosion Science,2006,48:2843-2854.
    [61]X. Ren, K. Sridharan, T.R. Allen. Corrosion of ferritic-martensitic steel HT9 in supercritical water [J]. Journal of Nuclear Materials,2006,358:227-234.
    [62]Xiaowei Ren. Corrosion of ferritic-martensitic steels and Ni-based alloys in supercritical water [D]. University of Wisconsin-Madison,2008.
    [63]L. Tan, Y. Yang, T.R. Allen. Oxidation behavior of iron-based alloy HCM12A exposed in supercritical water [J]. Corrosion Science,2006,48:3123-3138.
    [64]G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, C. Pister. Corrosion and stress corrosion cracking in supercritical water [J]. Journal of Nuclear Materials,2007,371:176-201.
    [65]G.S. Was, T.R. Allen. Time, temperature, and dissolved oxygen dependence of oxidation of austenitic and ferritic-martensitic alloys in supercritical water [C], Proceedings of ICAPP '05,2005.
    [66]P. Ampornrat, G. S. Was. Oxidation of Ferritic-Martensitic Alloys T91, HCM12A and HT-9 in Supercritical Water [J]. Journal of Nuclear Materials,2007,371:1-17.
    [67]P. Ampornrat, C.B. Bahn, G. S. Was. Corrosion and Stress Corrosion Cracking of Ferritic-Martensitic Alloys in Supercritical Water [C]. in:Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors-TMS,2005, p.1387-1395.
    [68]尹开锯,邱绍宇,唐睿,等P92钢在超临界水中的腐蚀行为腐蚀与防护[J].2010,31(5):334-337.
    [69]尹开锯,邱绍宇,唐睿,等.铁素体-马氏体钢P91和P92在超临界水中腐蚀后氧化膜多孔性分析[J].中国腐蚀与防护学报,2010,30(1):1-5.
    [70]朱发文,张乐福,唐睿,等.铁素体马氏体钢P92在超临界水中的腐蚀性能[J].原子能科学技术,2010,44(8):979-983.
    [71]朱发文,张乐福,乔培鹏,等.超临界水堆候选材料的腐蚀特性研究[J].核动力工程,2009,30(5):62-66.
    [72]魏懿.铁马氏体钢在超临界水中的腐蚀[D].西安:西华大学,2010.
    [73]T. R. Allen, J. I. Cole, E. A. Kenik, and G. S. Was. Analyzing the Effect of Displacement Rate on Radiation-Induced Segregation in 304 and 316 Stainless Steels by Examining Irradiated EBR-Ⅱ Components and Samples Irradiated with Protons [J]. Journal of Nuclear Materials,2008,376:169-173.
    [74]S.H. Nie, Y. Chen, X. Ren, et al. Corrosion of alunmina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water [J]. Journal of Nuclear Materials, 2010,399:231-235.
    [75]M. Fulger, M. Mihalache, D. Ojai, et al. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment [J]. Journal of Nuclear Materials,2011,415:147-157.
    [76]Chunwen Sun, Rob Hui, Wei Qu, Sing Yick. Progress in corrosion resistant materials for supercritical water reactors [J]. Corrosion Science, 2009, 51: 2508-2523.
    [77]E. Asselin, A. Alfantazi, S. Rogak. Corrosion of Nickel-Chromium Alloys, Stainless Steel and Niobium at Supercritical Water Oxidation Conditions [J]. Corrosion Science, 2010, 52: 118-124.
    [78]W.J. Kuang, E.H. Han, X.Q. Wu, et al. Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water [J]. Corrosion Science, 2011,52: 3654-3660.
    [79]M.C Sun, X.Q. Wu, Z.E. Zhang, et al. Oxidation of 316 stainless steel in supercritical water [J]. Corrosion Science, 2009, 51: 1069-1072.
    [80]M.C Sun, X.Q. Wu, E.H. Han, et al. Microstructural characteristics of oxide scales grown on stainless steel exposed to supercritical water [J]. Scripta Materialia, 2009, 51(10): 996-999.
    [81]韩恩厚.超临界水环境中材料的腐蚀研究现状[J].腐蚀科学与防护技术,1999,11(1):53-56.
    [82]X. Luo, R. Tang, C.S. Long, et al. Corrosion behavior of austenitic and ferritic steels in supercritical water [J]. Nuclear Engineering and Technology, 2007, 40(2): 147-154.
    [83]罗新,龙冲生,苗志,等.超临界水中不锈钢的均匀腐蚀研究[J].中国核学会和材料分会2007年交流会,2007:369-373.
    [84]朱发文,张乐福,唐睿,等.奥氏体304NG不锈钢在550℃/25MPa超临界水中的腐蚀行为[J].原子能科学技术,2009,43(6):518-522.
