用户名: 密码: 验证码:
基于粒子群优化的齿轮箱智能故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对复杂机械系统进行状态监测与故障诊断是人们普遍重视和关注的课题,本文在深入系统地研究粒子群优化算法理论以及算法参数、性能的基础上,提出了基于参数策略的粒子群改进算法,以齿轮箱为研究对象,研究基于粒子群优化的齿轮箱智能故障诊断理论与方法,主要研究内容及结论如下:
     1.阐述了粒子群优化算法的基本原理,通过对其粒子速度进化方程的分析,研究粒子本身的行为和社会行为以及主要控制参数对粒子群优化算法性能的影响。
     2.为了改善了基本粒子群优化算法收敛性能,提出了两种基于参数改进策略的粒子群优化算法,即动态加速常数的粒子群优化算法和速度自适应粒子群优化算法,改进算法是在基本算法中分别将加速常数和最大限制速度设置为随进化代数变化的函数,并在测试函数和神经网络中进行了仿真研究,结果表明:改进算法加快了基本算法的收敛速度,并给出了改进算法参数的合理取值范围。进一步研究了加速常数、最大限制速度与惯性权重之间互相协同对粒子群优化算法的控制的优劣问题。结论是采用动态加速常数协同惯性权重的粒子群优化算法,可以克服标准粒子群算法搜索后期陷入局部搜索的不利之处,算法具有良好的性能。
     3.针对核主元分析方法在核函数参数选择上的盲目性,提出并实现了基于粒子群优化的核主元分析的故障特征选择方法。建立以Fisher判别函数为优化目标的适应度,利用粒子群算法中多个随机粒子实现核函数参数的优化,改善了核主元分析方法的性能。通过IRIS数据仿真分析,验证了该方法用于特征向量的选择的正确性和有效性。将优化的核主元分析方法应用于齿轮箱典型故障的特征提取中,结果表明:参数优化的核主元分析能有效地降低齿轮箱特征向量的维数,较线性主元分析取得更好故障识别效果。该方法在机械故障信号的非线性特征提取中具有优势。
     4.提出了基于粒子群优化的齿轮箱传感器优化配置方法,解决多测点传感器的布置和定位问题。建立了基于模态置信准则的适应度,根据齿轮箱有限元模态计算结果,用改进的粒子群优化算法寻求满足适应度要求的传感器布置方案,齿轮箱试验模态分析和频响特性分析的结果验证了所提出的方法的合理性。
     5.提出了基于动态加速常数和速度自适应粒子群优化的智能故障诊断方法。以齿轮箱振动信号的时、频域特征为神经网络输入,以齿轮箱的主要故障形式为输出,建立基于粒子群优化算法神经网络故障诊断系统。在训练和诊断过程中,粒子群优化算法作为一种粗优化或离线学习过程,调节和优化具有全局性的网络参数,如权值和阈值等;而用神经网络学习作为一种细优化或在线学习过程方法,优化具有局部性的参数。诊断结果表明:所提出的智能诊断方法提高了齿轮箱故障诊断性能,为非线性复杂系统的故障诊断效率和精度以及诊断自动化的提高提供一种通用的解决方案。
Condition monitoring and fault diagnosis on complicated machine is a popular subject taken importantly and cared about by people.This thesis has proposed a modified algorithm for PSO based on systematical and deep research on particle swarm optimization (PSO) algorithm and its parameters, performance. It takes gearbox as a researched object, has studied on the theory and method of gearbox intelligent fault diagnosis with PSO. Its contribution as follows:
     1. It introduces the basic principle of PSO algorithm, and studies on the particle’s itself behavior and social behavior of the algorithm by analysis of the particle’s velocity evolutionary equation, then analyses the influences on performance of PSO by the main control parameters.
     2. It puts forward two modified PSO algorithms based on the strategy of parameters change to improve the convergence performance of the basic PSO algorithm, which are the PSO with dynamic accelerating constants (CPSO) and the PSO with adaptive velocity (VPSO). The accelerating constants and maximum limited velocity are set dynamic alternation with iteration in modified PSO. They are carried out simulated research by the test function and artificial neural networks, and the results show that modified PSO speed-ups the convergent velocity of basic PSO algorithm, while the rational parameter range of the modified PSO has been suggested. In addition, it studies on the priority problem of algorithm controlled by accelerating constants, the maximum limited velocity, and their coordinate with inertia weight. The conclusion is that the PSO with dynamic accelerating constant and coordinating with inertia weight (WCPSO) may overcome the disadvantage of the standard PSO which easily converges in local extreme point in the final period of searching process, and it has better performance.
