用户名: 密码: 验证码:
轴系弯扭耦合振动及双变量分岔分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国社会经济的发展,人们对电力的需求越来越旺盛,这使得汽轮发电机组的研制、生产向巨型化、大容量的方向发展,相应的汽轮发电机组的振动问题也越来越突出。在实际的汽轮发电机组中,由于质量不平衡和外激励等多种因素的存在,导致汽轮发电机组的弯扭耦合振动问题越来越突出。汽轮发电机组的弯扭耦合振动问题的研究极具挑战性,对该问题的研究将有助于全面的了解系统的动力学特性,提高系统故障诊断的准确性,并对该系统的参数设计具有指导意义。
     首先以具有不平衡质量的双盘转子为研究对象,考虑了扭转方向主共振的情况,通过拉格朗日方程,建立了低压缸-发电机系统的弯扭耦合微分方程,非线性项是由质量不平衡引起的。采用平均法,得到了系统的解析解和分岔方程。应用奇异性理论求解出在不同保持域内的运动模式,应用龙格库塔方法对微分方程进行数值计算。不平衡质量能够引起弯扭耦合振动,质量不平衡越大,弯扭耦合越剧烈,因此减小质量不平衡有助于降低弯扭耦合振动。扭转方向主共振相当于对扭转振动的能量输入,这将会引起较大的扭转振动从而加剧转子的弯曲振动,在这种情况下应该考虑系统的弯扭耦合振动问题。
     在此基础上,考虑了轴的各向异性刚度,在扭转方向主共振和组合共振(工频约等于弯曲固有频率与扭转固有频率之和)共同作用的情况下,建立了低压缸-发电机的运动微分方程。应用平均法得到系统的解析解和分岔方程,应用两个状态变量的奇异性理论分析了弯曲振动和扭转振动在不同保持域中的运动模式,应用数值算法对解析解进行验证。当在扭转方向主共振和组合共振共同作用时,系统的弯曲振动和扭转振动的幅值都大幅度增加,扭转方向主共振相当于能量输入,组合共振相当于能量交换通道,扭转方向主共振引起轴系的扭转振动大幅度增加,通过能量交换通道传递到弯曲振动上,引起弯曲振动幅值的大幅度增加。此种情况对系统的危害极大,在弯曲方向和扭转方向都有发生破坏的可能,必须要考虑弯扭耦合振动问题,在设计时尽量避免此种情况的发生。
     以凸缘联轴器的平行不对中引起轴系的弯扭耦合振动问题为研究对象,考虑了由质量不平衡引起的非线性因素。在激励频率、扭转振动的固有频率、弯曲振动的固有频率之比约为1:1:2的情况时,建立了系统的弯扭耦合振动的微分方程。应用平均法和奇异性理论对该模型进行解析分析,利用龙格库塔法进行数值计算。由于组合共振关系(激励频率、扭转振动的固有频率、弯曲振动的固有频率之比约等于1:1:2)的存在,系统既有能量输入项(激励频率和弯曲固有频率之比约等于1:2),又有能量交换通道(扭转振动的固有频率和弯曲振动的固有频率之比约等于1:2),系统的弯曲振动和扭转振动都剧烈增加甚至有破坏的可能,所以在此种情况下必须要考虑弯扭耦合振动问题,并且在设计系统时,应该尽量避免这种组合共振关系。
     在实际的工程系统中,状态变量常常是受到约束限制的,对于一个状态变量受到约束的奇异性理论研究的比较充分,而多个状态变量受到约束的奇异性理论研究到目前为止还未开展。以两个状态变量受到约束限制为研究对象,考虑七种不同的约束限制条件,分别讨论了它们的转迁集形式。在受到约束的情况下在非约束区间其分岔集和双极限点集与非约束情况下相同,滞后集不同。由于约束的存在,会产生许多新的转迁集形式。由于这些新的转迁集与边界有关,称之为由于边界引起的转迁集。以二维系统为例研究了两个状态变量的约束分岔形式,通过比较发现,由于约束条件引起许多新的转迁集,以一个例子对两个状态变量约束分岔理论进行分析说明。
As the developments of social economy, the requirement of electric isincreasing, which promotes the turbo-generator unit to large scale and large capacity.As the result, the vibration of the turbo-generator is more and more serious. Inactual system, for the existence of unbalanced mass and exciting force, thebending-torsion coupling vibration causes more and more attention. The research onthe bending-torsion coupling vibration of turbo-generator has some challenge.Further study on it will reveal the dynamical characteristics of the rotor system,increase the accuracy of fault diagnosis, and provide theoretical basis for parametricdesign.