    [85]鲍一晨,张乐福,朱发文,等.304NG在超临界水中的腐蚀增重随温度的异常关系[J].原子能科学技术,2010,44(9):1093-1098.
    [86]D.B. Mitton, J.H. Yoon, J.A. Cline, et al. Corrosion behavior of Nickel-Based alloys in supercritical water oxidation systems [J]. Industrial & Engineering Chemistry Research, 2000, 39: 4689-4696.
    [87]L. Tan, K. Sridharan, T.R. Allen. The effect of grain boundary engineering on the oxidation behavior of INCOLOY alloy 800H in supercritical water [J]. Journal of Nuclear Materials, 2006,348:263-271.
    [88]M. Fulger, D. Ojai, M. Mihalache, et al. Oxidation behavior of Incoloy 800 under simulated supercritical water condition [J]. Journal of Nuclear Materials, 2009, 385: 288-293.
    [89]Q. Zhang, R. Tang, C. Li, et al. Corrosion behavior of Ni-based alloys in supercritical water [J]. Nuclear Engineering and Technology, 2009, 41(1): 107-112.
    [90]Q. Zhang, R. Tang, K. Yin, et al. Corrosion behavior of Hastelloy C-276 in supercritical water [J]. Corrosion Science, 2009, 51: 2092-2097.
    [91]M.C. Sun, X.Q. Wu, Z.E. Zhang, et al. Analyses of oxide films grown on Alloy 625 in oxidizing supercritical water [J]. The Journal of Supercritical Fluids, 2008, 47: 309-317.
    [92]B.A. Pint. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect [J]. Oxidation of Metals, 1996, 45(1-2): 1-37.
    [93]A. Galerie, M. Caillet, M. Pons. Oxidation of ion-implanted metals [J]. Materials Science and Engineering, 1985, 69(2): 329-340.
    [94]J. Horvath, R. Cirringer, H. Gleiter. Diffusion in nanocrystalline material [J]. Solid State Communications, 1987, 65(5): 319-322.
    [95]Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, K. Lu. Diffusion of chromium in nonocrystallinein nonocrystalline iron produced by means of surface mechanical attrition treatment [J]. Acta Materialia,2003, 51(14):4319-4329.
    [96]S.N. Basu, G.J. Yurek. Effect of alloy grain size and silicon content on the oxidation of austenitic Fe-Cr-Ni-Mn-Si alloys in pure O2 [J]. Oxidation of Metals,1991,36(3-4): 281-315.
    [97]X. Peng, J. Yan, Y. Zhou, F. Wang. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air [J]. Acta Materialia,2005,53(19): 5079-5088.
    [98]Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, K. Lu. Diffusion of chromium in nonocrystalline iron produced by means of surface mechanical attrition treatment [J]. Acta Materialia,2003, 51(14):4319-4329.
    [99]R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Madock. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels [J]. Materials Science and Engineering,2006,441(1-2):1-17.
    [100]N.R. Tao, Z.B. Wang, W.P. Tong, et al. An investigation go surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Materialia, 2002,50(18):4603-4616.
    [101]R.W. SHAW, T.B. BRILL, A.A. CLIFFORD, et al. Supercritial water:A medium for chemistry [J]. Chemical & Engineering News,1991,69:26-39.
    [102]T. Yamaguchi. Structure of subcritical and supercritical hydrogen-bonded liquids and solution [J], Journal of Molecular Liquids,1998,78:43-50.
    [103]周健,陆小华,王延儒,等.液体水的分子动力学模拟[J],南京化工大学学报,1998,20(3):1-5.
    [104]周健.流体微观结构及扩散性质的分子动力学模拟研究[D].南京:南京化工大学,1998.
    [105]孙炜,唐正娇,王存文.NPT系综分子动力学模拟水的密度和扩散系数[J].云南化工学报,2007,34(3):4-5.
    [106]刘娟芳,曾丹苓,刘朝,李勤.水导热系数的分子动力学模拟[J].工程热物理学报,2007,28(2):196-198.
    [107]董艳萍,董秀芹,张敏华.高温高压水的分子动力学模拟[J].化学工业与工程,2008,25(2):160-165.
    [108]周健,陆小华,王延儒,等.超临界水的分子动力学模拟[J].物理化学学报,1999,15(11):1017-1022.
    [109]H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, et al. Interaction models for water in relation to protein hydration [C], Intermolecular Forces. Riedel, Dordrecht,1981, p. 331-342.
    [110]H.J.C. Berendsen, J.R. Grigeira, T.P. Straatsma. The missing term in effective pair potentials [J]. Journal of Physical Chemistry,1987,91:6269-6271.
