用户名: 密码: 验证码:
人工湿地深度处理污水处理厂二级出水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会和经济的发展,人们对环境尤其水环境的要求越来越高。当前水环境污染是我国面临的最主要环境问题。为应对水环境污染,近二十年来,国家和地方政府投资兴建了大量的污水处理厂,这些污水处理厂的运行,对于改善我国的水环境状况起到非常大的作用。但是,由于很多早期建设的污水处理厂采用二级生物处理,其处理出水无法满足新排放标准中对氮磷指标的要求,而氮磷是造成水体富营养化的主要原因。为保证水厂出水指标符合新排放标准要求,就必须对工艺较老的污水处理厂进行工艺改造。改造方式一般为在二级生物处理后增加深度处理单元。人工湿地作为一种新型生态处理方式,具有管理简单,运行费用低,实用性强的特点,研究人工湿地作为城市污水处理厂深度处理单元具有非常重要的意义。
     本课题通过对湿地基质,植物及运行方式进行试验研究,针对水中COD、 NH4+-N、NO-2-N、NO-3-N、TP等指标,考察人工湿地处理污水处理厂二级出水的实际效果。试验期间,在山东建筑大学污水处理站建设人工湿地中试现场,作为原污水处理站的深度处理单元,处理二级出水。经测定,原有工艺二级出水COD值为88.5-103.5mg/L、NH4+-N值为14.8-20.2mg/L、TP值为1.71-3.06mg/L这几项指标均高于《城镇污水处理厂污染物排放标准》(GB18918----2002)一级A的要求。建设后的人工湿地从2010年初开始运行至2012年年底,通过三年的连续运行,取得较好的处理效果,出水指标中COD值小于50mg/L、NH4+-N值小于5mg/L、TP值小于0.5mg/L均优于一级A的排放标准要求。在课题研究期间,取得如下结果:
     (1)优选了构建人工湿地的基质,揭示了其吸附机制。通过对磷的吸附、解吸试验以及性能测试,发现页岩陶粒具有对磷的吸附性能较好,其对磷的解吸率较低,机械强度较高,破损率低,比表面积大等特点,因此选择页岩陶粒作为人工湿地的基质,对页岩陶粒进行扫描电镜及能谱分析,阐述了页岩陶粒的物理特性和化学特性,证明了页岩陶粒对磷的吸附能力强与其表面微孔结构及含有的金属元素有关;
     (2)优选了构建人工湿地的植物,揭示了常见湿地植物根际微生物的分布规律。在山东省南四湖大型湿地选择五种最常见的植物芦苇、芦竹、香蒲、三棱草、蓑衣草,采用变性梯度凝胶电泳法(DGGE)分析五种植物根际所含微生物及其与周围环境之间的关系,试验结果显示,五种植物根际土壤所含微生物数量多少关系为芦竹>芦苇>香蒲>三棱草>蓑衣草;利用Quantity One软件对DGGE图谱进行进化树分析,发现芦苇、香蒲、芦竹三种植物的根际土壤所含微生物亲缘性比较接近,且其根际微生物已具有明显的脱氮、除磷功能。通过试验结果,选择上述前三种植物作为本研究的人工湿地的种植植物;
     (3)通过实验室模拟人工湿地试验,初步确定了水力停留时间(HRT)和溶解氧(DO)对湿地处理效果的影响,初步研究了溶解氧浓度对氨氮去除的影响规律。结果显示,当HRT为5天时,其COD的去除率分别比HRT为1天、2天时高41.2%和20.1%,当HRT为7.5天时,其COD去除率仅比5天时增加5.2%;当HRT=5天时,TP去除率分别比HRT为1天、2天时高38.2%和18.1%,当HRT为7.5天时,其TP去除率仅比5天时增加4.3%;氨氮去除率也呈现相近关系,综合考虑进水负荷及运行效率,初步确定HRT为5天,处理效率较高;
     (4)试验考察了DO浓度对NH4+-N去除率的影响,发现在不同DO浓度下,NH4+-N的转化规律。当DO浓度较低(低于1.5mg/L)时,NH4+-N的去除是因为除了基质吸附的原因外,大部分NH4+-N转化为NO2-N,亚硝酸盐累积率达到70%以上,证明湿地池体内存在着明显的短程硝化过程,当DO浓度大于1.5mg/L时,NH4+-N大部分转化为NO3-N,亚硝酸盐累积率降到40%以下,NH4+-N的去除主要是硝化作用;
     (5)研究了陶粒表面生物膜生物量生长规律,阐明了该陶粒高吸附性能的原因。试验结果表明,陶粒表面生物量与DO浓度有很好的相关关系,生物膜与页岩陶粒之间具有很强的吸附作用,根据能谱分析,陶粒表面具有丰富的金属离子,生物膜中的蛋白和腐殖酸等物质易于和Ca、Mg等二价离子结合,而多糖易于和K、Na等低价离子结合形成聚体,因此具有很强的吸附性能,这种强吸附特性对于减缓由于生物膜脱落而造成湿地堵塞有很大作用;
     (6)考察了人工湿地种植三种植物芦苇、芦竹和香蒲对氮磷的吸收能力以及植物不同部位氮磷含量,试验结果显示,芦竹对氮磷的吸收能力最强,但三种植物吸收能力无显著差别;通过对植物不同部位氮磷含量分析,发现N含量遵循着叶>根>茎的规律;而P在不同组织中含量依次为根>叶>茎;植物中氮的含量(7.17-37.14mg/g)要明显高于磷的含量(2.28-5.28mg/g),试验结果还显示芦苇根系的输氧能力最强;
