用户名: 密码: 验证码:
大型矿用挖掘机设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型矿用挖掘机属于重大技术装备产品,其性能和可靠性直接影响着大型露天矿的开采和运行,代表了一个国家重矿行业的整体技术水平,对大型矿用挖掘机的设计理论、技术和方法进行深入研究,对于提升我国能源安全、资源安全,提高我国矿山机械产品的国际竞争力等具有重要意义。本文结合国家863“大型露天矿采矿技术与装备”项目的“75m3大型露天矿用挖掘机研制”(2012AA062001)课题,对大型矿用挖掘机的设计方法、工作装置及行走装置的虚拟样机、基于离散单元法的铲斗设计以及矿用挖掘机的数字化设计平台开发等方面进行了深入研究。
     在广泛查阅相关文献的基础上,综述了大型矿用挖掘机工作原理及国内外的发展现状,对挖掘工作机理、矿用挖掘机的工作装置、行走装置和铲斗的设计等关键技术进行了论述。
     分析了大型矿用挖掘机设计的特点,按照综合设计法的思想将矿用挖掘机产品的设计工作划分为规划阶段、实施阶段和检验阶段这三个阶段,并包含设计思想、设计环境、设计过程、设计目标、设计内容、设计方法及产品设计质量检验与评估这七个方面的内容,对各部分内容分别进行详细分析,为大型矿用挖掘机的设计提供一种理论指导方法。
     对大型矿用挖掘机工作装置的挖掘轨迹进行了理论分析,基于多体动力学理论建立了工作装置的虚拟样机,并基于虚拟样机进行了仿真分析;应用刚柔耦合理论对工作装置中的关键部件进行动态分析仿真,分别建立了以斗杆为柔体和以起重臂为柔体的工作装置虚拟样机,获得动态应力仿真数据,为工作装置的动态设计提供了条件。
     建立了履带行走装置的虚拟样机,对履带板与支重轮等关键部件的承载进行了分析研究。针对典型工况进行了动力学仿真分析研究,分析了履带板与地面的作用力变化规律、履带板与驱动轮之间啮合力的变化规律以及支重轮与导向轮的承载的变化规律。采用刚柔耦合仿真技术建立了履带行走装置虚拟样机,履带架被作为柔体进行处理,研究了行驶过程中履带架动态应力的变化规律。
     基于离散单元法理论进行了铲斗的挖掘过程仿真,分析了针对不同挖掘物料情况下的铲斗动力学响应和物料流动等内容,提取的铲斗受力和物料填充等信息可以为铲斗的优化提供理论依据,最后对铲斗进行了试验优化设计。
     进行了大型矿用挖掘机数字化设计平台的开发。在通用CAD/CAE/CAM技术平台基础上,建立了工程数据库,结合三维参数化模板技术、有限元模板技术等,开发了满足工程实际需求的矿用挖掘机数字化设计平台,提高了大型矿用挖掘机的设计效率。
     本文围绕大型矿用挖掘机的综合设计方法、工作装置及行走装置的虚拟样机仿真、基于离散单元法的铲斗设计和数字化设计平台的开发等内容进行了深入研究,为大型矿用挖掘机的设计研究提供了多种先进的分析方法与工具,为我国自主研制开发大型矿用挖掘机产品提供了科学依据。
Nowadays in China, as there is numbers of large-scale opencast mines being built or planned,gradually being constructed and goes into production, the demands of large mining excavators areever rising which serves as crucial equipment in exploiting mines. Large mining excavator is a kindof important technical equipment, representing the national level of equipment manufacturingindustry for its performance closely relates to the construction and production of large-scaleopencast mine. Comprehensive researches of its designing theory, technique and methodsbecome significant and meaningful for our national energy security, resource safety and enhancingthe overall international competency of mining machinery equipment.This article refers to theprogram “Development of75m3Large-scale opencast mining excavator”, branch of a national “863Program”-Large-scale Opencast Mining Technology and Equipment and goes further in research ofthe key technique of large-scale mining excavator. After serious discussion of the design theoryand method of it, we come out with a theoretical guiding principle of its design. We also study onthe working unit and walking unit of large-scale mining excavator and build up digital prototype of it.Based on DEM (discrete element method), research on scoop design of mining excavator isongoing and a digital design platform of mining excavator is set up. The main research contentsare as follows:
     Based on literature research, a review is built up of large mining excavator’s working principleand its developing situation domestically and internationally. A summary of key techniques indeveloping mining excavator and the process of excavating working principle is completed. After adetailed analysis of research situation of working unit, walking unit and scoop design, finally wecome to an analytical result about the research of digital design platform.