    [111]W.L. Jorgensen, J. Chandrasekhar, J.D. Madura. Comparison of simple potential functions for simulating liquid water [J]. Journal of Chemical Physics,1983,79(2):926-935.
    [112]W.L. Jorgensen, J.D. Madura. Temperature and size dependence for Monte Carlo simulation of TIP4P water [J], Molecular Physics,1985,56:1381-1392.
    [113]M.W. Mahoney and W.L. Jorgensen. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions [J], Journal of Chemical Physics,2000,112(20):8910-8922.
    [114]Sun H. The COMPASS force field:parameterization and validation for phosphazenes [J]. Computational & theoretical polymer science,1998,8(1/2):229-246.
    [115]D. Rigby. Fluid density predictions using the COMPASS force field [J], Fluid Phase Equilibrium,2004,217:77-87.
    [116]殷开梁,邹定辉,杨波Materials Studio软件涉及力场中氢键的研究[J].计算机应用化学,2006,23(12):1335-1340.
    [117]D. Eisenberg, W. Kauzmann. The structure and properties of water [M]. London, England: Oxford Press,1969.
    [118]M.P. Allen, DJ. Tildesley. Computer simulation of Liquids [M]. London:Oxford Press, 1987.
    [119]ASME. Corrosion:Fundamentals, Testing, and Protection [R], Vol.13A, ASM International Materials Park, OH,2003.
    [120]中国电力企业联合会.DL/T 912-2005超临界火力发电机组水汽质量标准[S].北京:中华人民共和国国家发展和改革委员会,2005.
    [121]蒋浩君,陈仁杰.超超临界机组电站汽水品质控制技术研究[R].北京:华能国际股份有限公司,2005.
    [122]陈戎,沈保中.火电厂蒸汽通流部件高温氧化的调查分析[J].电力设备,2006,7(11):21-26.
    [123]M. Hansel, W.J. Quadakkers, D.J. Young. Role of water vapor in chromia-scale growth at low oxygen partial pressure [J]. Oxidation of metals,2003,59:285-301.
    [124]Shengchun Wang, Yoichi Takeda, Tetsuo Shoji ed al. Observation of the oxide film formed on in high temperature water by applying electroless NiP coating [J]. Journal of Nuclear Science and Technology,2004,41(7):777.
    [125]P. Kritzer, N. Boukis, E. Dinjus. Factors controlling corrosion in high-temperature aqueous solutions:a contribution to the dissociation and solubility data influencing corrosion processer [J], Journal of Supercritical Fluids,1999,15(3):205-227.
    [126]G.S. Was, S. Teysseyre, J. McKinley. Corrosion and Stress Corrosion Cracking of Iron-and Nickel-base Austenitic Alloys in Supercritical Water [C]. in:NACE's Annual Conference,2004.
    [127]G. von Heiermann, et al. Dampferzeuger fur fortgeschrittene ampfparameter [J]. VGB Kraftwerkstechnik,1993,73(8):678-689.
    [128]H.L. Solberg, G.A. Hawkins and A.A. Potter. Corrosion of unstressed steel specimens by high temperature steam [J], Transactions of the American Society of Mechanical Engineers, 1942,64:303.
    [129]J. Jang, C. Han, B. Lee, Y. Yi and S. Hwang. Corrosion Behavior of 9Cr F/M Steels in Supercritical Water[C]. in:Proceedings of ICAPP'05, Seoul, Korea,2005, Paper 5136
    [130]H.S. Cho, A. Kimura, S. Ukai, M. Fujiwara. Corrosion properties of oxide dispersion strengthened steels in super-critical water environment [J]. Journal of Nuclear Material, 2004,329-333:387-391.
    [131]A. Kimura, et al. Development of Fuel Clad Materials for High Burn-up Operation of LWR [C]. in:Proc. ICAPP'05, Seoul, Korea,2005.
    [132]M.I. Manning and E. Metcalfe. Oxidation of Ferritic Steels in Steam [C], in Proc Conf Ferritic Steels for Fast Reactor Steam Generators, BNES, London 1978 pp378-382.
    [133]M. Mongomery and A. Karlsson. Survey of Oxidation in Steamside Conditions [R], VGB Kraftwerkstechnik,1995,75:235-240.
    [134]D. Gambier. These de Docteur, Universite de Technologie de Compiegne, France,1997.
    [135]J. C. Griess, W. A. Maxwell. The Long-Term Oxidation of Selected Alloys in Superheated Steam at 482 and 538℃ [R]. ORNL-5771, Oak Ridge National Laboratory,1981.
    [136]J. Zurek, E. Wessel, L. Niewolak, F. Schmitz, T.U. Kern, L. Singheiser, W.J. Quadakkers. Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550-650 ℃ [J], Corrosion Science 2004, 46:2301-2317.