     In this paper, the primary resonance of the rotor system with double disks andunbalanced mass is studied. The bending-torsional coupling motion equations of lowpressure cylinder-engine system are derived by using Lagrange equation, where thenonlinear factor is caused by unbalanced mass. By using average method, theanalytical solutions and bifurcation equations are obtained. And the differentbifurcation modals in persistent regions are obtained by singularity theory. After that,the motion equations are simulated by Runge-Kutta method. It is found that theunbalanced mass can arouse bending-torsion coupling vibration and the balancemore large the vibration more serious. Therefore, decreasing the unbalanced masscan reduce the bending-torsional coupling vibration. For the system, primaryresonance may be considered as the input energy of the torsional vibration, whichcan intensify the bending vibration. Therefore, for the actual system,bending-torsion coupling vibration should be considered.
     In subsequence, motion equations of low pressure cylinder-engine system underprimary resonance and combined resonance (the frequency of exciting force is thesum of natural frequency of bending vibration and the one of torsinal vibration) intosional direction are constructed, where anisotropic stiffness of shaft is considered.Similarly, the analytical solutions and bifurcation equations are obtained by usingaverage method. And the different bifurcation modals in persistent regions areobtained by singularity theory. The analytical solutions are tested by numericalcalculation. It is found that under the primary resonance and combined resonancethe amplitudes of bending vibration and torsional vibration both increase largely. Inthis case, primary resonance can be considered as the input energy of the torsionalvibration, and combined resonance can be considered as energy switch path. Whenthe primary resonance causes the torsional vibration of shaft, the energy istransmitted to bending vibration through switch path. Then the amplitude of bending vibration increases. For this case, the system can be destroyed both in bendingdirection and torsional direction. Therefore during the dynamical analysis of systemthe bending-torsion coupling vibration should be considered, and in the design phaseof the system this case is best to avoid.
     The bending-torsion coupling vibration of shaft caused by parallel misalignmentof flange coupling is analyzed, where the nonlinear factor is caused by unbalancedmass. The bending-torsion coupling motion equations are constructed for the case ofcombined resonance, i.e. the ratio of the frequency of exciting force, naturalfrequency of bending vibration and natural frequency of torsinal vibration is1:1:2.By using average method and singularity theory, the analytical solutions andbifurcation equations are obtained. And the numerical solutions are simulated byRunge-Kutta method. For the combined resonance (the ratio of the frequency ofexciting force, natural frequency of bending vibration and natural frequency oftorsinal vibration is1:1:2), there is not only input energy (the ratio of the frequencyof exciting force and natural frequency of bending vibration is1:1), but also energyswitch path (the ratio of natural frequency of bending vibration and naturalfrequency of torsinal vibration is1:2), which can cause the damage of the system.Therefore, in this case the bending-torsion vibration should be considered. Duringthe design of the system, the combined vibration is best to avoid.
     For the actual system, the state variables are usually constrained. There aremany studies on the one state variable singularity theory with constraints, whilelittle study on the two state variables singularity theory with constraints. In thispaper, the two state variables system with constraints is studied, where sevendifferent constraints are considered. The transition sets are obtained. In theunconstrained region, the bifurcation set and double limit set are confirmed with theones without constraints, but hysteresis set is different. The constraints arouse somenew transition sets. These new transition sets are associated with boundary.Therefore, they are called boundary induced transition sets. As an example, thebifurcation of a two dimensional system with constraints is analyzed. It is found thatthere are some new transition sets are induced by the constraints, which is a test ofthe bifurcation theory of two state variables system with constraints.
引文
1李存生.转子弯扭耦合振动动力学特性研究[D].哈尔滨:哈尔滨工业大学硕士学位文.2007.
    2朱保伟.汽轮发电机组模拟机轴系弯扭耦合振动特性研究[D].保定:华北电力大学硕士学位论文.2007.
    3强彦,谢永慧,张荻.汽轮发电机组转子及轴系弯扭藕合振动发展现状与展望[J].汽轮机技术.2006,48(5):321-326.