     3. Aimed at the blind setting of parameter in kernel principal component analysis (KPCA), it proposes and realizes feature extraction based on kernel principal component analysis optimized by PSO algorithm. Firstly, it constructs a fitness function which Fisher discriminate function is optimized object, then WCPSO is used to optimize it by its many random particles to improve the performance of KPCA. Iris data are researched in simulation, which testify KPCA validity in feature extraction. The optimized KPCA is applied to feature extraction of gearbox typical faults.The results indicate that KPCA after parameter optimized can effectively reduce the dimensions of feature vector of gearbox, and it has a better fault classification performance than linear principal component analysis (PCA). This method has an advantage in nonlinear feature extraction of mechanical failure signal.
     4. It presents a method of optimum placement of sensors in gearbox based PSO algorithm to solve the problem of sensors layout and localization. First, it establishes the fitness function based on mode assurance criterion;then according to the results of gearbox finite element mode analysis, WPSO is applied to optimize it to find the optimal strategy of optimum placement of sensors in gearbox. The results of the test modal analysis and frequency response character analysis for gearbox testify the rationality of the method supposed in the thesis.
     5. It sets up intelligent fault diagnosis based on PSO with dynamic accelerating constants and adaptive velocity. It establishes the neural network (NN) optimized by PSO for fault diagnosis, in which the features in time domain and frequency-domain from gearbox vibration signal are taken as input vector, while its main fault types as output vector of NN. In training and detecting process, PSO algorithm regulates and optimizes the global parameters such as weights and the thresholds of NN, which acts as a roughly optimizing or off-line studying process; while neural network does local ones, which acts as a fine optimizing or on-line studying process. The diagnostic results show that the method of intelligent fault diagnosis has improved the performance of gearbox fault diagnosis, and provided a universal solving programme for the nonlinear and complicate system to improve the efficient and accuracy of diagnosis and its automation.
引文
[1] Kennedy,J, Eberhart,R. C..Particle swarm optimization. In:Proc. IEEE Int'l. Conf. on Neural Networks, IV. Piscataway, NJ: IEEE Service Center. 1995:1942-1948
    [2] Kennedy,J., Eberhart,R.C.. A Discrete Binary Version of the Particle Swarm Algorithm . In : Proc . 1997 Conf . On Systems , Man , and Cybernetics. Piscataway.NJ: IEEE Service Center.1997,4104-4109
    [3] Shi. Y, Eberhart, R. C..A Modified Particle Swarm Optimizer.In: Proc. IEEE Int'l. Conf. on Evolutionary Computation.Piscataway, NJ: IEEE Press.1998, 69-73
    [4] Clerc M..The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. In: Proc. 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 1999, 1951-1957
    [5]李宁,孙德宝,岑翼刚,邹彤.带变异算子的粒子群优化算法[J].计算机工程与应用,2004,17:12-14
    [6]高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,6:4-6
    [7]延丽平,曾建潮.具有自适应[J].计算机工程与设计,2006,27(24):4677-4679.
    [8] XIE Xiao-feng,ZHANG Wen-jun,YANG Zhi-lian .Adaptive particle swarm optimization on individual level[C] The 6thinternational conference on signal processing Piscataway, NJ IEEE Press, 2002:1215-1218.
    [9] XIE Xiao-feng, ZHANG Wen-jun,YANG Zhi-lian.Hybrid particle swarm optimization with mass extinction [C].IEEE 2002 interational conference on communications,circuits and systems and west Sino exposition Piscataway,NJ IEEE Press,2002 1170-1173.
    [10] THIEMO Knnk,JAKOB S Vesterstrom,JACQUES Riget. Particle swarm optimization with spatial particle extension[C]// Procccdings of the 2002 congressss on evolutionary computation.Piscataway,NJ IEEE Press 2002,1474-1479.
    [11] AL-Kazem i R,MOHAN C K. Multi-Phase generalization of the particle swarm optimization algorithm[C]//Proceedings of the 2002 congress on evolutionary computation,CEC2002 Piscataway, NJ IEEE Press, 2002 489-493.
