用户名: 密码: 验证码:
头细蛾属昆虫与叶下珠族植物互利共生关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
头细蛾属Epicephala昆虫与叶下珠族Phyllantheae植物之间存在着不同类型的协同进化关系。在长期的协同进化历程中,不同寄主与头细蛾之间形成了不同的机制来维持互利共生体系中利益的平衡,以保证系统的稳定。本文通过研究分布于海南和福建的头细蛾属昆虫及相关黑面神属Breynia和算盘子属Glochidion植物的协同进化关系,发现头细蛾属昆虫与叶下珠族植物之间既存在着1对1的专一性协同进化关系,又存在1对2及2对2的发散型协同进化关系。通过对头细蛾属成虫和幼虫的形态特征、访花行为和生物学特性及相关寄主的花部形态特征、开花物候和种子产量等方面的调查和研究,探讨了不同模式下头细蛾与寄主之间的协同进化关系及其稳定机制。本文主要包括以下三方面:
     (1)记述头细蛾昆虫4新种(已发表):寄生黑面神属植物的宽瓣头细蛾Epicephala lativalvaris Li, Wang et Zhang,2012,奇瓣头细蛾E. mirivalvaris Li,Wang et Zhang,2012和小叶头细蛾E. vitisidaea Li, Wang et Zhang,2012,以及寄生毛果算盘子Glochidion eriocarpum的毛果头细蛾Epicephala eriocarpa Li, Wanget Zhang,2012,给出了成虫和雌雄外生殖器特征图及分布;解剖并详细描述了头细蛾属14种老熟幼虫的头部和体节的毛序特征,提供了毛序特征图,给出了分种检索表,比较了不同寄主上头细蛾幼虫之间的差异。
     (2)通过对分布于海南和福建的头细蛾属昆虫及相关寄主植物的研究,发现小叶头细蛾E. vitisidaea与小叶黑面神B. vitis-idaea之间存在1对1的专一性协同进化关系;宽瓣头细蛾E. lativalvaris和奇瓣头细蛾E. mirivalvaris与黑面神B. fruticosa和喙果黑面神B. rostrata之间存在2对2的发散型协同进化关系;双向头细蛾E. bipollenella与香港算盘子G. zeylanicum和厚叶算盘子G. hirsutum之间存在1对2的发散型协同进化关系。
     在小叶头细蛾——小叶黑面神协同进化关系中,小叶黑面神的花粉和柱头均被萼片包围的特殊结构导致除头细蛾之外的其他访花昆虫无法为其传粉;雄花开放时间与小叶头细蛾的活动时间相协调及小叶黑面神和小叶头细蛾生活周期一致,保证了传粉昆虫的专一性;小叶头细蛾的羽化高峰长于小叶黑面神的盛花期、小叶头细蛾的主动采粉行为及高效率的传粉保证了小叶黑面神子房的发育率。小叶黑面神通过果实基部果梗的有无调控小叶头细蛾幼虫的成活率,而小叶头细蛾幼虫只取食部分种子保证了小叶黑面神有足够完好的种子维持种群大小。
     在宽瓣头细蛾和奇瓣头细蛾——黑面神和喙果黑面神发散型协同进化关系中,两种头细蛾共同并主动地为两种黑面神植物传粉,幼虫均需消耗果实内全部的种子才能发育成熟,但在整个种群内会有一部分完好的果实留下以保证植物的繁殖。头细蛾与植物的生活周期不但高度协调,而且黑面神在海南和福建两地不同的开花物候导致了两地头细蛾生活史的不同。两种头细蛾互为竞争关系,奇瓣头细蛾的种群大小远不及宽瓣头细蛾的种群大小。文中探讨了两种黑面神植物产生的自然杂交个体与其共享头细蛾传粉的关系。
     在双向头细蛾——香港算盘子和厚叶算盘子发散型协同进化关系中,双向头细蛾的生活史与两种算盘子的开花物候相协调,活动时间与开花时间一致。香港算盘子的结实率和双向头细蛾寄生率均高于厚叶算盘子,但厚叶算盘子单个果实中的完好种子多于香港算盘子,维持了两种植物种群大小的平衡。
     (3)根据20种头细蛾属昆虫的CO1基因序列和22种叶下珠族植物的matK基因序列,分析探讨了头细蛾属昆虫和叶下珠族黑面神属、算盘子属及叶下珠属植物之间的协同进化历程。
Different coevolution mutualisms exist between Epicephala moths andPhyllantheae plants. In the long course of coevolution, various kinds of mechanismshave been developed to maintain the balance of interest and the stabilization of themutualism between them. The present dissertation focuses on the study of theEpicephala moths associated with Glochidion and Breynia plants in Hainan andFujian. The results showed that “one-to-two” and “two-to-two” diffuse coevolutionsalso exist in the Epicephala—Phyllantheae mutualisms except “one-to-one” specificcoevolution. Based on the morphological characters, the flower-visiting behavior andthe biological characters of the Epicephala adults and larvae, as well as themorphological characters of flowers, the phenology and the seed production of theassociated hosts, we discussed the different coevolution models between theEpicephala moths and the corresponding hosts, and the mechanisms to keep theirstability. This dissertation consists of the following three aspects:
     (1) Four new species of the genus Epicephala are described and illustrated, ofwhich E. lativalvaris Li, Wang et Zhang,2012, E. mirivalvaris Li, Wang et Zhang,2012and E. vitisidaea Li, Wang et Zhang,2012parasitized on Breynia plants, and E.eriocarpa Li, Wang et Zhang,2012parasitized on Glochidion eriocarpum. TheEpicephala mature larvae of14species are dissected; the head and body chaetotaxy ofthe mature larvae are described in detail and illustrated, along with a key for theidentification of these larvae; and the differences among the Epicephala mature larvaeon different hosts are compared.