     (7)考察了人工湿地中试现场长期运行过程中物质的积累情况,通过测定池体内水力渗透系数及总固体和挥发性固体,长期运行后,水力渗透系数下降14.7%,池体前部总固体累积为4.72kg/m2,后部为4.19kg/m2。证明所构建的人工湿地在长期运行后没有发生明显堵塞现象,前部的物质积累要高于中后部,多数的悬浮物质在湿地池体的前部去除。进一步验证了轮休是延缓湿地堵塞的有效方式。结合人工湿地运行出水主要污染物指标情况,得出结论:采用人工湿地作为污水处理厂的深度处理单元,在运行三年后,仍然具有很好的处理效率,从2010年初运行至2012年底,在每年4月至10月的运行中,出水COD、NH4+-N、TP等指标均优于《城镇污水处理厂污染物排放标准》(GB18918----2002)一级A的要求。并且没有发生明显的堵塞现象。证明采用人工湿地作为污水处理厂深度处理单元是可行的。
With the development of society and economy, the demand of environment becomes higher and higher, especially to water environment. In current, the water pollution is the most important issue to our country. To solve these environmental issues, a lot of wastewater treatment plants has been built in recent twenty years, the running of these plants have important role in improving water environment of our country. But, the effluent of these plants is not accorded with the demand of nitrogen and phosphorus because of using second treatment. The nitrogen and phosphorus can cause the eutrophication of water body. For guaranteeing the demand of nitrogen and phosphorus, the third treatment unit must be built after the second treatment unit. The easy management, low cost of running and powerful practicability are the characteristics of constructed wetland, It is very meaningful to research the constructed wetland as the third treatment unit.
     The article studies the treatment of effluent of constructed wetland on COD, NH4+-N, NO-2N, NO-3-N, TP by the experiment research of substrate, plant, and running style. The constructed wetland was built in wastewater treatment station of Shandong Jianzhu University as advanced treatement unit. The COD, NH4+-N, TP of raw second outlet was88.5-103.5mg/L,14.8-20.2mg/L,1.7-3.06mg/L respectively. The constructed wetland has run from2009to2012, the better effect of treatment has been gained by three years'running. The COD, NH4+-N, TP of raw advanced outlet was better than(GB18918----2002) first grade A.Some results have been acquired in research.
     1. To select the substrates. By the experiments of absorption and desorption, the shale ceramsite has been selected as substrate. The physical and chemical characteristics of ceramsite have been gained by SEM and energy spectrum analysis. The strong ability of adsorption to phosphorus about shale ceramsite is relation to its structure of micropore and the metal elements in itself.