     We study on the designing theory and method of large mining excavator. Regarding thecurrent situation that almost all researches about large mining excavator are focused on a certainpart structure, we make a deep research on the overall design theory and method of large miningexcavator. As for the large mining excavator which are significant equipment production but areproduced in single piece or small batch, they are specifically analyzed for their innate designingcharacteristic. Accordingly, following the synthetic designing method, design of excavator productsare divided into three steps, namely planning, designing and examining. Also, the design processinvolves seven contents: design principle, design environment, design process, design target,design content, design method and quality examination as well as evaluation. Moreover, carefulresearch analysis of every part is expected, thus it can provide a theoretical guidance for furtherdesign of large mining excavator.
     Research has been done of working unit design of large mining excavator. On the base ofanalyzing structure and composition of working unit of large mining excavators, we studied itsmechanism principle, analyzed in detail its excavatoring locus equation and moving vector relation.Virtual prototype of the working unit has be built up based on the theory of multi-body dynamics.Then study of the prototype has been accomplished. Dynamic simulation and analysis of key partsout of working unit has been processed with the application of Rigid-Flexible Coupling Theory. Digital prototypes have been set up, with bucket arm as flexible body and with boom as flexiblebody separately. Then with the simulation results of dynamic stress, advanced method andthoughts could be provided for detailed design of working unit.
     Research has been done of walking unit design of large mining excavator. Work has mainlybeen done like setting up the rigid-flexible coupling digital prototype of crawler travel unit andanalyzing crucial parts, for example, track plate and support wheel. Simulation and analysis areespecially carried out on grade climbing conditions, including the changing discipline of forcesbetween track plate and the ground, of meshing forces between track plate and driving wheel andof the loading of9support wheels as well as the guiding wheel. In the crawler travel unit which isbuilt by rigid-flexible coupling simulation, the crawler frame is taken as a flexible body, which can beused in the study of changing discipline about dynamic stress and strain when in the workingcondition of straight running.
     Theoretical analysis and study of scoop design in mining excavator has been carried out. Weoptimize the scoop capacity and analyze theoretically how to determine the excavatoringresistance. Process simulation of scoop excavatoring has been done with the help of discreteelement method. Analysis of scoop’s dynamic response and materials flow has been accomplishedregarding situation of different excavatoring stuff. The information collection of scoop forces andfilling stuff could provide theoretical foundation for scoop optimization. Finally experimentaloptimizing design of scoop has been successfully accomplished.
     Invention and development of digital design platform of large mining excavator has been done.After accurately orientation of the platform demands, the platform framework structure is designed.On the basis of NX technical platform of CAD/CAE/CAM, database technique is adopted forbuilding engineering database. Combining3D parametric template technique and FEM templatetechnique, mining excavator digital design platform which satisfy the real application has beeninitially set up. The function of the platform is more focused on the real engineering application,owning the characteristic of standard and ordered working process, convenient operation, whichcan impressively enhance the efficiency of series products design.
引文
[1].陈国山.露天采矿技术[M].北京:冶金工业出版社,2008.
    [2].王波.矿用挖掘机在兰尖铁矿的应用[J].矿山机械,2007(8):74-77.
    [3].贾海筠.国产矿用挖掘机在黑岱沟露天煤矿的应用[J].露天采矿技术,2009(3):48-49.
    [4]. Sibabrata Patnayak.Key performance indicators for electric miningshovels and oil sands diggability[D].University of Alberta,2006.
    [5].王治斌.巨型矿用挖掘机技术发展趋势[J].铁道建筑技术,2012(6):13-17.
    [6].张登军.大唐煤矿电铲与液压铲对比分析[J].露天采矿技术,2011(1):36-39.
    [7].张永明.露天矿大型电铲与液压铲的选择分析[J].机械工程及自动化,2012(2):195-196.
    [8].王磊.采矿设备的大型化与智能化_2[J].矿业装备,2011(10):90-92.