    4何成兵,顾煜烔,陈祖强.质量不平衡转子的弯扭耦合振动分析[J].中国电机工程学报.2006,26(14):134-139.
    5刘占生,崔颖,黄文虎,韩万金.转子弯扭耦合振动非线性动力学特性研究[J].中国机械工程学报.2003,14(7):603-605
    6贾九红,沈小要.外激励作用下不平衡转子系统弯扭耦合非线性振动特性研究[J].汽轮机技术.2010,52(1):45-48.
    7于磊,李明,付团伟,张莹博.锥齿轮传动转子系统纵弯扭耦合振动的不平衡响应[J].润滑与密封.2008,33(11):55-57.
    8张坤,李应生,郑百林.质量不平衡对齿轮传动系统振动影响的数值分析[J].热能动力工程.2010,25(3):312-316.
    9Yuan Z W, Chu F L, Lin Y L. External and internal coupling effects of rotor’sbending and torsional vibrations under unbalances[J]. Journal of sound andvibration.2007,299:339-347.
    10Yuan Z W, Chu F L, Hao R J. Simulation of rotor’s axial rub-impact in fulldegrees of freedom[J]. Mechanism and Machine theory2007,42:763-775.
    11刘京铄,李光中,安学利.不平衡转子弯扭耦合外激励振动特性[J].郑州大学学报(工学版).2008,29(3):76-80.
    12李明,张金玉,虞烈.不对中齿轮联轴器转子系统的振动特征研究[J].西安矿业学院学报.1998,18(3):240-243.
    13李明,张勇,姜培琳,虞烈.转子-齿轮联轴器系统的弯扭耦合振动研究[J].航空动力学报.1999,14(1):60-64.
    14何成兵,顾煜烔,杨昆,齿式联接不对中转子的弯扭耦合振动特性分析[J].机械强度.2005,27(6):725-729.
    15付波,周建中,彭兵,安学利.固定式刚性联轴器不对中弯扭耦合振动特性[J].华中科技大学学报(自然科学版).2007,35(4):96-99.
    16Al-Hussain K M, Rendmond I. Dynamic response of two rotors connected byrigid mechanical coupling with parallel misalignment[J]. Journal of sound andvibration.2002,249(3):483-498.
    17Al-Hussain K M. Dynamic stability of two rigid rotors connected by a flexiblecoupling with angular misalignment[J]. Journal of sound and vibration.2003,266:217-234.
    18Lees A W. Misalignment in rigidly coupled rotors[J]. Journal of sound andvibration.2007,305:261-271.
    19DeSmidt H A, Wang K W, Smith E C. Stability of a segmented supercriticaldriveline with non-constant velocity couplings subjected to misalignment andtorque[J]. Journal of sound and vibration.2004,277:895-918.
    20夏松波,张新江,刘占生等.旋转机械不对中故障研究综述[J].振动、测试与诊断.1998,18(3):157-161.
    21向玲,唐贵基,朱永利.汽轮发电机组次同步谐振的数字仿真分析[J].华北电力大学学报.2005,32(2):32-36.
    22向玲,唐贵基,朱永利.汽轮发电机组次同步谐振及轴系扭振试验研究[J].华北电力大学学报.2005,32(4):85-87.
    23向玲,唐贵基,朱永利.300MW汽轮发电机组在机电耦合作用下的扭振[J].动力工程.2007,27(4):492-496.
    24刘超,蒋东翔,谢小荣,洪良友.次同步振荡引起的发电机组轴系疲劳损伤[J].电力系统自动化.2010,34(12):19-22.
    25傅卫平,徐健学,张新华.应用非线性模态方法分析机电耦合次同步扭振系统的Hopf分岔[J].中国电机工程学报.1997,17(3):175-178.
    26周桐,徐健学,傅卫平.弯扭耦合振动对次同步谐振响应的影响[J].应用力学学报.2000,17(1):12-17.
    27向玲,杨世锡,唐贵基.次同步谐振下机组轴系弯扭振动信号分析[J].振动、测试与诊断.2011,31(2):233-236.
    28黄文俊,李录平.碰摩转子弯扭耦合振动特性仿真实验研究[J].汽轮机技术.2006,48(1):23-26.