     2. To select the plants. The Phragmites australis, Arundo donax L., Typhal atifolia L. convexutricle sedge herb and sedge have been selected from Nansi lake. The rhizospheric microorganisms and their relationship between the envi-ronment have been analysed by DGGE. The results show:the number of rhiz-ospheric microorganisms is Arundo donax L more than Phragmites australis m-ore than yphalatifolia L. more than convexutricle sedge herb more than sedge. By software of Quantity One and atlas of DGGE. The Affinity of Phragmites australis, Arundo donax L. and Typhalatifolia L.is closer, the rhizospheric micr-oorganisms has function of nitrogen and phosphorus removal, so, the three plan ts have been selected in constructed wetland.
     3. By simulate the experiment of constructed wetland in laboratory. The affect to HRT and DO has been analysed. When the HRT is5days, the removal rate of COD is respective41.2%and20.1%more than the removal rate about HRT is1day and2days. When the HRT is7.5days, the removal rate of COD is only5.2%more than the removal rate of HRT is5days. So, the HRT of5days is selected.
     4. The effect of DO to the removal rate of NH4+-N has been researched, when the DO lower than1.5mg/L, the NH4+-N transforms to NO_2-N, the partial nitrification is existed, when the DO higher than1.5mg/L, the NH4+-N transforms to NO-3-N, nitrification has important role in this condition.
     5. By the research of biomass about surface of ceramsite, the biomass is very good correlativity between DO. These have strong adsorption between biofilm and ceramsite. By energy spectrum analysis, there are lot of metal ions on surface of ceramsite, the protein and humic acid are easily combined with high valence ion, polysaccharide is easily combined with low valence ion. In this condition, the biofilm do not fall off easily.
     6. Three plants have been planted in sit, Phragmites australis, Arundo donax L. and Typhalatifolia L, the adsorption of nitrogen and phosphorus has been researched, the adsorption to nitrogen and phosphorus of Phragmites australis is best, but, there are not obvious difference between them. By analyzing the content of nitrogen and phosphorus in different parts of the plant, the rules are concluded that the content of nitrogen in leaf is more than in stem, and more than in root, the content of phosphorus in root is more than in leaf, and more than in stem.
     7.By running in site for long time, the accumulation of material in wetland has been studied, the TS, VS and hydraulic conductivity has been tested the conclusions were confirmed that the accumulation of material in front part is higher than in middle and end part, most SS has been removed in front part of the wetland. Energy dispersive spectrum (EDS) about accumulated material on surface of ceramsite was analyzed, some conclusions were found that the component of accumulated material was similar to he component of ceramsite, this conclusion illustrated that the accumulated material was composed by broken body from ceramsite. By researching about accumulation of material on surface of ceramsite in long time running about constructed wetland, one conclusion was found that the constructed wetland has good efficiency after three years'running, the blocking has not been happened when it was used as third treatment in wastewater treatment plant, the pilot was built in Shandong Jianzhu University, the wetland has been run from2010to2012, from April to November ever year, the COD、NH4+-N、TP of effluent were accorded with the demand of(GB18918----2002) first grade A.
引文
[1]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志.2002,21(4):51-59.
    [2]顾传辉.人工湿地处理系统概述[J].中山大学研究生学刊(自然科学版),2001,22(2):34-41.
    [3]张兵之,吴振斌,徐光来.人工湿地的发展概况和面临的问题[J].环境科学与技术,2003,26:87-90.
    [4]Murray-Gulde C, Heatley J E, Karanfil T, et al. Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field Produced water [J]. Water Research,2003,37(3):705-713.
    [5]U.S.EPA. Design Guiding Principles for constructed treatment wetlands: Providing water quality and wild life habitat, EPA843/B-00/003, U.S. EPA office of wetlands, oceans, and watersheds:Washington, DC.2002.
    [6]吴献花,侯长定,王林等.人工湿地处理污水的机理[J].玉溪师范学院学报,2002,18(1):209-223.
    [7]梁继东,周启星,人工湿地污水处理系统研究及性能改进分析[J].中国给水排水,2003,22(2):49-55.
    [8]梁威,胡洪营,人工湿地净化污水过程中的生物作用[J].生态学杂志,2003,22(2):28-31.