     (2) Based on the study of the Epicephala moths and the related hosts in Hainanand Fujian, we found “one-to-one” specific coevolution between E. vitisidaea and B.vitis-idaea;“two-to-two” diffuse coevolution between two Epicephala moths species(E. lativalvaris and E. mirivalvaris) and two of Breynia plant species (B. fruticosa andB. rostrata), and “one-to-two”diffuse coevolution between E. bipollenella and twoGlochidion plant species (G. zeylanicum and G. hirsutum).
     In E. vitisidaea—B. vitis-idaea coevolution system, the special characters of bothpollen grains and stigma concealed in the sepal lobes made other pollinators unable topollinate B. vitis-idaea flowers except Epicephala moths; the flower-visiting time of E.vitisidaea coincides with the blossom of two B. vitis-idaea male flowers, and the lifehistory of E. vitisidaea coincides with the phenology of B. vitis-idaea ensured thespecifity of pollinators; the peak emergence of E. vitisidaea is longer than theblooming period of B. vitis-idaea, and the active and high efficiency of pollinationensured the development of ovaries. Breynia vitis-idaea controled the survival rate ofE. vitisidaea larvae by the presence or absence of the basal stalk, and the E. vitisidaealarvae consumed a portion of seeds so that Breynia vitis-idaea would have enoughintact seeds left to maintain the population size.
     In Epicephala—Breynia diffuse coevolution system, the two Epicephala mothsspecies jointly and actively pollinated the two Breynia species, and a singleEpicephala larva could develop to maturity by consuming all six seeds of each fruit,whereas a fraction of intact fruits were left to ensure the reproduction of the plantswithin the whole population. The life history of Epicephala species highly coincideswith the phenology of Breynia plants, and the different phenology of B. fruticosaresulted in different life history of the two Epicephala species in Hainan and Fujian.The two Epicephala species are competitive for resources, and the population of E.mirivalvaris is much smaller than that of E. lativalvaris. The natural hybridization ofthe two host plants, possibly induced by sharing pollination of Epicephala moths, isbriefly discussed.
     In Epicephala—Glochidion diffuse coevolution system, the life history of E.bipollenella coincides with the phenology of the two Glochidion plant species, and theflower-visiting time of E. bipollenella highly coincides with the blossom of the twoGlochidion flowers. The seed setting rate of G. zeylanicum and the parasitic rate of E.bipollenella are higher than those of G. hirsutum, but G. hirsutum possesses moreintact seeds per fruit than G. zeylanicum, which maintained the balance of the twoGlochidion species population.