    [12] FRANS van den Bergh,ENGELBRECHT A P. A new locally convergent particle swarm optimizer [C] // P rocccdees of the IEEE international conference on systems man and cybemetics Piscataway, NJ IEEE Press , 2002,94-99
    [13] F.van den Bergh. An Analysis of Particle Swarm Optimizers. PhD thesis.Department of Computer Science.University of Pretoria. Pretoria. South Africa. 2002
    [14] He S,Wu Q H,Wen J Y,et al. A particle swarm optimizer with passive congregation[J]. BioSystems,2004,78:135-147
    [15] Ratnaweera A, Halgamuge S K, Watson H C.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Trans. on Evolutionary .Comput.,2004, 8:240-255
    [16] FRANS van den Bergh, ENGELBRECHT A P. Training product unit networks using cooperative particle swarm optimizers[C]// P rocccd ings of the third Genetic and Evolutionary Computation Conference (GECCO). San Francisco USA:IEEE press 2001: 126-131.
    [17] KENNEDY J .Stereotyping improving particle swarm performance with cluster analysis[C] // Proceeding of the IEEE conference on evolutionary computation, ICEC Piscataway, NJ IEEE Press 2000: 1507-1512.
    [18] Katare S,Kalos A,West D. A hybrid swarm optimizer for efficient parameter estimation .In :Proc. of the IEEE CEC .2004:309-315
    [19] Fan S K S,Lang Y C,Zahara E. Hybrid simplex search and particle swarm optimization for the global optimization of multimodal function[J]. Engineering optimization,2004,36:401-418
    [20] Victoire T A A,Jeyakumar A E. Hybrid PSO-SQP for economic dispatch with valve-point effect[J].Electric Power Systems Research,2004,71:51-59
    [21] Sun J,Feng B,Xu W B.Particle swarm optimization method with particles having quantum behavior .In: Proc. of the IEEE CEC .2004:325-331
    [22]王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版设,2008.8
    [23]曾建潮,介婧,崔志华.微粒群算法[M].北京:科学出版社.2004
    [24]张丽平.粒子群优化算法的理论及实践:[博士学位论文].杭州:浙江大学,2005.1
    [25]李博.粒子群优化算法及其在神经网络中的应用:[硕士学位论文].大连:大连理工大学,2005.3
    [26] Ourique C O,Biscaia Jr E C,Pinto J C. The use of particle swarm optimization for dynamical analysis in chemical process [J].Comput.Chem. Eng.,2002,26:1783-1793
    [27] Abido M A. Optimal design of power system stabilizers using particle swarm optimization[J]. IEEE Transaction on Energy Conversation,2002,17:406-413
    [28] Jeon J Y,Okuma M.Acoustic radiation optimization using the particle swarm Optimization algorithm[J]. International J of Series C–Mechanical System Machine Elements and Manufacturing,2004,47:560-567
    [29] Zhang X G,Yu L ,Zheng Y,et al.Two-stage adaptive PMD compensation in a 10 Gbit/s optical communication system using particle swarm optimization algorithm.
    [30]张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1290
    [31]刘钊,杨林权,吕维先.基于粒子群优化算法的自适应滤波[J].计算机与现代化,2004,4:1-2
    [32]高海兵,高亮,周驰,喻道远.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,(9):1572-1574
    [33]李炳宇,萧蕴诗,汪镭. PSO算法在工程优化问题中的应用[J].计算机工程与应用,2004,18(3):74-76
    [34]胡家声,郭创新,曹一家.一种适合于电力系统机组组合问题的混合粒子群优化算法[J].中国电机工程学报,2004,24(4):24-28
    [35]柯晶,钱积新.应用粒子群优化的非线性系统辨识[J].电路与系统学报,2003,8(4):12-15
    [36]柯晶,李威武,钱积新.基于粒子群优化的时变系统辨识[J].系统工程与电子技术,2003,25(10):1256-1259
    [37]李建勇.粒子群优化算法研究:[硕士学位论文].杭州:浙江大学,2004
    [38]刘淳安,陈一虎.粒子群优化算法的研究现状与发展[J].海南大学学报自然科学版,2006,(24)3:256-260
    [39]高渤.粒子群优化算法的研究与展望[J].重庆工学院学报.2006,(20)11:62-63.68
    [40]任斌,丰镇平.改进遗传算法与粒子群优化算法及其对比分析[J].南京师范大学学报(工程技术版).2002,(2)2:14-20.
    [41] Matthew Settles,Brandon Rodebaugh,and Therece Soule.Comparerision of Genetic Algorithm and Particle Swarm Optimizer When Evolving a Recurrent Neural Network.LNCS 2723,pp.148-149,2003
    [42] Emad Elbelttagi,Tarek Hegazy, Donald Grierson. Comparison among five evolution-based optimization algorithms . Advanced Engineering Informations.2005,19:43-45
    [43]鄂加强.智能故障诊断及其应用[M].长沙:湖南大学出版设.2006,12.