    [137]R. Peraldi, B.A. Pint. Effect of Cr and Ni contents on the oxidation behavior of ferritic and austenitic model alloys in air with water vapor [J], Oxidation of Metal,2004,61:463-483.
    [138]N. Birks and G.M. Meyer. Introduction to High Temperature Oxidation of Metals [M], Edward Arnold, London,1982.
    [139]L. Marino, L.O. Bueno. High temperature oxidation behavior of 2.25Cr-1Mo steel in air. Part 1:Gain of mass kinetics and characteriazaiton of oxide scale [J]. Journal of Pressure Vessel Technol.,2001,123:88.
    [140]R.L. Klueh, D.R. Harries. High Chromium Ferritic and Martensitic Steels for Nuclear Applications [R], ASTM, PA,2001, p.122-134.
    [141]D. Laverde, T. Go'mez-Acebo, F. Castro. Continuous and cyclic oxidation of T91 ferritic steel under steam [J]. Corrosion Science,2004,46:613.
    [142]A.G. Crouch, J. Robertson. Creep and oxygen diffusion in magnetite [J]. Acta Metallurgica et Materialia,1990,38 (12) 2567.
    [143]Z.D. Sharp. Oxygen diffusion rates in quartz exchanged with CO2 [J]. Geology,1991,19 (6) 653.
    [144]H.M. O'Bryan, F.V. DiMarcello. Oxygen diffusion in nickel ferrous ferrite [J]. Journal of the American Ceramic Society,1970,53:413.
    [145]W.D. Kingery, D.C. Hill, R.P. Nelson. Oxygen mobility in polycrystalline NiCr2O3 and a-Fe2O3 [J], Journal of the American Ceramic Society,1960,43:473.
    [146]L. Himmel, R.T. Mehl, C.E. Birchenall. Self-diffusion of iron in iron oxides and the wagner theory of oxidation [J], Journal of Metals,1953,5:827.
    [147]A. Atkinson, M.L. O'Dwyer, R.I. Taylor. Fe diffusion in magnetite crystals at 500℃ and its relevance to oxidation of iron [J]. Journal of Materials Science,1983,18:2371.
    [148]H.E. Homig. Physicochemical Basis of Feedwater Chemistry [D],1963. Vulkan-Verlag Dr. W. Clasen, Essen, Germany.
    [149]G.J. Bignold, I.S. Woolsey. Proc. Corrosion erosion of nuclear steam generator [C]. Water Chemistry of Nuclear Reactor Systems 2,1981. British Nuclear Energy Society, London, UK.
    [150]I.S. Woolsey, G.J. Bignold, C.H. De Whalley, K. Garbett. The influence of oxygen and hydrazine on the erosion-corrosion behavior and electrochemical potenticals of carbon steel under boeler feedwater conditions [C]. in:Proc. Water Chemistry of Nuclear Reactor Systems 4,1986. British Nuclear Energy Society, London, UK.
    [151]D. Penfold, G.S. Harrison, G.M. Gill, J.C. Greene, M.A. Walker. The Control of Erosion-Corrosion of Mild Steel Using an Oxygen-Ammonia-Hydrazine-Dosed Feedwater [J]. Nuclear Energy,1986,25(5):257.
    [152]T.Gilchrist, P. Morgan, S. Sawochka, R.B. Dooley. Flow-Accelerated Corrosion at Nuclear Station:Status Report [R],2001. ASME Research Committee on Power Plant & Environmental Chemistry (San Diego, CA, U.S.A.).
    [153]K.J. Vetter. General Kinetics of Passive Layers on Metals [J]. Electrochimestry,1971, 16:1923-1937.
    [154]M. Bouchacourt, F.N. Remy. Flow-Assisted Corrosion:A Method to Avoid Damage [C]. in: Proceedings of the 3rd NACE International Region Management Committee Symposium. Cambrige UK,1991.
    [155]L.E. Sanchez-Caldera. The Mechanism of Corrosion-Erosion in Steam Extraction Lines of Power Stations [D]. Massachusetts Institute of Technology,1984.
    [156]Abdulsalam M, Stanley J T. Steady State Model for Erosion Corrosion of Feedwater Piping [J]. Corrosion,1992,48(7):587-593.
    [157]P. Sturla. Oxidation and Deposition Phenomena in Forced Circulating Boilers and Feedwater Treatment.5th National Feedwater Conference. Prague,1973.
    [158]陈舜青,涂善东,巩建鸣.基于内氧化层厚度评价炉管剩余寿命的技术[J],压力容器,2003,20(8):30-34.
    [159]马剑民.锅炉管壁厚和管内氧化层厚超声测量方法研究.热力发电,2001,(1):13-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700