    [9]Kadlec R. H., Tanner C. C., Hally V. M., et al. Nitrogen spiraling in subsurface-flow constructed wetlands:implications for treatment response [J]. Ecological Engineering,2005,25:365-381.
    [10]Maine, M. A. et al., Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland, Journal of Environmental Management (2007), doi:10.1016/j.jenvman.2007.10.004
    [11]孙铁珩.污染生态学.北京:科学出版社,2001,323.
    [12]成水平,吴振斌,况琪军.人工湿地植物研究[J].湖泊科学,2002,14(2): 179-184.
    [13]Vymazal J. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic:10 years experience [J]. Ecological Engineering,2002,18(5):633-646.
    [14]朱斌,陈飞星.利用水生植物净化富营养化水体的研究进展[J].上海环境科学,2002,21(9):564-567.
    [15]Brix H. Functions of macrophytes in constructed wetland [J]. Water Science and Technology,1994,29(4):71-78
    [16]贺锋,吴振斌.水生植物在污水处理和水质改善中的应用[J].植物学通报,2003,20(6):641-647.
    [17]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002,21(4):51-59.
    [18]Dorthe N. J., Brian K. S, Hans B. Growth and root oxygen re-lease byTypha latifolia and its effects on sediment methano-genesis[J]. Aquatic Botany,1998, 61:165-180.
    [19]Brix H. Use constructed wetland in water pollution control:historical development, present status, and future perspectives[J].Water Science and Technology,1994,30(8):209-223.
    [20]张虎成,田卫,俞穆清等.人工湿地生态系统污水净化研究进展[J].环境污染治理技术与设备,2004,5(2):11-15.
    [21]籍国东,孙铁晰,常士俊等.人工潜流湿地处理稠油采出水的实验研究[J].环境科学学报,2001,21(5):619-621.
    [22]梁威,吴振斌.人工湿地对污水中氮磷的去除机制研究进展[J].环境科学动态,2000,3:32-37.
    [23]Tanner C, C. Plants as a ecosystem engineers in subsurface-flow treatment wetlands [J]. Water Science Technology,2001,44(11-12):9-17.
    [24]Drizo A., Frost C. A., Grace J. et al. PhosPhate and anunonium distribution in a Pilot-scale constructed wetland with horizontal subsurface flow using shale as a substrate [J].Water Research,2000,34(9):248-249.
    [25]DrizoA. Physieo-chemical screening of Phosphate-removing substrates for use in constructed wetland [J]. Environmental Science&Poliey,2004,7:329-343.
    [26]Brooks A. S. Phosphorus removal by wollastonite:A constructed wetland [J]. Ecological Engineering,2000,15(1-2):121-123.
    [27]Rozic M., cerjan-stefanovic S. Amonical nitrogen removal from water by treatment with clays and zeolites [J]. Water Research,2000,34(14): 3675-3681.
    [28]温东辉,唐孝炎,马倩如.天然沸石按吸附容量的研究[J].环境科学研究,2003,16(2):31-34.
    [29]叶建锋,徐祖信,李怀正.垂直潜流人工湿地堵塞机制:堵塞成因及堵塞物积累规律[J]环境科学,2008,6:1508-1512.
    [30]Davison L., Headley T., Pratt K. Aspects of design, structure, performance and operation of reed beds-eight years experience in north eastern New South Wales, Australia [J]. Water Science Technology,2005,51(10):129-138.
    [31]Brix H., Arias C. A. The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater-New Danish guidelines [J]. Ecological Engineering,2005,25(5):491-500.
    [32]Winter K. J., Goetz D. The impact of sewage composition on the soil clogging phenomena of vertical flow constructed wetlands [J]. Water Science Technology,2003,48(5):9-14.
    [33]Spychala M., Blazejewski R. Sand filter clogging by septic tank effluent [J]. Water Science Technology,2003,48(11-2):153-159.
    [34]Langergraber G., haberl R., Laber J.et al. Evaluation of sub-strate clogging processes in vertical flow constructed wetlands [J]. Water Science Technology, 2003,48(5):25-34.
    [35]Kuschk P., Wiebner A., Kappelmeyer U. et al. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate [J]. Water Research,2003,37(17):4236-4242.