    [44]于德介,程军胜等. Hilbert能量谱及其在齿轮箱故障诊断中的应用[J].湖南大学学报,2003,30(4):47-50.
    [45] CHENG Jun-Sheng, YU De-Jie, YANG Yu. A method for gear fault diagnosis based on empirical mode decomposition [J].International Journal of Plant Engineering and Management, 2004, 9 (4): 230-2235.
    [46]栾军英,康海英等.基于阶次跟踪和BP网络的齿轮箱故障模式识别[J].军械工程学院学报.2006,18(2):20-23.
    [47]田昊,栾军英等.阶次跟踪分析在齿面磨损故障诊断中的应用[J].军械工程学院学报,2005,17(5):57-60.
    [48]钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社.1997.12
    [49]盛兆顺,尹琦岭.设备状态监测与故障诊断技术及应用[M].北京:化学工业出版社.2003.6
    [50]杨军,冯振声,黄考利.装备智能故障诊断技术[M].北京:国防工业出版社.2004.8
    [51] Bocaniala CD, da Costa JS, Palade V. Refinement of the diagnosis process performed with a fuzzy classifier[J] . Lecture Notes In Artificial Intelligence, 2004, 3215: 365-372
    [52]赵艳丽,刘奇志,白士红.模糊关联方法在齿轮箱故障诊断中的应用[J].沈阳航空工业学院学报, 2003,20(2):21-22.
    [53]杜设亮,傅建中,陈子辰,麦云飞.基于BP神经网络的齿轮箱故障诊断系统研究[J].机电工程, 1999,16 (5): 81-82.
    [54] Liao SH. Expert system methodologies and applications - a decade review from 1995 to 2004 [J].Expert Systems With Applications , 2005, 28 (1): 93-103.
    [55] Liu S C,Liu S Y . An efficient expert system for machine fault diagnosis[J]. Int J Adv Manuf Technol,2003, 21: 691-698.
    [56]曹建平.基于神经网络的齿轮箱故障诊断专家系统及应用[J].设备管理与维修, 2000,(10): 26-27.
    [57]王凯,张永祥,李军.小波神经网络在齿轮故障诊断中的应用[J].煤矿机械, 2004,(7):126-128.
    [58] Wilson wang, Fathy Ismail, and Farid Golnaraghi. A neuro-fuzzy approach to gear system monitoring[J]. IEEE Transactions on Fuzzy Systems , 2004, 12 (5): 710-723.
    [59]戚晓利,潘紫微.基于遗传算法的高阶模糊BP神经网络在齿轮故障诊断中的应用[J].机械传动,2004,28(4):44-46
    [60] Yu liu,Zhen Qin, Zenglin Xu,and Xingshi He.. Feature Selection with Particle Swarms[C].CIS 2004, LNCS 3314: 425-430.
    [61]邱英. D—S证据推理在机械故障诊断中的应用[J].华东交通大学学报,2004, 21(2): 107-110.
    [62] Chen P, Liang X, Yamamoto T. Rough sets and partially-linearized neuralnetwork for structure fault diagnosis of rotating machinery[J]. LNCS, 2004,3174: 574-580.
    [63] Wang WH, An DX, Zhou DH. Hybrid neural network based gray-box approach to fault detection of hybrid systems[J] .Lecture Notes In Computer Science , 2004, 3174: 555-560.
    [64]姜万录,王益群,孔祥东.齿轮故障的混沌诊断识别方法[J].机械工程学报,1999, 35(16): 44-47.
    [65] VAPNIK V. The nature of statistical learning theory [M].New York :Spinger-Verlag,1995.
    [66] Schol B, Smola A; M .Nonlinear principal component analysis as a kernel eigenvalue problem. Neural Computation,1998(10):1299-1319 kopfuller K R
    [67] Ioan Cristian Trelea.The particle swarm optimization algorithm;convergence analysis and parameter selection.Information Processing Letters 2003,85:317-325
    [68] Suganthan P N.Particle swarm optimizer with neighborhood perator[A].Proceeding of Conference on Evolutionary Computation[C] Piscataway, NJ: IEEE Service Center 1999,1958-1962.