    [9].国家自然科学基金委员会工程与材料学部.机械工程学科发展战略报告(2011-2020)[M].北京:科学出版社,2010.
    [10].阎书文.机械式挖掘机设计(修订版)[M].北京:机械工业出版社,1991.
    [11]. J. Hadjigeorgiou,R. Poulin.Assessment of ease of excavation ofsurface mines[J].Journal of Terramechanics,1998,35:137-153.
    [12].王晓明.矿用机械式挖掘机技术概论[J].科技创新与生产力,2010(12):70-72.
    [13].王新中.国内外矿用挖掘机发展状况[J].矿山机械,2004(9):52-53.
    [14].王德海.4m_3挖掘机斗臂的新设计[J].矿山机械,1990(5):34-35.
    [15].韦宝琛.巨型电铲新型工作机构性能研究[D].上海:上海交通大学,2012.
    [16]. B.Wei, F.Gao, J.Chen, etc. Mechanics performance ofthree-degree-of-freedom excavating mechanism of an electricshovel[J].Proceeding of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2011,225(6):1443-1457.
    [17].卢东晓.大型矿用挖掘机回转装置动力学仿真研究[D].长春:吉林大学,2006.
    [18].林贵瑜,安兆强,王晓明.大型机械式挖掘机整机参数的确定方法[J].建筑机械,2012(2):91-96.
    [19].张永明.大型正铲式挖掘机的发展与进步[J].机械管理开发,2009,24(6):38-39.
    [20].薛红,王利杰.WK系列大型矿用挖掘机特性介绍及应用[J].有色设备,2012(4):12-14.
    [21].林贵瑜,连晋华.机械式挖掘机设计与发展的几个问题探讨[J].矿山机械,2006(12):52-54.
    [22].黄宗益,李兴华.工程机械技术发展展望[J].建筑机械化,2000(1):17-19.
    [23].黄宗益,王康等.挖掘机工作装置轨迹控制[J].建筑机械,1998(2):28-30.
    [24].张大庆,何清华等.液压挖掘机铲斗的轨迹跟踪控制[J].吉林大学学报(工学版),2005,35(5):490-494.
    [25]. Matthew Dunbabin,Peter Corke.Autonomous Excavation Using a ropeshovel[J].Journal of Field Robotics,2006,23(6/7):379-394.
    [26]. Hendricks C.,Scoble M.J.,Peck J..Performance monitoring ofelectric mining shovels[J].Trans Inst Min Metall Sect A,1989,98:151-159.
    [27]. Patnayak S..Performance monitoring of electric mining excavaotrs[J].Int. J. Surf. Min. Reclam. Environ.,2005,19(4):276-294.
    [28]. Patnayak S.,Tannant D.D.,Parsons I..Operator and dipper toothinfluence on electric shovel performance during oil sandsmining[J].Int. J. Min. Reclam. Environ.,2008,22(2):120-145.
    [29].薛红.提高矿用机械正铲挖掘机挖掘效率的几种方法[J].机械管理开发,2012(6):113-114.
    [30]. J. Maciejewski,A. Jarzebowski,W. Trampczynski. Study on theefficiency of the digging process using the model of excavatorbucket[J].Journal of Terramechanics,2004,40:221-233.
    [31]. Kwame Awuah-Offei, Samuel Frimpong. Mining excavaotr diggingoptimization for energy efficiency[J].Mechanism and Machine Theory,2007,42:995-1006.
    [32]. Kwame Awuah-Offei,Samuel Frimpong.Efficient Mining excavaotrExcavation in Surface Mines[J].Geotech Geol Eng,2011,29:19-26.
    [33]. R. Yousefi Moghaddam,A. Lotchon,M.G. Lipsett.Method and apparatusfor on-line estimation of soil parameters duringexcavation[J].Journal of Terramechanics,2012,49:173-181.
    [34]. A.S. Hall,P.R. McAree.Robust bucket position tracking for a largehydraulic excavation[J].Mechanism and Machine Theory,2005,40:1-16.
    [35].张永明,刘吉亮.WK-35型挖掘机的研制[J].机械管理开发,2010,25(6):58-60.
    [36].王久聪,李奎贤,张辉.挖掘机挖掘阻力的试验研究[J].工程机械,1992(11):21-27.