    [36]项学敏,宋春霞,李彦生等.湿地植物芦苇和香蒲根际微生物特性研究[J].环境保护科学,2004,30(124):35-38.
    [37]Vymazal J. Removal of nutrients in various types of constructed wetlands [J]. Science of the Total Environment,2007,380 (1-3):48-65.
    [38]Kangas P. C. Ecological Engineering Principles and Practice [M]. Boca Raton F L:Lewis Publishers.2004.
    [39]Rivera, R. et al. The application of the root zone method for the treatment and reuse of high strength abattoir waste in Mexico [J]. Water Science and Technology,1997,35(5):271-278.
    [40]Sun, G et al. Treatment of agricultural wastewater in a combined tidal flow down flow reed bed system [J]. Water Science and Technology,1999,40(3) 139-146.
    [41]Laber, J. Constructed wetland system for storm water treatment [J]. Journal of Environmental Science and Health,2000,35:1279-1288.
    [42]Baehand, P. A. M., Home, A.J. Denitrification in constructed free-water surface wetland [J]. Ecological Engineering,2000,14:9-32.
    [43]Brix H. Do macrophytes play a role in constructed treatment wetlands? [J].Water Science and Technology,1997,35(35):11-17.
    [44]Reddy K.R.O, Connor G. A., Gale P. M. PhosPhorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent [J]. Journal of Environmental Quality.1998,27:438-447.
    [45]袁东海,景丽洁,高士祥等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学学报,2005,26(1):51-55.
    [46]Jay S. W., Suzanne E. B., Curtis P. J. Sediment storage of phosphorus in a northen Prairie wetlands receiving municipal land agro- industrial wastewater [J]. Ecological Engineering,2000,14(1):127-138
    [47]张君,王成端,付海霞等.竹条基质在稳定表流湿地中的试验研究[J].水处理技术,2011,1:73-75.
    [48]谢云成,煤矸石-粉煤灰基质人工湿地技术处理矿井水模拟研究[J].安徽农业科学,2011,39(14):8545-8547.
    [49]高红杰,彭剑峰,宋永会等.钱饱和天然钙型沸石基质人工湿地对模拟养猪废水的处理效能[J].环境保护科学,2010,36(6):14-17.
    [50]翟由涛,改性高岭土对水中磷的吸附行为研究[J].安徽农业科学,2010,38(28):15784-15785.
    [51]王俊岭,吴俊奇,龙莹洁等.活性氧化铝和其他滤料除微量磷效果比较[J].环境工程学报,2007,1(10):18-22.
    [52]Winter K. J., Goetz D. The impact of sewage composition on the soil clogging phenomena of vertical flow constructed wetlands [J]. Water Science and Technology,2003,48(5):9-14.
    [53]Nguyen M. L. Organic matter composition, microbial biomass and microbial activity in gravel -bed constructed wetlands treating farm dairy wastewaters [J]. Ecological Engineering,2000,16:199-221.
    [54]张建,邵长飞,黄霞等.污水土地处理工艺中的土壤堵塞问题[J].中国给水排水,2003,19(3):17-20.
    [55]Philippe Baveye, Philippe Vandevivere, Blythe L Hoyle, et al. Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials [J]. Critical Reviews in Environmental Science and Technology,1998,28(2):123-191.
    [56]K J Winter, D Goetz. The impact of sewage composition on the soil clogging phenomena of vertical flow constructed wetlands [J]. Water Science and Technology,2003,48(5):9-14.
    [57]崔理华,楼倩,周显宏等.两种复合人工湿地系统对东莞运河污水的净化效果[J].生态环境学报,2009,18(5):1688-1692.
    [58]Katsutoshi Seki, Tsuyoshi Miyazaki. A mathematical model for biological clogging of uniform porous media [J]. Water Resouce Research,2001,37: 2995-2999.
    [59]Langergraber G., haberl R., Laber J. et al. Evaluation of substrate clogging processes in vertical flow constructed wetlands [J]. Water Science and Technology,2003,48(5):25-34.
    [60]简放凌.高浓度工业废水有机物在土壤中的动态变化及其预测研究[J],农业环境保护,1995,14(20):72-74.