    29孙政策,徐健学,周桐,谭宁.碰摩转子中弯扭耦合作用的影响分析[J].2003,24(11):1163-1169.
    30张韬,孟光.考虑弯扭耦合作用的转子-挤压油膜阻尼器系统的碰摩响应特性分析[J].应用力学学报.2003,20(1):49-53.
    31何成兵,顾煜炯,李猛. Jeffcott转子碰摩的弯扭耦合振动特性分析[J].振动与冲击.2006,25(2):59-69.
    32徐可君,秦海勤.一种考虑径向-轴向碰摩的双盘转子-机匣系统力学模型的建立[J].振动与冲击.2007,26(8):17-21.
    33Roques S, Legrand M, Catraud P, Stoisser C, Pierre C. Modeling of a rotorspeed transient response with radial rubbing[J]. Journal of Sound and Vibration.2010,329:527-546.
    34Yuan Z W, Chu F L, Wang S B, Yue ximing. Influence of rotor’s radialrub-impact on imbalance reponses[J]. Mechanism and Machine Theory2007,42:1663-1667.
    35Al-Bedoor B O. Transient torsional and lateral vibrations of unbalanced rotorswith rotor-to-stator rubbing[J]. Journal of Sound and Vibration.2000,229(3):627-645
    36寇海江,袁惠群.弹性非对称支承双跨转子弯扭耦合非线性故障特征分析[J].振动与冲击.2010,29(S):92-96.
    37张楠,钱大帅,刘占生等.涡轮泵转子-石墨密封系统的振动特性[J].东南大学学报(自然科学版).2010,40(3):512-516.
    38杨正茂,肖锡武.裂纹转子弯扭耦合振动的理论研究[J].华中科技大学学报(自然科学版).2002,30(6):1-3
    39杨正茂,肖锡武.开裂纹转子的动力分析[J].汽轮机技术.2002,44(3):165-168.
    40杨正茂,肖锡武,肖光华.开闭裂纹转子的弯扭耦合振动研究[J].固体力学学报.2003,24(3):334-340.
    41何成兵,顾煜炯,杨昆. Jeffcott裂纹转子弯扭耦合振动特性分析[J].振动、测试与诊断.2002,22(3):191-195.
    42何成兵,顾煜炯,杨昆.裂纹转子弯扭耦合振动瞬态分析[J].振动、测试与诊断.2006,26(3):227-230.
    43何成兵,顾煜炯,杨昆.裂纹转子弯扭耦合瞬态振动影响因素研究[J].振动与冲击.2004,23(2):68-71
    44Lin Y L, Chu F L. The dynamic behavior of a rotor system with a slant crack onthe shaft[J]. Mechanical Systems and Signal Processing.2010,24:522-545.
    45Tejas H. Patel, Ashish K. Darpe. Coupled bending-torsional vibration analysisiof rotor with rub and crack[J]. Journal of Sound and Vibration.2009,326:740-752.
    46Darpe A K, Gupta K, Chawla A. Coupled bending, longitudinal and torsionalvibrations of a cracked rotor[J]. Journal of Sound and Vibration.2004,269:33-60.
    47Ostachowicz W M, Krawczuk M, Gdansk. Coupled torsional and bendingvibrations of rotor with open crack[J]. Arxhive of Applied Mechanics.1992,62,191-201.
    48Papadopoulos C A, Dimarogonas A D, Louis St. Coupling of bending andtorsional vibration of a cracked Timoshenko shaft[J]. Ingenieur-Archiv1987,57:257-266.
    49Papadopoulos C A, Dimarogonas A D. Coupled longitudinal and bendingvinrations of s rotating shaft with an open crack[J]. Journal of sound andvibration.1987,117(1):81-93.
    50Al-Bedoor B O. Dynamic model of coupled shaft torsional and blade bendingdeformations in rotors[J]. Computer methods in applied mechanics andengineering.1999,169:177-190.
    51Ozgur Turhan, Gokhan Bulut. Linearly coupled shaft-torsional andblade-bending vibrations in multi-stage rotor-blade systems[J]. Journal ofSound and Vibration.2006,296(1-2):292-318
    52柴山,高连勇.多转子系统弯扭耦合振动分析的整体传递矩阵法[J].机械设计.2005,22(10):8-10.