    [69] Fan Huiyuan . A modification to particle swarm optimization algorithm.Eingeering Coputations, 2002,19 (18):970-989
    [70]王岁花,冯乃勤,李爱国.基于粒子群优化的BP网络学习算法[J].计算机应用与软件,2003,3:74-76
    [71]孟浩东.基于神经网络和灰色理论的传动箱故障诊断研究: [硕士学位论文].太原:中北大学, 2005. 3
    [72]飞思科技产品研发中心.神经网络理论及MATLANB7实现[M].电子工业出版.2005.3
    [73]马清峰.基于粒子群优化神经网络的齿轮箱故障诊断研究:[硕士学位论文].太原:中北大学, 2006. 3
    [74]潘明清,周晓军,吴瑞明,雷良育.基于主元分析的支持向量数据描述机械故障诊断[J].传感技术学报,2006,19(1):128-131
    [75] Guo Q,Wu W, Massart D L. Boucon C . de Jong S. Feature selection in principal component analysis of analytical data . Chemometrics and Intelligent Laboratory Systems 2002,61 : 123-132
    [76]胡金海,谢寿生,侯胜利,尉询楷,何卫锋.核函数主元分析及其在故障特征提取中的应用[J].振动、测试与诊断,2007,27(1):48-51
    [77]王新峰,邱静,刘冠军.基于核最优K-L变换的故障特征提取方法研究[J].机械科学与技术,2006,25(3):288-291
    [78] Cho Hyun-Woo . Nonlinear feature extraction and classification of multivariate process data in kernel feature space. Expert Systems with Applications. 2007,(32 ):534–542
    [79]王新峰,邱静,刘冠军.核主元分析中核函数选优方法研究[J].振动、测试与诊断,2007,27(1):62-64
    [80]Schol B,Smola A; .Kernel principal component analysis[C]. In //Advances in Kernel Methods-Supper Vector Learning, Cambridge MA: MIT Press,1999,327-352 kopfMuller K R
    [81]王华忠,俞金寿.核函数方法及其模型选择[J].江南大学学报(自然科学版). 2006, 5(4),500-504
    [82] Lee Jong-Min, Yoo ChangKyoo, Choi Sang Wook, Vanrollegheghem Perer A, Lee In-Beum. Nonlinear process monitoring using kernel principal component analysis[J].Chemical Engineering Science,2004,59:223-234
    [83] Olivier Chapelle,Vladimir Vapnik, Oliver Bousquet,et al.Choosing multiple parameter for support vector machines.Machine Learning,2002,46:131-159
    [84] S.S.Keerthi. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithm. IEEE Trans on Neural Networks,2002,13(5):1225-1229
    [85]何学文.基于支持向量机的故障智能诊断理论与方法研究:[博士学位论文].长沙:中南大学,2004.12
    [86] Aaron H. Konstam,Trinity Univ.,San Antonio,et al. Linear discriminant analysis using genetic algorithms. Proceeding of the 1993 ACM/SIGAPP symposinm on Applied computing :states of art and practice,Indianapolis , Indiana,United States,1993:152-156
    [87]杨光正,吴岷,张晓莉.模式识别[M].合肥:中国科学技术大学出版社,2001
    [88]周德龙,高文,赵德斌.基于奇异值分解和判别式KL投影的人脸识别[J].软件学报,2003,14(4):783-789
    [89] He Qingbo, Kong Fanrong, Yan Ruanqiang. Subspaced-based gearbox monitoring by kernel principal component analysis [J]. Mechanical Systems and Signal Processing, 2007, 21: 1755-1772
    [90] Sun Ruixiang, Tsung Fugee, Qu Liangsheng. Evolving kernel principal component analysis for fault diagnosis[J].Computer and Industrial Engineer, 2007,53:361-371
    [91]王新峰.基于有监督核函数主元分析的故障状态识别[J].测试技术学报,2005,19(2):200-203
    [92]廖广兰,史铁林,来五星,姜南,刘世元.基于核函数PCA的齿轮箱状态监测研究.机械强度,2005,27(1):001-005
    [93]李巍华,廖广兰,史铁林,杨叔子.基于核函数主元分析的机械设备状态识[J].华中科技大学学报(自然科学版),2002,30(12):67-70
    [94] Choa Ji-Hoon, Lee Jong-Min, Choib Sang Wook, Lee Dongkwon, Lee In-Beum. Fault identi?cation for process monitoring using kernel principal component analysis, Chemical Engineering Science ,2005,60 : 279–288
    [95] Cui Peiling,Li Junhong,Wang Guizeng. Improved kernel principal component analysis for fault diagnosis[J]. Expert Systems with Applications,2008,34:1210-1219
    [96]郭飞.连续刚构桥高墩健康监测的测点优化研究:[硕士学位论文].延安:长安大学,2004.4
    [97]孙田甜;桥梁健康监测传感器的优化配置方法研究: [硕士学位论文].大连:大连理工大学,2008,07,09
    [98]周雨斌.网架结构健康监测中传感器优化布置研究:[硕士学位论文].杭州:浙江大学,2008,07.1
    [99] CHERNG AN-PAN. Optimal sensor placement for modal parameter identification using signal subspace correlation techniques. Mechanical Systems and Signal Processing. 2003,17:2:36-378.