    [61]中华人民共和国环境保护部,中华人民共和国国家统计局,中国环境统计年鉴2011,2011.11.
    [62]Ji G. D., Sun T. H., Zhou Q.X. et al. Constructed subsurface flow wetland for treating heavy oil-produced water of the Liaohe oil-field in China. Ecological Engineering,2002,18:459-465.
    [63]Drizo A., Forst C. A., Grace J. et al. Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems [J]. Water Research,1999,33(17):3595-3602
    [64]Chi Yuan L., Chun Chih L., Fang Yin L. et al. Performance of subsurface flow constructed wetland taking pretreated swine effluent under heavy loads [J]. Bioresource Technology,2004,92:173-179.
    [65]Nicola J. C. Field studies of enhanced phosphorus removal from constructed wetland effluents [J]. Kingston, Ontario, Canada,2002.
    [66]Zhu T., Jenssen P. D., Maehlum T. et al. Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA)-potential filter media in treatment wetlands[J]. Water Science and Technology,1997,35(5):103-108
    [67]Robertson W. D., Harman J. Phosphate plume persistence at two decommissioned septic system sites [J]. Groundwater,1999,37(2):228-235.
    [68]国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第4版)[M].中国环境科学出版社,2002:246.
    [69]Brattebo H. Phosphorus removal by granular activated alumina. Water Research,1986,20(8):977-986.
    [70]杨长明,顾国泉,邓欢欢等.风车草和香蒲人工湿地对养殖水体磷的去除作用[J].中国环境科学,2008,28(5):471-475.
    [71]Yoshida S., Forno D. A., Cock J. H. et al. Laboratory manual for physiological studies of rice [M].3rd edition. Manila, Philippines: IRRI.1976.61-64.
    [72]Tanner C. C. Plants as ecosystem engineers in subsurface-flow treatment wetlands [J]. Water Science and Technology,2001,44(11-12):9-17.
    [73]何连生,刘鸿亮,席北斗等.人工湿地氮转化与氧关系研究[J].环境科学,2006(27):1084-1087.
    [74]Balmelle B., Nguyen M., Capdeville B. et al. Study of factors controlling nitrite build2up in biological processes for water nitrification [J]. Water Science Technology,1992,26(5-6):1017-1025.
    [75]Ciudad G, Rubilar O., Munoz P. et al. Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process [J]. Process Biochemistry,2005,40:1715-1719.
    [76]Baker L. A. Design Considerations and Applications for Wetland Treatment of High-Nitrate Waters [J]. Water Science,1998,38(1):389-395.
    [77]McJannet C. L., Keddy P. A., Pick F. R. Nitrogen and phosphorus tissue concentration in 41 wetland plants:A comparison across habitats and functional groups [J]. Function Ecology,1995,9:231-238.
    [78]刘春常.几种植物在生长过程中对人工湿地污水处理效果的影响[J].生态环境,2007,16(3):860-865.
    [79]凌云,丁浩,徐亚同.芦苇人工湿地根际微生物效应研究[J].农业系统科学与综合研究,2008,24(2):214-216.
    [80]Muyzer G., Uitterlinden A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology,1993,59(3):695-700.
    [81]Casamayor E. O., Schauer H., Baneras L. et al. Identification of and spatiotemporal differences between microbial assemblages from two neighboring sulfurous lakes:comparison by microscopy and denaturing gradient gel electrophoresis [J]. Applied and Environmental Microbiology, 2000,66 (2):499-508.
    [82]Schauer M., Massana R. Spatial differences bacterioplankton composition along Catalan coast (NW Mediterranean) assessed by molecular fingerprinting [J]. FEMS Microbiology Ecology,2000,33(1):51-59.
    [83]邢薇,左剑恶,孙寓姣等.利用FISH和DGGE对产甲烷颗粒污泥中微生物种群的研究[J].环境科学,2006,27(11):2268-2272.
    [84]赵兴青,杨柳燕,陈灿等PCR-DGGE技术用于湖泊沉积物中微生物群落机构多样性研究[J].生态学报,2006,26(11):3610-3616.