    53宋雪萍,于涛,李国平,闻邦椿.齿轮轴系弯扭耦合振动特性[J].东北大学学报(自然科学版).2005,26(10):990-993.
    54孟浩,刘耀宗,王宁,温激鸿.轴向力对轴系弯扭耦合振动特性的影响[J].振动与冲击.2008,27(10):103-105.
    55欧卫林,王三民,袁茹.齿轮耦合复杂转子系统弯扭耦合振动分析的轴单元法[J].航空动力学报.2005,20(3):434-439.
    56赵俊山,李军向.叶片主梁弯扭耦合设计研究[J].玻璃钢/复合材料.2008,6:48-52.
    57苏武会,李育锡.斜齿轮转子系统弯扭耦合振动分析的整体传递矩阵法[J].机床与液压.2007,35(6):38-43.
    58任勇生,张明辉.水平轴风力叶片的弯扭耦合气弹稳定性研究[J].振动与冲击.2010,29(7):196-200.
    59刘旺玉,张勇.柔性风力机叶片主梁弯扭耦合设计[J].华南理工大学学报(自然科学版).2010,38(12):1-6.
    60刘辉,项昌乐,孙恬恬.车辆动力传动系统弯扭耦合振动模型的建立及复模态分析[J].机械工程学报.2010,46(24):67-74.
    61Chiu Y J, Chen D Z. The coupled vibration in a rotating multi-disk rotorsystem[J]. International Journal of Mechanical Sciences.2011,53:1-10.
    62Yang C H, Huang S C. Coupling vibrations in rotating shaft-disk-bladessystem[J]. Journal of Vibration and Acoustics.2007,129:48-57.
    63W. C. de Goeij, M. J. L. van Tooren, A. Beukers. Implementation ofbending-torsion coupling in the design of a wind-turbine rotor-blade[J].Applied Energy1999,63:191-207.
    64Xue M D, Duan J, Xiang Z H. Thermally-induced bending-torsioncoupling vibration of large scale space structures[J]. Computational Mechanics.2007,40(4):707~723.
    65Liu W Y, Zhang, Y. Bending-torsion coupling design of spar cap of compliantwind turbine blade[J]. Journal of South China University of Technology(Natural Science).2010,38(12):1-6.
    66Ozgumus O O, Kaya, M O. Energy expressions and free vibration analysis of arotating double tapered Timoshenko beam featuring bending-torsioncoupling[J]. International Journal of Engineering Science.2007,45(2-8):562-586.
    67Santiuste C, Sánchez S S, Barbero E. Dynamic analysis ofbending-torsion coupled composite beams using the Flexibility InfluenceFunction Method[J]. International Journal of Mechanical Sciences,2008,50(12):1611-1618.
    68Zhu H H, Zhang X M,Liu Z L. Analysis on the property of ship shaftingbending-torsion vibration coupling with bearing lubrication under impulseload[J]. Journal of Ship Mechanics,2010,14(1-2):126-131
    69Ren Y S,Zhang M H. Aeroelastic stability of a horizontal axis wind turbine bladewith bending-torsion coupled[J]. Journal of Vibration and Shock.2010,29(7):196-200.
    70Singh V P. Coupled bending-Bending-Torsion vibration analysis of turbomachine blades[J]. Mechanical Engineering Division.2009,90(10):3-6.
    71Naik S S, Maiti S K. Coupled bending-torsion vibration behaviour ofTimoshenko and Euler-Bernoulli shaft beams with two arbitrarily orientedopen cracks. Materials Forum.2008,33:122-130.
    72Stoykov S, Ribeiro P. Nonlinear forced vibrations and static deformations of3Dbeams with rectangular cross section: The influence of warping, sheardeformation and longitudinal displacements[J]. International Journal ofMechanical Sciences.2010,52(11):1505-1521
    73G kdag H, Kopmaz, O. Natural frequencies of a bending-torsion coupled beamsupported by in-span linear springs[J]. Structural Engineering and Mechanics.2007,27(2):259-262
    74Naik S S; Maiti S K. Triply coupled bending-torsion vibration of Timoshenkoand Euler-Bernoulli shaft beams with arbitrarily oriented open crack[J]. Journalof Sound and Vibration.2009,324(3-5),:1067-1085
    75Hodges D H. Bending-torsion divergence of a clamped-clamped composite wing[J].Journal of Aircraft,2007,44(6):2070-2072
    76Lin T J; Ran X T. Nonlinear vibration characteristic analysis of a face-geardrive[J]. Journal of Vibration and Shock,2012,31(2):25-31
    77Su W H, Cesnik C E S. Nonlinear aeroelasticity of a very flexibleblended-wing-body aircraft[J]. Journal of Aircraft,2010,47(5):1539-1553
    78Bao S Y, Deng Z C. Dynamic response of bending-torsion coupled beam underelastic impact[J]. Chinese Journal of Applied Mechanics.2008,25(3):415-420
    79Kim K, Yoo C H. Ultimate strengths of steel rectangular box beams subjected tocombined action of bending and torsion[J]. Engineering Structures,2007,30(6):1677-1687.