     (3) Based on CO1genes of20Epicephala species and matK genes of22Phyllantheae species, we discussed the coevolution process of Epicephala andPhyllantheae (Breynia, Glochidion and Phyllanthus).
引文
[1]白海燕.中国细蛾科系统学研究:[博士学位论文].2009.天津:南开大学.
    [2]白海燕,李后魂.2008.传粉细蛾与大戟科植物专性授粉的互惠共生体系.昆虫知识.45(1):166169.
    [3]胡冰冰.2011.头细蛾属昆虫与算盘子属植物互利共生体系的研究:[博士学位论文].天津:南开大学.
    [4]胡冰冰,李后魂,石福臣.2011.中国头细蛾属昆虫(鳞翅目:细蛾科)与大戟科植物互利共生关系研究进展.动物分类学报.36(2):447457.
    [5]陈松河,王振忠.2001.厦门鼓浪屿——万石山风景区观赏竹种调查.西北林学院学报.Vol.16(3):5056.
    [6]符国瑗,冯绍信.1995.海南五指山森林的垂直分布及其特征.广西植物. Vol.15(1):5769
    [7]福建省科学技术委员会.1985.福建植物志(第三卷).福建:福建科学技术出版社.169188
    [8]广东省植物研究所.1974.海南植物志(第二卷).北京:科学出版社.122133.
    [9]黄双全.2008.植物的传粉谋略.生命世界, Vol.5:1215.
    [10]黄双全.2007.植物与传粉者相互作用的研究意义.生物多样性. Vol.6:569575.
    [11]李秉滔.1994.中国植物志第44卷第一册.北京:科学出版社.133134;7879;178184.
    [12]李后魂.2002.中国麦蛾(一)(鳞翅目:麦蛾科).天津:南开大学出版社. xvii+504pp.
    [13]李荣冠,江锦祥,鲁琳等.1996.鼓浪屿软相潮间带生态初步研究.海洋学报. Vol.18(02):123129.
    [14]李意德,吴仲民,曾庆波等.1998.尖峰岭热带山地雨林生态系统碳平衡的初步研究.生态学报. Vol.18(4):371378.
    [15]罗世孝.同属植物传粉机制比较研究:以叶下珠属、土蜜树属、酢浆草属和大青属植物为例:[博士学位论文],广州:中国科学院华南植物园.2006
    [16]欧芷阳,杨小波,吴庆书.2007.尖峰岭自然保护区扩大区域植物多样性研究.生物多样性. Vol.15(4):437444.
    [17]钦俊德,王琛柱.2001.论昆虫与植物的相互作用和进化的关系.昆虫学报. Vol.44(3):360365.
    [18]王发国,张荣京,邢福武等.2007.海南鹦哥岭自然保护区的珍稀濒危植物与保育.武汉植物学研究. Vol.25(3):303309.
    [19]许东辉.2002.乐土自然保护区白蚁调查初报.中国森林病虫. Vol.21(4):3334.
    [20]杨小波,林英,梁淑群.1994.海南岛五指山的森林植被I.五指山的森林植被类型.海南大学学报,自然科学版. Vol.12(3):220236.
    [21]姚振威,刘秀琼.1990.为害荔枝和龙眼的两种细蛾科昆虫.昆虫学报.33(2):207212.
    [22]张红玉.2005.虫媒植物与传粉昆虫的协同进化(一)传粉昆虫对虫媒植物进化所起的作用.四川林业科技. Vol.26(3):3841.
    [23]张泽彬,马青,黄金才等.2010.昆虫与植物协同进化的研究进展.湖南林业科技.37(5):6066.
    [24]赵卓,刘国东,刘克文等.2004.昆虫与植物协同演化关系的研究概况.吉林师范大学学报(自然科学版).3:47.
    [25]钟富春.2008.厦门天竺山森林公园森林景观资源等级评价及应用:[博士学位论文].福州:福建农林大学.
    [26]中国科学院华南植物园.2009.广东植物志第9卷.广东:广东科技出版社.6567.
    [27]中国科学院昆明植物研究所.2006.云南植物志(第十卷).北京:科学出版社.142146.
    [28]钟觉民.幼虫分类学.1990.北京:农业出版社.156198.