    [85]Jacobsen C. S., Rasmussen O. F. Development and Application of a New Method to Extract Bacterial DNA from Soil Based on Separation of Bacteria from Soil with Cation exchange Resin [J]. Applied and Environmental Microbiology,1992,74:2458-2462.
    [86]Xia X., Bollinger J., Ogram A. Molecular Genetic Analysis of the Response of Three Soil Microbial Communities [J]. Application of Molecular Ecology, 1995,4:17-28.
    [87]Muyzer G., Uitterlinden A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology,1993,59(3):695-700.
    [88]谢曙光,张晓建,王占生.曝气生物滤池的低温挂膜研究[J].中国给水排水,2003,19(13):58-59.
    [89]Schauer M., Massana R. Spatial differences bacterioplankton composition along Catalan coast (NW Mediterranean) assessed by molecular fingerprinting [J]. FEMS Microbiology Ecology,2000,33(1):51-59.
    [90]Kuba T., Van Loosdrecht M.C.M. et al. Phosphorus and Nitrogen Removal with Minimal COD Requirement by Integration of Nitrification in Two-sludge system[J]. Water Research,1996,42(1-2):1702-1710
    [91]Kuba T., Van Loosdrecht. M.C.M., Brandse F. A.et al. Occurrence of Denitrifying Phosphorus Removal Bacteria inModified UCT Type Wastewater Treatment Plants [J]. Water Research,1997,31(41):777-786.
    [92]Gerber A., Villiers R.H., Mostert E.S., Riet C.J.J. The Phenomenon of Simultaneous Phosphorous Uptake and Release and its Importance in Biological Nutrient Removal in:Biological Phosphate Removal from Wastewaters [J]. Pergamon Press, Oxford.1987:123-134.
    [93]Wachtmeister A., Kuba T., Van Loosdrecht M.C.M. et al. A Sludge Characterization Assay for Aerobic and Denitrifying Phosphrous Removing Sludge [J]. Water Research,1997,31(3):471-478.
    [94]Tanita S., Kimberly A.G. Factors affecting denitrification rates in experimental wetlands:Field and laboratory studies [J]. Ecological Engineering,2006,26: 167-181.
    [95]Verhoeven J. T. A., Meuleman A. F. M. Wetlands for wastewater treatment: Opportunities and limitations [J]. Ecological Engineering,1999,12:5-12.
    [96]Bortone G., Marsili Libeli S., Tilche A. et al. Anoxic Phosphate Uptake in the Dephanox Process [J]. Water Science and Technology,1999,40(4-5):177-183.
    [97]Johwan Ahn, Tomotaka Daidou, Satoshi Tsuneda, et al. Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gelel ectrophoresis assay[J]. Water Research,2002,36:403-412.
    [98]Hoi-Ping S., Chi-Mei L. Combining anoxic denitrifying ability with aerobic-anoxic phosphorus-removal examinations to screen denitrifying phosphorus-removing bacteria [J]. International Biodeterioration and Biodegradation,2006,57:121-128.
    [99]周群英.环境工程微生物学[M].高等教育出版社,2003.
    [100]叶梁,宋艳茹.生物技术生产生物可降解塑料PHB的研究进展[J].生物技术通报,1998,3:9-16.
    [101]土工试验方法标准(GB/T50123-1999),中国计划出版社,1999.09
    [102]A. Caselles-Osorio J., Puigagut E., Segu N., Vaello, F. Granes D. Garcia J. Garcia. Solid accumulation in six full-scale subsurface flow constructed wetlands [J]. Water Research,2007,41 (6):1388-1389.
    [103]Chazarenc F., Gagnona V., Comeaub Y., Brissona J. Effect of plant and artificial aeration on solids accumulation and biological activities in constructed wetlands [J]. Ecological Engineering,2009,35 (6):1005-1010.
    [104]Lai W. L., Wang S. Q., Peng C. L., Chen Z. H. Root features related to plant growth and nutrient removal of 35 wetland plants [J]. Water Research,2011, 45 (3):3941-3950.
    [105]Roger R. Shell sand:a new filter medium for constructed wetlands and wastewater Treatment [J]. Journal of environmental science and health,2000, 35:1335-1355.