    80Blasi L, Caputo F. The twist-bending behavior of forward swept wings: A casestudy of a glass/carbon hybrid composite structure[J]. MacromolecularSymposia.2007,247:211-220.
    81Hasslen W. On singularities of mappings Euclidean spaces: I,mappings of theplane into the plane[J]. Annals of Mathematics.1955.62(3):374-410.
    82Golubistky M S, Schaeffer D G. Singularities and groups in bifurcationtheoryⅠ [M]. New York,Spring-Verlag,1985
    83Golubistky M S, Schaeffer D G. Singularities and groups in bifurcationtheoryⅡ[M]. New York,Spring-Verlag,1988
    84Lari-Lavassani A, Lu Y. C. Equivariant multiparameter bifurcation viasingularity theory[J]. Journal of Dynamics and Differential.1993,5(2):189-218.
    85李艳青,李兵,黄得建.分支问题等价的一个充分条件[J].琼州学院学报.2009,16(2):4-6.
    86徐凯宇.分叉方程中单变量映射强等价的一个简单证明[J].上海大学学报(自然科学版).1995,1(2):155-158.
    87高守平,刘贻各.等变分歧问题关于右等价群的有限决定性[J].信阳师范学院学报(自然科学版).2002,15(1):16-18.
    88高守平,李养成.多参数等变分歧问题的强接触等价[J].湖南师范大学自然科学学报.1998,21(1):10-15.
    89林文惠,武际可.两种分岔定义等价性的另一种证明[J].力学与实践.2002,24:71-73.
    90Damon J. The unfolding and determinacy theorems for subgroups of A and K[J].Memoirs of the American Math. Soc.1984,50(306):1-88.
    91Pietro-Luciano Buono, Jacques Bélair. Restrictions and unflolding of doubleHopf bifurcation in functional differential equations[J]. Journal of DifferentialEquations.2003,189:234-266.
    92Furter J. E., Sitta A. M., Stewart I. Singularity theory and equivariantbifurcation problems with parameter symmetry[J]. Math. Proc. Of theCambridge Philo. Soc.,1996,120(3):547-578.
    93Dangelmayr G. Stewart I. Classfication and unfolding of sequentialbifurcation[J]. SIAM J.Math Anal.1986,15(3):423-445.
    94Gaffney T. New methods in classification theory of bifurcation problem[J].Contemporary Mathematics.1986,(56):97-116.
    95Dutertre N. On p-parameter bifurcation of an n-dimensional function-germ[J].Manusciipta Math.1997,94:21-31.
    96Annabi H, Annabi M L, Roussarie R. Generic unfoldings with the samebifurcation diagram which are not(c0,c0)-equivalent[J]. Nonlinear Analysis,Theory, Methods&Application.1997,30(3):1419-1428.
    97邹建成. On Singularities in bifurcation theory.[D].北京:中国科学院数学研究所,1996.
    98Zou J C. Finite determination and universal unfoldings of bifurcationproblems[J]. Acta Math. Sinica, New Series,1998,14(4):663-674.
    99邹建成.分支问题的有限决定性和万有开折[J].数学学报,1998,41(4):817-822.
    100Zou J C. On the universal unfolding of C∞map germs under a subgroup of A.J. Math[J]. Research&Exposition,1998,18(4):487-498.
    101邹建成,李国富.开折的无穷小稳定性及其在分支问题中的应用[J].北方工业大学学报.1998,10(1):5-11.
    102邹建成,熊剑飞.分支问题开折的同构[J].北方工业大学学报.1998,10(3):25-30.