    [29] Axelrod R, Hamilton W D.1981. The evolution of co-operation. Science.211:13901396.
    [30] Aanen D K, Eggleston P, Roulahd Lefèvre C, et al.2002. The evolution of fungus-growingtermites and their mutualistic fungal symbionts. Proc. Natl. Acad. Sci.99:1488714892.
    [31] Backer A C.2003. Flexibility and specificity in coral-algal symbiosis: diversity, ecology,and biogeography of Symbiodinium. ANN. Rev. Ecol. Evol. Syst.34:661689.
    [32] Boosma J J.2002. The evolution of fungus-growing termites and their mutualistic fungalsymbionts. Proc. Natl. Acad. Sci.99:1488714892.
    [33] Brower A V Z.1994. Rapid morphological radiation and convergence among races of thebutterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution.Proceedings of the National Academy of Sciences.91:64916495.
    [34] Bull J J, Rice W. R.1991. Distinguishing mechanisms for the evolution of co-operation. J.Theor. Biol.149:6374.
    [35] Caterino M S, Sperling F A.1999. Papilio phylogeny based on mitochondrial cytochrome Iand II genes. Molecular Phylogenetics and Evolution.11(1):122137.
    [36] Chakrabarty T, Gangopadhyay M.1996. The genus Breynia (Euphorbiaceae) in the Indiansubcontinent. J. Econ. Taxon. Bot.20:501512.
    [37] Cook J M, Rasplus J Y.2003. Mutualists with attitude: coevolving fig wasps and figs.Trends Ecol. Evol.18:241248.
    [38] De Prins W, De Prins J.2005. World Catalogue of Insects. Vol.6. Gracillariidae(Lepidoptera). USA: Apollo Books.177183.
    [39] Doyle J J, Doyle L.1987. A rapid DNA isolation procedure for small amounts of fresh leaftissue. Phytochemical Bulletin.19:1115.
    [40] Dyall S D, Brown M T, Johnson R J.2004. Anceint invasions: From endosymbionts toorganelles. Science.304:253257.
    [41] Ehrlich P R, Raven P H.1964. Butterflies and plants: a study in coevolution. Evolution.18(4):586608.
    [42] Elizabeth E, Grafton-Cardwell E E, Godfrey K E, et al.2008. Citrus Leafminer and CitrusPeelminer. ANR Publications.112.
    [43] Fleming T H, Holland J N.1998. The evoluntion of obligate pollination mutualisms: senitacactus and senita moth. Oecologia,114:368375.
    [44] Fletcher T B.1920. Life histories of Indian insects. Microlepidoptera6. Gracillariidae.Memoirs of the Department of Agriculture in India. Entomological Series.6:137167.
    [45] Goto R, Okamoto T, Toby K E, et al.2010. Selective flower abortion maintains mothcooperation in a newly discovered pollination mutualism. Ecology letters.13(3):321329.
    [46] Grimes L R, Neunzig H H.1986a. Morphological survey of the Maxillae in last stagelarvae of the suborder Ditrysia (Lepidoptera): Palpi. Ann Entomol Soc Amer.79:489509.
    [47] Grimes L R, Neunzig H H.1986b. Morphological survey of the Maxillae in last stagelarvae of the suborder Ditrysia (Lepidoptera): Mesal Lobes (Laciniogaleae). Ann EntomolSoc Amer.79:510526.
    [48] Govaerts R, Frodin R G,2000. Radcliffe-Smith A. World checklist and bibliography ofEuphorbiaceae. Royal Botanic Gardens, Kew, London.
    [49] Hata H, Kato M.2006. A novel obligate cultivation mutualism between damselfish andPolysiphonia algae Biol. Lett.2:593596.
    [50] Herre E A, Knowlton N, Mueller U G, et al.1999. The evolution of mutualisms: exploringthe paths between conflict and cooperation. Tree.14(2):4953.
    [51] Herrera C M, Pellmyr O.2002. Plant-animal interactions: An evolutionary approach. UK:Blackwell Publishing, Oxford,314pp.
    [52] Heil M, McKey M.2003. Protective ant-plant interactions as model systems in ecologicaland evolutionary research. Ann. Rev. Ecol. Evol. Syst.34:425453.