    [100] Paolo Pennacchi, Andrea Vania. Diagnostics of a crack in a load coupling of a gas turbine using the machine model and the analysis of the shaft vibrations. Mechanical Systems and Signal Processing, 2008, 22: 1157–1178
    [101] C.Papadimitriou.Optimal sensor placement methodology for parametric identi?cation of structural systems . Journal of Sound and Vibration. 2004: 278:923–947
    [102]许强.模态测试中传感器优化布设的初步研究.[硕士学位论文]:重庆:重庆交通大学,2007.6
    [103] Staszewski W J. Intelligent signal processing for damage detection in composite materials. Composites Science and Technology. 2002, 62: 941-950
    [104] Mani Bhushan, Raghunathan Rengaswamy. Design of sensor location based on various fault diagnostic observability and reliability criteria. Computers and Chemical Engineering, 2000,24:735-741.
    [105] K . Worden , A . P . Burrows . Optimal sensor placement for fault detection. Engineering Structures,2001,23:885-901
    [106] Wang Haiqing, Song Zhihuan, Wang Hui. Statistical process monitoring using improved PCA with optimized sensor locations. Journal of Process Control, 2002, 12: 735–744.
    [107] Liu Wei, Gao Wei-cheng, Sun Yi, Xu Min-jian.Optimal sensor placement for spatial lattice structure based on genetic algorithms [J].Joural ofsound and viberation.2008,317(5),175-189
    [108]李戈,秦权,董聪.用遗传算法监测系统中传感器的最优布点[J].工程力学,2000,17(1): 25-34
    [109]孙晓丹,李宏伟,欧进萍.大型桥梁动力检测测点优化的改进遗传算法及其应用[J].西按建筑科学学报,2006,38(5)624-628
    [110]傅志方.振动模态分析与参数辨识[M].北京:机械工业出版社,1990.9
    [111] Daniel C. Kammer, Michael L. Tinker. Optimal placement of triaxial accelerometers for modal vibration tests. Mechanical Systems and Signal Processing 2004,18: 29–41.
    [112] Carne T G, Dohrmann C R. A modal test design strategy for model correlation.Proceedings of the 13th International Modal Analysis Conferen ce, Nashville, TN 1995.
    [113]黄民水,朱宏平,宋金强.传感器优化布置在桥梁结构模态参数测试中的应用[J].公路交通科技, 2008 ,25(2): 85-89
    [114] THOMAS G C , CLARK R D.A Modal Test Design Strategy for Modal Correlation [C]//Proceedings of the 13th International Modal Analysis Conference1 New York : Union College , Schenectady , 1995 : 927-933.
    [115]常山,尹逊民.传动齿轮箱的振动模态分析[J].船舰科学技术,2000,(5):41-49
    [116]敖庆章,程广利.齿轮箱模态测试与分析[J].舰船科学技术,2005,27(6):88-93
    [117]李润方,林腾蛟,陶泽光.齿轮箱振动和噪声实验研究[J].机械设计与研究,2003,19(5):63-65
    [118]侯砚军,王永梅.减速齿轮箱固有特性计算及受力分析研究.http:\\www.cnki.net.
    [119]陶泽光,李润方,林腾蛟.齿轮箱固有特性数值模拟和试验研究[J].机械科学与技术,2001,20(2):278-279
    [120]潘宏侠,姚竹亭.齿轮传动系统状态检测与故障诊断[J].华北工学院学报,2001,(22)4 :313-318
    [121]潘旭峰等.齿轮轴承故障诊断中特征参数敏感性分析[J].兵工报.1997,18(4),294-297
    [122]丁康,朱小勇,陈亚华.齿轮箱典型故障振动特征与诊断策略[J].振动与冲击.2001,(20)3:7-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700