    103李养成,邹建成.带有多个分歧参数的等变分歧问题的万有开折[J].数学学报,1999,42(6):1071-1076
    104胡凡努,李养成.关于两个状态变量组的等变分歧问题的通用开折[J].数学理论与应用,2000,20(3):50-57.
    105Gao S P. The unfolding and classification of multiparameter equivariantbifurcation problems with parameters symmetry[D]. Shanghai: TongjiUniversity,2003.
    106高守平,李养成.多参数等变分歧问题关于左右等价的开折[J].数学年刊,2003,24A(3):341-348.
    107郭瑞芝,李养成.含两组状态变量等分歧问题开折的唯一性和稳定性[J].高校应用数学学报.2008,23(1):112-120.
    108Gao S P, Li Yangcheng. The unfolding of equivariant bifurcation problemswith parameters symmetry[J]. Acta Mathematica Scientia,2004,24B(4):623-632
    109郭瑞芝.等变分歧问题研究[D].长沙:中南大学,2006.
    110Guo R Z, LiYangcheng. Unfolding of mutiparameter equivariant bifurcationproblems with two groups of state variables under lelf-tigjt equivalent group[J].Applied Mathematics and mechanics,2005,26(4):530-538.
    111Cui D L, Li Yangcheng. The unfolding of equivariant bifurcation problemswith teo types of state variables in the presence of parameter symmetry[J].Acta Mathematica Sinica,2006,22(5):1433-1440.
    112彭白玉,李养成.等变分歧问题的无穷小稳定开折[J].应用数学.2006,19(4):702-706.
    113郭瑞芝,任耀庆,万勇,唐钊轶.分歧参数带有对称性等变分歧问题及其开折的稳定性[J].长沙交通学院学报.2008,24(4):93-101.
    114郭瑞芝,李养成.分歧参数带有对称性的等变分歧问题在左右等价群下的开折[J].湖南大学学报(自然科学版).2007,34(1):89-92.
    115郭瑞芝,唐钊轶,任耀庆.关于左右等价群下通用开折定理的证明[J].湖南师范大学自然科学学报.2008,31(1):1-5.
    116Cui D L. Infinitesimally stability of unfolding of equivariant bifurcationproblems with parameter symmetry[J]. Journal of Xiangnan University.2008,29(2):1-5.
    117崔登兰. Γ-等变分歧问题开折的分级稳定性[J].北方工业大学学报.2008,20(1):57-61.
    118李养成,何伟.一类等变分歧问题在等变左右等价下的无穷小稳定开折[J].湘潭大学自然科学学报.2007,29(3):1-5.
    119崔登兰,郭瑞芝.左右等价群下分歧参数带有对称性的等变分歧问题开折的无穷小稳定性[J].湖南师范大学自然科学学报.2008,31(2):1-4.
    120崔登兰.参数具有对称性的等变分歧问题的通用开折[J].吉首大学学报(自然科学版).2008,29(1):22-25.
    121Cui D L, Li Yangcheng. Stability of equivariant bifurcation problems with twotypes of state variables and their unfoldings in presence of parametersymmetry[J]. Applied Mathematics and Mechanics(English Edition),2007,28(2):229-235.
    122Keyfitz B L. Classification of one state variable bifurcation problem up tocodimension seven[J]. Dynamical Systems.19861:1-42
    123Golubitsky M, Stewart I. Hopf bifurcation with dihedral group symmetry:coupled nonlinear oscillators[J]. Contemporary Mathematics.1986,56:35-46
    124Golubitsky M, Roberts M. A classification of degenerate Hopf bifurcation withO (2)symmetry[J]. Journal of Differential Equations.1987,69:216-264
    125Melbourne I. The classification up to low codimension of bifurcation problemswith octahedral symmetry[D]. Coventry: University of warwick,1988
    126王勇,孙伟志.余秩不等于2余维为7的可微函数芽的分类[J].东北师大学报自然科学版.2001,33(4):12-15.
    127Gao S P, Li Yangcheng. Classification of(D,S1
    4)-equivariant bifurcationproblems up to topological codimension2[J]. Science In China(Series A).2003,46(6):862-871.
    128郭瑞芝,李养成.余维数不打于3的(D3, O (2))等变分歧问题分类[J].数学学报中文版.2006,49(2):255-264.