    [37]. C. Karpuz,A. Ceylanoglu,A.G. Pasamehmetoglu.An investigation onthe influence of depth of cut and blasting on shovel diggingperformance[J]. International Journal of Surface Mining andReclamation,1992(6):161-167.
    [38]. Muro Tatsuro,Fukagawa Ryoichi,Watanabe Hiroaki.Experimental studyon excavation forces of bucket shovel against soft rock mass[J].DobokuGakkai Rombun-Hokokushu/Proceedings of the Japan Society of CivilEngineers,1993(3):73-81.
    [39]. J. Maciejewski,A. Jarzebowski.Laboratory optimization of the soildigging process[J].Journal of Terramechanics2002,39:161-179.
    [40]. Mostafa Hatami.Evaluation of electric mining excavaotr diggingforce and analysis of its trajectory in Athabasca oilsands[D].University of Alberta,2008.
    [41].卢雄伟.8m_3矿用挖掘机工作装置优化设计及结构强度分析[D].长春:吉林大学,2009.
    [42].曲刚,清德权.机械式挖掘机挖掘轨迹的试验研究[J].工程机械,1993(7):11-15.
    [43].王久聪,李奎贤,张辉.机械式正铲挖掘机挖掘轨迹的探讨[J].矿山机械,1993(3):21-24.
    [44].高俊云.正铲挖掘机挖掘轨迹的实测及统计研究[J].重工科技,2001,1:47-49.
    [45]. Blouin S.,Hemami A.,Lipsett M..Review of Resistive Force Modelsfor Earthmoving Processes[J].Aerosp. Eng.,2001,14(3):102-111.
    [46]. Frimpong S.,Brown O.F..Optimization of shovel dipper-formationinteraction in excavation[C].SME Annual Meeting and Exhibit and CMA113th National Western Mining Conference2011,2011:538-542.
    [47]. Samuel Frimpong,Yafei Hu,Hwame Awuah-Offei.Mechanics of miningexcavaotr-formation interactions in surface miningexcavations[J]Journal of Terramechanics,2005,42:15-33.
    [48]. Raza M.A.,Frimpong S..Cable-shovel dipper dynamics[C].SME AnnualMeeting and Exhibit and CMA113th National Western Mining Conference2011,2011:512-519.
    [49]. K. Awuah-Offei, S. Frimpong. Numerical simulation of miningexcavaotr resistive forces in oil sands excavation[J].InternationalJournal of Mining,Reclamation and Environment,2006,20(3):223-238.
    [50]. Samuel Frimpong,Ying Li.Stress loading of the mining excavaotrboom under in-situ digging conditions[J].Engineering Failure analysis,2007,14:702-715.
    [51]. Ying Li,Samuel Frimpong.Hybrid virtual prototype for analyzingmining excavaotr component stress[J].Int J Adv Manuf Technol,2008,37:423-430.
    [52].马乐.大型矿用机械式挖掘机工作装置仿真分析[D].长春:吉林大学,2007.
    [53].马明辉.机械式矿用挖掘机工作装置动态特性研究[D].长春:吉林大学,2009.
    [54].杨子仁,高俊云,胡笛川.矿用挖掘机载荷图的计算机绘制和分析[J].山西机械,1997(3):7-10.
    [55].王久聪.WS_005型挖掘机实验台推压机构动载荷分析[J].矿山机械,1985(12):24-32.
    [56].王水林.大型矿用挖掘机工作装置的参数化设计研究[D].长春:吉林大学,2008.
    [57].何经良.机械式挖掘机工作与行走装置机构性能研究[D].上海:上海交通大学,2010.
    [58].李磊.机械式矿用挖掘机提升机构性能仿真研究[D].长春:吉林大学,2011.
    [59].邸丽伟.机械式矿用挖掘机动臂结构优化设计研究[D].长春:吉林大学,2013.
    [60].隋文涛.大型矿用挖掘机履带行走装置动力学仿真研究[D].长春:吉林大学,2007.
    [61].胡英华.履带式矿用挖掘机行走机构动力学研究[D].长春:吉林大学,2011.
    [62].侯德川.矿用挖掘机履带行走机构两种转弯方式的参数计算[J].矿山机械,2009(9):40-43.
    [63].李勇.多履带行走装置关键设计技术研究[D].长春:吉林大学,2011.