    [53] Heinrich C.1916. On the taxonomic value of some larval characters in the Lepidoptera. ProEntomol Soc. l8:154164.
    [54] Hinton H E.1946. On the homology and nomenclature of the setae of Lepidoptea larvae,with some notes on the phylogeny of the Lepidoptera. Trans Roy Entomol Soc Lond.97:137.
    [55] Hu B B, Wang S X, Zhang J, et al.2011. Taxonomy and biology of two seed-parasiticgracillariid moths (Lepidoptera, Gracillariidae), with description of a new species.ZooKeys.83:4356
    [56] Janzen D H.1980. When is it coevolution. Evolution.34(3):611612.
    [57] Kathriarachchi H, Samuel R, Hoffmann P, Mlinarec J, Wurdack K J, Ralimanana H,Stuessy T E, Chase M W.2006. Phylogenetics of the tribe Phyllantheae (Phyllanthaceae;Euphoriaceae sensu lato) based on nrITS and plastid matK DNA sequence data. AmericanJournal of Botany.93(4):637655.
    [58] Kato M, Takimura A, Kawakita A.2003. An obligate pollination mutualism and reciprocaldiversification in the tree genus Glochidion (Euphorbiaceae). Proceedings of the NationalAcademy of Science,100:52645267.
    [59] Kawakita A.2007. Origin and evolution of obligate pollination mutualism in thePhyllanthaceae——Epicephala association.[Doctoral thesis]. Japan, Sakyo, Kyoto: KyotoUniversity,
    [60] Kawakita A.2010. Evolution of obligate pollination mutualism in the tribe Phyllantheae(Phyllanthaceae). Plant Species Biology.25:319.
    [61] Kawakita A, Kato M.2004a. Evolution of obligate pollination mutualism in NewCaledonian Phyllanthus (Euphorbiaceae). American Journal of Botany.91(3):410415.
    [62] Kawakita A, Kato M.2004b. Obligate pollination mutualism in Breynia (Phyllanthaceae):further documentation of pollination mutualism involving Epicephala moth (Gracillariidae).American Journal of Botany.91(9):13191325.
    [63] Kawakita A, Kato M.2006. Assessment of the diversity and species specificity of themutualistic association between Epicephala moths and Glochidion trees. MolecularEcology.15:35673581.
    [64] Kawakita A, Kato M.2009. Repeated independent evolution of obligate pollinationmutualism in the Phyllantheae——Epicephala association. Proceedings of the Royalsociety B.276:417426.
    [65] Kawakita A, Okamoto T, Goto R, Kato M.2010. Mutualism favours higher host specificitythan does antagonism in plant——herbivore interaction. Proceedings of the Royal societyB.110.
    [66] Kuznetzov V I.1979. A review of the genera of Gracillariidae (Lepidoptera) of thePalaearctic fauna. Entomological Review.58:835856.
    [67] Li B T, Qiu H X, Ma J S, et al.2008. Euphorbiaceae. Flora of China. Vol.11(Oxalidaceaethrough Aceraceae). USA: Science Press and Missouri Botanical Garden Press,177190,193209,207209.
    [68] Machado C A, Robbins N, Gilbert M T P, et al.2005. Critical review of host specificityand its coevolutionary implications in the fig/fig wasp mutualism. Proceedings of theNational Academy of Sciences,102(suppl.1):65586565.
    [70] Meyrick E.1880. Descriptions of Australian Mico-Lepidoptera III, Tineina. Proceedings ofthe Linnean Society of New South Wales,5(1):132182.
    [71] Meyrick E.1935. Exotic Microlepidoptera.4(19):577608.
    [72] Mueller U G, Schultz T R, Currie C R, et al.2001. The origin of the attine ant——fungusmutualism. The Quarterly Review of Biology.76:169197.
    [73] Okamoto T, Kawakita A, Kato M.2007. Interspecific variation of floral scent compositionin Glochidion and its association with host-specific pollinating seed parasite (Epicephala). J.Chem. Ecol.33:10651081.
    [74] Park D S, Suh S-J, Oh H W, Hebert P DN.2010. Recovery of the mitochondrial COIbarcode region in diverse Hexapoda through tRNA-based primes. BMC genomics.11:423.