    [106]帖靖玺,郑正,钟云等.潜流-上行垂直流复合人工湿地对氮磷去除效果[J].生态学杂志,2006,25(3):265-269.
    [107]黄娟,王世和,刘洋等.三段式潜流湿地污水净化效果[J].水处理技术,2007,33(3):65-68.
    [108]Zemanova K., Picek T., Dusek J. et al. Carbon Nitrogen and Phosphorus Transformations are Related to Age of a Constructed Wetland[J]. Water Air and Soil Pollution,2010,207 (1-4):39-48.
    [109]余志敏,袁晓燕,崔理华等.复合人工湿地对城市受污染河水的净化效果[J].环境工程学报,2010,4(4):741-745.
    [110]王磊,李文朝,柯凡等.低氧接触氧化/微曝气人工湿地工艺净化污染河水[J].中国给水排水,2008,24(5):22-26.
    [111]徐轶,来永斌,贾轶然等.絮凝沉淀和人工湿地技术在河流污染治理中的应用[J].环境科学与管理,2008,33(6):106-109.
    [112]田景宏,黄柄彬.砂滤人工湿地处理污染河水运行研究[J].水处理技术,2008,34(8):49-54.
    [113]高尚,黄民生,吴林林等.生物净化槽对黑臭河水净化的中试研究[J].中国环境科学,2008,28(5):433-437.
    [114]李捍东,朱健,王平等.曝气/微生物/人工湿地组合工艺处理黑臭河水[J].中国给水排水,2009,25(11):22-24
    [115]何成达,季俊杰,葛丽英.厌氧悬浮床/潜流湿地处理生活污水[J].中国给水排水,2004,20(7):11-15.
    [116]王学华,苏祥,沈耀良.人工湿地组合工艺处理太湖三山岛农村生活污水研究[J].环境科技,2012,25(1):38-41.
    [117]黄晨梅,李迪武,周遗品等.A2/O-人工湿地组合工艺对污水中油类物质的去除研究[J].环境工程,2012,30(3):9-11.
    [118]Sun G. Z., Zhao Y. Q., Allen S. Enhanced removal of organic matter and ammoniacal-nitrogen in a column experiment of tidal flow constructed wetland system [J]. Journal of biotechnology,2005,115(2):189-197.
    [119]Yang Y., Zhao Y. Q., Babatunde A. O., Kearney P. Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge [J]. Water Science Technology,2009,60(12):181-188.
    [120]Zhao X. H., Zhao Y. Q. Investigation of phosphorus desorption from P-saturated alum sludge used as a substrate in constructed wetland [J]. Separation and Purification Technology,2009,66(1):71-75.
    [121]Razali M., Zhao Y. Q., Bruen M. Effectiveness of a drinking- water treatment sludge in removing different phosphorus species from aqueous solution [J]. Pure Technology,2007,55(3):300-306.
    [122]陈永华,吴晓芙,蒋丽鹃.处理生活污水湿地植物的筛选与净化潜力评价[J].环境科学学报,2008,28(8):1549-1553.
    [123]Gottschall N., Boutin C., Crolla A. et al. The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada [J]. EcologicalEngineering,2007,29:154-163.
    [124]Huett D. O., Morris S. G, Smith G. et al. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands [J]. Water Research,2005,39:3259-3272.
    [125]Maurizio B., Michela S. Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms [J]. Ecological Engineering,2012,46: 34-42.
    [126]黄娟,王世和,雒维国等.植物光合特性及其对湿地DO分布、净化效果的影响[J].环境科学学报,2006,26(11):1828-1832.
    [127]Cvitkovitch D. G, Li Y.H., Ellen R. P. Quorum sensing and biofilm formation in streptococcal infections [J]. Climate Investion,2003,112(11):1626-1632.
    [128]Jahn A., Nielsen P. H. Cell biomass and exopolymer compositions in sewer biofilm [J]. Water Science and Technology,1998,37(1):17-24.
    [129]Flemming H. C., Wingender J. Relevance of microbial extracellular polymeric substances (EPSs)-Part 1:structural and ecological aspects [J]. Water Science and Technology,2001,143(6):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700