    [64].鲁振.大型静定履带行走装置履带架强度有限元分析研究[D].长春:吉林大学,2011.
    [65].李海伟.55m3矿用挖掘机履带行走装置动力学研究[D].长春:吉林大学,2008.
    [66].王得胜.12m3机械式矿用挖掘机履带架强度和刚度分析研究[D].长春:吉林大学,2007.
    [67]. Dehmoobed Sharifabadi Ardeshir, Grain Joseph Tim. Oil sanddeformation under cyclic loading of ultra-class mobile miningequipmnet[J].Journal of Terramechanics,2010,47:75-85.
    [68].陈再良,李亚兰.矿用挖掘机斗齿的研制[J].矿山机械,1992(9):9-11.
    [69].张琰.东方蝼蛄耦合特性运动学建模及其功能仿生研究[D].长春:吉林大学,2011.
    [70].杨成.挖掘机工作装置的斗齿仿生及动臂优化研究[D].长春:吉林大学,2013.
    [71].孙方红,马壮等.提高矿用挖掘机斗齿性能的研究进展[J].金属铸锻焊技术,2011,40(21):58-60.
    [72].谭彬.4m_3挖掘机铲斗结构的优化设计[J].重工科技,2004(2):28-30.
    [73]. Ning Shi.A new approach to improving mining excavaotr dipper designfor cutting soft rock and soils[D].University of Alberta,2007.
    [74]. Paul W. Cleary.DEM simulation of industrial particle flows: casestudies of dragline excavators,mixing in tumblers and centrifugalmills[J].Powder Technology,2000,109:83-104.
    [75].王国强,郝万军,王继新.离散单元法及其在EDEM上的实践[M].西安:西北工业大学出版社,2010.
    [76]. Kevin Francis Malone, Bao Hua Xu. Determination of contactparameters for discrete element method simulations of granularsystems[J].Particuology,2008(6):521-528.
    [77]. H. Landry,C. Lague,M. Roberge.Discrete element modeling ofmachine-manure interactions[J]. Computers and Electronics inAgriculture,2006,52:90-106.
    [78]. I. Shmulevich,Z. Asaf,D. Rubinstein.Interaction between soil anda wide cutting blade using the dicrete element method[J].Soil&TillageResearch,2007,97:37-50.
    [79]. C.J. Coetzee,A.H. Basson.P.A. Vermeer Discrete and continuummodeling of excavator bucket filling[J].Journal of Terramechanics,2007,44:177-186.
    [80]. C.J. Coetzee,D.N.J. Els.Calibration of discrete element parametersand the modelling of silo discharge and bucket filling[J].Computersand Electronics in Agriculture,2009,65:198-212.
    [81]. C.J. Coetzee, D.N.J. Els. Calibration of granular materialparameters for DEM modelling and numerical verification byblade-granular material interaction[J].Journal of Terramechanics,2009,46:15-26.
    [82]. C.J. Coetzee,D.N.J. Els.The numerical modeling of excavator bucketfilling using DEM[J].Journal of Terramechanics,2009,46:217-227.
    [83]. C.J. Coetzee,D.N.J. Els,G.F. Dymond.Discrete element parametercalibration and the modeling of dragline bucket filling[J].Journalof Terramechanics,2010,47:33-44.
    [84]. Z. Asaf,D. Rubinstein,I. Shmulevich.Determination of discreteelement model parameters required for soil tillage[J].Soil&TillageResearch,2007,92:227-242.
    [85]. Mootaz Abo-Elnor,R. Hamilton,J.T. Boyle.3D Dynamic analysis ofsoil-tool interaction using the finite element method[J].Journal ofTerramechanics,2003,40:51-62.
    [86]. Zygmunt Towarek. Dynamics of a single-bucket excavator on adeformable soil foundation during the digging of ground[J].Int JMechanical Sciences,2003,45:1053-1076.
    [87]. S. Frimpong,Y. Hu.Dynamic hydraulic shovel simulator for improvedmachine performance [J].CIM Bulletin,2005,98:78-78.
    [88]. Manuj Gupta.Discrete element modeling of the mining excavaotrdipper for efficient digging in oilsands[D].University of Alberta,2011.
    [89]. Kuang-Hua Chang,Sung-Hwan Joo.Design parameterization and toolintegration for CAD-based mechanism optimization[J]. Advances inEngineering Software,2006,37:779-796.