    [75] Pellmyr O.1999. Systematic revision of the yucca moths in the Tegeticula yuccasellacomplex (Lepidoptera: Prodoxidae) north of Mexico. Systematic Entomology.24:243271.
    [76] Pellmyr O.2003. Yuccas, yucca moths, and coevolution: a review. Annals of the MissouriBotanical Garden.90:3555.
    [77] Pellmyr O, Huth C J.1994. Evolutionary stability of mutualism between yuccas and yuccamoths. Nature.372:257260.
    [78] Pellmyr O, Leebens Mack J, Huth C J.1996. Non-mutualistic yucca moths and theirevolutionary consequences. Nature.380:155156.
    [79] Pellmyr O, Leebens Mack J.1999. Forty million years of mutualism: Evidence for Eoceneorigin of the yuoca——yucca moth association. Proc. Natl. Acad. Sci.96:91789183.
    [80] Pellmyr O, Segraves K A.2003. Pollinator divergence within an obligate pollinationmutualism: two yucca moth species (Lepidoptera; Prodoxidae: Tegeticula) on the Joshuatree (Yucca brevifolia; Agavaceae). Ann. Entomol. Soc. Am.96:716722.
    [81] Quek S P, Davies T I, Pierce N E.2004. Codiversification in an ant-plant mutualism: stemtexture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae)inhabitants of Macaranga (Euphorbiaceae). Evolution.58:554570.
    [82] Ramírez W B.1974. Coevolution of Ficus and Agaonidae. Ann. Missouri Bot. Gard.61:770780.
    [83] Riley C V.1892. The yucca moth and yucca pollination. Annu. Rep. Mo. Bot. Garden.32:99159.
    [84] Sachs J L, Mueller U G, Wilcox T P, et al.2004. The evolution of cooperation. TheQuarterly Review Biology.79:135160.
    [85] Samuel R, Kathriarachchi H, Hoffmann P, Barfuss M H, Wurdack K J, Davis C C, Chase MW.2005. Molecular phylogenetics of Phyllanthaceae: evidence from plastid MATK andnuclear PHYC sequences. American Journal of Botany.92(1):132141.
    [86] Shapiro J M, Addicott J F.2003. Regulation of moth——yucca mutualisms: mortality ofeggs in oviposition induced ‘damage zones’. Ecol. Lett.,6:440447.
    [87] Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P.1994. Evolution, weighting andphylogenetic utility of mitochondrial gene sequences and a compilation of conservedpolymerase chain reaction “primers”. Ann. Entomol. Soc. Am.87:651701.
    [88] Stainton H T.1859. Description of twenty-five species of Indian Micro-Lepidoptera.Transactions of the Entomological Society of London (new series).5(3):111126.
    [89] Svensson G P, Okamoto T, Kawakita A, et al.2010. Chemical ecology of obligatepollination mutualisms: testing the ‘private channel’ hypothesis in theBreynia——Epicephala association. New Phytologist.186:9951004.
    [90] Swofford D L.2005. PAUP*: Phylogenetic analysis using parsimony (*and other methods),version4.0b10. Sinauer Sunderland Massachusetts, USA.
    [91] Thompson J N.1994. The coevolutionary process. University of Chicago Press, Chicago,Illinois, USA,
    [92] Thompson J N.1999. Specific hypotheses on the geographic mosaic of coevolution. Am.Nat.153:114.
    [93] Vargas H A, Landry B.2005. A new genus and species of Gracillariidae (Lepidoptera)feeding on flowers of Acacia macracantha Willd.(Mimosaceae) in Chile. ActaEntomologica Chilena.29:4757.
    [94] Weiblen G D.2002. How to be a fig wasp. Annu. Rev. Entomol.47:299330.
    [95] Wiebes J T.1979. Co-evolution of figs and their insect pollinators. Annual Review Ecologyand Systematics.10:112.
    [96] Zhang J, Hu B B, Wang S X, Li H H.2012. Six new species of the genus EpicephalaMeyrick,1880(Lepidoptera: Gracillariidae) associated with Euphorbiaceae plants. Zootaxa.3275:43-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700