    129杨彩霞.高维不对称非线性动力学系统的1:2内共振Hopf分岔及高余维奇异性分析[D].天津:天津大学,2000
    130Wu Z Q, Chen Y S. New bifurcation patterns in elementary bifurcationproblems with single-side constraint[J]. Applied Mathematics and Mechanics.2001,22(11):1260-1267.
    131Wu Z Q, Chen Y S. Classification of bifurcations for nonlinear dynamicalproblems with constraints[J]. Applied Mathematics and Mechanics.2002,23(5):535-541.
    132Wu Z Q, Yu P. Bifurcation analysis on a self-excited hysteretic system[J].International Journal of Bifurcation and Chaos.2004,14(8):2825-2842.
    133Wu Z Q, Ding R, Chen Y S. Classification of parametrically constrainedbifurcations[J]. Applied Mathematics and Mechanics.2010,31(2):135-142.
    134Ye M, Zhang W Y. Local bifurcation of a thin rectangle plate with the frictionsupport boundary[J]. Transactions of Tianjin University.2002,8(2):114-118.
    135吴志强,陈芳启,陈予恕,王克起.一类高余维静态分岔问题分析[J].天津大学学报.2002,35(3):336-339.
    136张琪昌,李伟义,王炜.斜拉索风雨振的静态分岔研究[J].物理学报.2010,59(2):729-734.
    137时红廷,唐云.Z2对称奇点理论的一点推广[J].北京师范学院学报(自然科学版).1992,13(1):8-14.
    138时红廷.Z2对称奇点理论的若干命题和定理[J].首都师范大学学报(自然科学版).1993,14(1):1-9.
    139徐凯宇,周哲玮,钱伟长.对称铺设正交各向异性层合板的亚谐参数共振[J].上海力学.1997,18(1):1-9.
    140Chen Y S, Xu J. Universal classification of bifurcating solutions to a PrimaryParametric resonance in van der pol-Duffing-Mathieu’s system[J]. Science inchina(series A).1996,39(4):405-417.
    141刘畅.约束分岔分析在若干非线性振动问题中的应用[D].天津:天津大学硕士论文.2008.
    142郭凯.形状记忆合金梁振动分岔分析[D].天津:天津大学硕士论文.2010.
    143张建伟.自激振动系统减振新机理的研究[D].天津:天津大学硕士论文.2005.
    144化存才,陆启韶.一类时变动力系统的高余维分岔及其控制[J].高校应用数学学报A辑.2001,16(2):154-162.
    145陈芳启,吴志强,陈予恕.黏弹性圆柱形壳动力学高余维分岔普适开折问题[J].力学学报.2001,33(5):661-668.
    146陈贵清,董保珠,邱家俊.电磁作用激发的水电机组转子轴系振动研究[J].力学季刊.2010,31(1):108-112.
    147张琪昌,张翠英,何学军.索结构风雨振局部分岔[J].天津大学学报.2008,41(12):1405-1410.
    148张琪昌,郝淑英,陈予恕.非线性连接梁形结构弯曲振动的分岔[J].天津大学学报.2002,35(2):143-146.
    149尹万建,韩鹰,杨绍普.空气弹性悬架系统在强迫振动下的动力学分析[J].中国公路学报.2006,19(3):117-121.
    150张军柯,王知人,白象忠.电磁场中导电梁式板非线性振动的分岔[J].重庆科技学院学报(自然科学版).2008,10(6):85-88.
    151陈予恕,毕勤胜.振动磨机的分段线性研究[J].天津大学学报.1996,29(1):73-78.
    152毕勤胜,陈予恕.振动机械的亚谐分岔研究[J].天津大学学报.1996,29(2):183-188.
    153Chen, Y S Qin Z H. Singular analysis of two-dimensional bifurcation system[J].Science China Technological Sciences.53:608-611.
    154Chen Y S. Nonlinear Vibrations in Chinese[M]. Beijing: Higher EducationPress,2002
    155Chen Y S, Andrew Y. T. Leung. Bifurcation and Chaos in Engineering[M].Springer.1998. London
    156Qin Z H, Chen Y S, Li J. Singularity Analysis of a Two-Dimensional ElasticCale With1:1Internal Resonance[J]. Applied Mathematics and Mechanics.2010,31(2):134~142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700