    [90].丁渭平.汽车悬架系统集成技术开发[D].浙江大学,2003.
    [91].朱孟仪,潘双夏等.基于WEB的挖掘机智能CAD集成技术应用[J].矿山机械,2005(5):42-44.
    [92].杨方飞.机械产品数字化设计及关键技术研究与应用[D].北京:中国农业机械化科学研究院,2005.
    [93].洪荣晶.客车车身数字化设计平台关键技术研究[D].东南大学,2006.
    [94].魏强,郭伟.面向自行车行业数字化设计平台研究[J].组合机床与自动化加工技术,2006(5):15-18.
    [95].李杰.面向产品设计的数字化功能样机技术的研究及应用[D].北京:中国农业机械化科学研究院,2007.
    [96].张建军.悬挂犁数字化设计及关键技术的研究[D].长春:吉林大学,2008.
    [97].战翌婷.船舶数字化设计软件平台关键技术研究[D].大连理工大学,2008.
    [98].马铁强.支持产品快速设计的CAD模型重用技术研究[D].大连理工大学,2009.
    [99].刘盛强,王善坡,刘志敏等.重型汽车企业产品开发平台的构建研究[J].现代制造技术与装备,2010(3):8-10.
    [100].李博,罗振军等.并联机器人数字化设计平台关键技术研究[J].制造业自动化,2013,35(6):30-34.
    [101]. L. Kong,J.Y.H. Fuh,K.S. Lee.A Windows-native3D plastic injectionmold design system[J].Journal of Materials Processing Technology,2003,139:81-89.
    [102]. Ying Li,Shyue-Sheng Chang,Wenyuan Liu.Spatial kinematics andvirtual protoype modeling of Bucyrus shovel[J].Int J Adv Manuf technol,2013,69:1917-1925.
    [103]. H.Y.K. Lau,K.L. Mak,M.T.H. Lu.A virtual design platform forinteractive product design and visualization[J].Journal of MaterialsProcessing Technology,2003,139:402-407.
    [104]. F. Zorriassatine, C. Wykes, R. Parkin. A survey of virtualprototyping techniques for mechanical productdevelopment[C]. Proceedings of the Institution of MechanicalEngineers,Part B: Journal of Engineering Manufacture,2003,217:513-530.
    [105].闻邦椿.产品全功能与全性能的综合设计[M].北京:机械工业出版社,2008.
    [106].路甬祥.工程设计的发展趋势和未来[J].机械工程学报,1997,33(1):1-8.
    [107].李奎贤.4m_3正铲机械式挖掘机工作装置的几何参数的优化研究[J].矿山机械,1985(10):13-19.
    [108].刘崇德,王晓明,古兰.大型挖掘机下部结构整体参数的优化设计[J].重庆大学学报,1992,15(6):10-17.
    [109].高素荷.大型机械式挖掘机铲斗设计技术研究[J].计算结构力学及其应用,1993,10(3):343-347.
    [110].程春芳,杨松等.矿山10m_3电铲动臂、斗杆应力的有限元分析[J].北京科技大学学报,1996,18(1):92-95.
    [111].韩维国,于有冬.2800XP挖掘机斗杆有限元静强度计算与分析[J].一重技术,1996(4):79-80.
    [112].景荣春等.2100BL电铲斗杆有限元分析[J].华东船舶工业学院学报,1999,13(6):62-64.
    [113].姚河省,高素荷.机械式矿用挖掘机斗杆断裂机理初探[J].机械工程学报,2000,36(7):99-102.
    [114].景荣春等.电铲斗杆强度分析[J].工程力学,2001,18(2):72-75.
    [115].郑德超,魏心宽.矿用10m_3挖掘机斗杆的有限元分析[J].工程机械,2008(8):20-23.
    [116].李爱峰,高素荷.WK-35矿用挖掘机铲斗结构特性分析研究[J].煤矿机械,2012(1):107-109.
    [117].李奎贤,宋桂秋,彭武良.挖掘过程及机械参数优化设计[J].东北大学学报,2001,22(3):271-274.
    [118].赵克利,胡英华,高素荷等.大型矿用履带式挖掘机接地压力动力学研究[J].中国工程机械学报,2010,8(4):395-399.
    [119].张永明,李志鹏,李光.矿用挖掘机底架梁的力学分析及优化设计[J].机械管理开发,2011(6):87-88.
    [120].谭彬,仝雷强,李永亮.基于NX WAVE和NASTRAN的挖掘机铲斗提梁的分析优化[J].机械工程与自动化,2012(4):38-39.
    [121].郑德超,刘占全.矿用挖掘机斗杆过渡断面的结构优化[J].煤矿机械,2013,34(3):32-33.
    [122].田敏军.WK-10B挖掘机斗杆断裂因素的分析与修复方法的研究[D].辽宁工程技术大学,2004.
    [123].欧增炳.WD-400型挖掘机斗杆的修复[J].矿山机械,2001(12):66-67.
    [124].张登军,朱继锋.WK-20铲斗焊接修复工艺[J].露天采矿技术,2011(4):77-78.
    [125].冯春年.矿用挖掘机行走机构驱动大齿轮断齿故障分析[J].露天采矿技术,2009(3):42-44.
    [126].焦瑞军,布特格勒其.机械校正395BI电铲大臂及挖补法焊接工艺[J].露天采矿技术,2013(1):72-74.
    [127].董新.395电铲铲斗斗前壁更换的焊接工艺[J].露天采矿技术,2008(4):43-44.
    [128].申军立.机械式挖掘机工作装置机构性能研究与优化设计平台研发[D].长春:吉林大学,2013.
    [129].休斯敦,刘又午.多体系统动力学(下册)[M].天津:天津工业出版社,1991.
    [130].陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996.
    [131].洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999.
    [132].李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2006.
    [133].范成建,熊光明,周明飞.虚拟样机软件MSC.ADAMS应用与提高[M].北京:机械工业出版社,2006.
    [134].邢俊文.MSC.ADAMS/Flex与AutoFlex培训教程[M].北京:科学出版社,2006.
    [135].黄泽好.摩托车人_机刚柔耦合系统动态特性研究[D].重庆大学,2006.
    [136].齐朝晖.多体系统动力学[M].北京:科学出版社,2008.
    [137].杨义勇,金德闻.机械系统动力学[M].北京:清华大学出版社,2009.
    [138].焦晓娟,张湝渭,彭斌彬.RecurDyn多体系统优化仿真技术[M].北京:清华大学出版社,2010.
    [139]. Ultralok mining tooth system[EB/OL].http://www.escocorp.com.
    [140].博弈创作室.ANSYS9.0经典产品基础教程与实例详解[M].北京:中国水利水电出版社,2006.
    [141]. Adams Multibody Dynamics for Functional VirtualPrototyping[J/OL].http://www.mscsoftware.com/.
    [142].杜平安.有限元法-原理、建模及应用[M].北京:国防工业出版社,2004.
    [143]. KWAME AWUAH-OFFEI.Dynamic modeling of mining excavaotr-formationinteractions for efficient oil sands excavation[D].University ofMissouri-Rolla,2005.
    [144].张胜兰等.基于HyperWorks的结构优化设计技术[M].北京:机械工业出版社,2007.
    [145]. Paul W. Cleary. DEM prediction of industrial and geophysicalparticle flows[J].Particuology,2010(8):106-118.
    [146]. Ardeshir Dehmoobed Sharif-abadi,Tim Grain Joseph.An oil sandpseudo-elastic model for determining ground deformation under largemobile mining equipment[J].Geotech Geol Eng,2010,28:471-481.
    [147]. A.D. Sharifabadi,T.G. Joseph,D.R. Schmitt.Active and PassiveSeismic as an Indicator of Large Equipment Interactions with the OilSand[J].Geotech Geol Eng,2010,28:727-743.
    [148].洪如谨编译.UG WAVE产品设计技术培训教程[M].北京:清华大学出版社,2002.
    [149].韩翔,刘义,余永健.UG工程系统应用与开发实例[M].北京:清华大学出版社,2008.
    [150].黄勇.UG/Open API、MFC和COM开发实例精解[M].北京:国防工业出版社,2009.
    [151].季炳伟,潘双夏等.面向CAD/CAE集成的虚拟样机建模方法[J].农业机械学报,2006,37(3):95-99.
    [152].邓敬东.UG标准件库开发实例教程[M].北京:清华大学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700