用户名: 密码: 验证码:
安徽竹类病害种类调查及主要病害发生规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对安徽省竹类病害的种类(包含活立竹和竹材)进行了调查研究;并对主要病害——毛竹基腐病的发生发展规律、竹黑痣病的抗病性机理进行了测定分析,主要研究结果如下:
     1、通过实地调查和实验室以前标本的诊断,发现安徽活竹病害有17种,其中叶部病害7种、枝干病害8种、根部病害2种;竹材病害5种。对病害的分布、病原名称以及竹类病害的危害特点进行了介绍。
     2、在对毛竹基腐病发病规律的研究调查中发现,坡向对基腐病发病率的影响差异显著。东南坡向的基腐病发病率最低,为7.7%;东北向和缓坡的发病率分别高达28.8%和29.0%。
     3、生长在不同坡度条件下的毛竹基腐病发病率是不同的。坡度与毛竹基腐病发病率呈负相关,一元回归的相关系数达到0.9185。坡度最低为0°,发病率最高达29.0%;坡度最高为9°,发病率为7.7%。
     4、土壤容重是土壤肥力的主要指标之一,对毛竹的生长发育有着重要的影响。土壤容重与毛竹基腐病的发病率呈明显的正相关,即随着土壤容重的增加,其发病率也随之升高。通过毛竹基腐病发病率的方差分析表(P=0.0001<0.01)可以看出,几个样地上毛竹基腐病的发病率极显著。
     5、通过土壤孔隙度和毛竹基腐病发病率的一元回归方程可以看出,孔隙度和发病率的关系与容重和发病率的关系相关,呈明显的正相关。相关系数:R2 = 0.9303。
     6、土壤含水量与毛竹基腐病发病率之间没有明显的正相关或负相关关系。当土壤含水量为26.2%时,毛竹基腐病的发病率最低;当含水量小于26.2%时,发病率略升高;当土壤含水量大于26.2%,达到29.4%时,病害的发病率最高。适宜的土壤含水量可以抵御基腐病对毛竹笋的侵染。
     7、土壤持水量为5.960 g时,毛竹基腐病的发病率最低;土壤持水量最高的Ⅴ号样地,基腐病的发病率最高;土壤持水量最低的Ⅲ号样地,基腐病的发病率也高于Ⅰ号样地。适宜的土壤持水量可以使毛竹保持最佳生长状态。
     8、林高、眉径和毛竹基腐病发病率呈负相关。林高最高达13.1m时,毛竹基腐病的发病率最低,为7.7%;林高最低为7.6m时,毛竹基腐病的发病率最高达29.0%。发病率由低到高的毛竹平均眉径分别为9.4cm,8.8cm,8.3cm,7.2cm,6.1cm。抗病率最强的毛竹林眉径接近于抗病率最弱的毛竹眉径的1.5倍。
     9、林分郁闭度和毛竹基腐病总体上呈V型趋势,当林分密度为7.7时,毛竹基腐病的发病率最低;大于或者小于这个数值时,基腐病的发病率都升高。
     10、研究分析毛竹叶片四种酶与发病率的关系可以看出,PAL活性的提高对植物抗病性能力的提高有一定的关系,抗黑痣病的毛竹体内PAL活性明显高于元竹;PPO能够对植物体上产生的病原物造成很大的毒害性,因此抗病的毛竹体内PPO活性大于元竹;通过方差分析比较可以看出,毛竹和元竹体内POD活性差异不显著;由于方差分析表(P=0.035541<0.05),毛竹和元竹体内CAT活性差异显著,毛竹的CAT活性稍高于元竹。
     11、通过高分辨HPLC-DAD-MS分析发现,在阴离子质谱图上,元竹比毛竹多出一个明显的峰值,分析推断该峰值对应的化合物可能为醌类或黄酮类衍生物。元竹易感黑痣病可能就与此物质有关,当元竹感染黑痣病后,植株体内产生的类似于自我保护的抵御物质,防止病原菌的进一步侵染。
The kinds of bamboo diseases in Anhui was investigated, and the law of bamboo foot rot and the mechanism of some disease resistance were analyzed in this paper, Main results are as follows:
     1, There were 17 kinds of live bamboo diseases found in Anhui, of them seven kinds of leaf diseases, eight kinds of branches diseases, two kinds of root diseasea, and five kinds of bamboo wood diseases. In the while, the occurence characteristics of disease was introduced.
     2, Through the investigation of the law of the root rot, the lowest incidence was the southeast slope which is 7.7%; the more incidence rates were in the northeast and the gentle slope which were separatively 28.8% and 29.0%.
     3, The incidence of bamboo foot rot waries with slope, degree of slope was negative with the incidence of bamboo foot rot, and the correlation coefficient of Simple Liner Regression was 0.9185. the highest incidence was 29.0% when the slope is 0°.
     4, Soil bulk density,which has an influence on the growing of bamboo, is one of the main indicator of soil fertility. There is an obviously positive correlation between volume weight of soil and the rate of bamboo foot rot. What’s more, as the soil bulk density increases, the incidence rate will also increase. We can see , from the variance analysis of data of bamboo foot rot(P=0.0001<0.01), the incidence of bamboo foot rot in several plots is significant.
     5, From the unary regression equation of soil porosity and the center of bamboo rot incidence ,we can see that there is a significant positive correlation between the incidence of morbidity and the porosity. Correlation coefficient: R~2 = 0.9303.
     6, Soil moisture has neither significant positive nor negative correlation with the incidence of bamboo foot rot. When the soil water content was 26.2%, the incidence of bamboo foot rot was at the lowest level. When the soil moisture is greater than 26.2%, reaching 29.4%, the incidence rate of disease was the highest. Suitable soil water content can resist rot on the bamboo shoot of infection.
     7, The incidence of bamboo foot rot was in the lowest level when soil water holding capacity was 5.960 g; the incidence of foot rot of sample plotⅤ,where the soil water holding capacity was in the highest level , is the highest ; the incidence of foot rot of the sample plotⅢ,where the soil water holding capacity lowest, was also higher than that of sample plotⅠ. Suitable soil water holding capacity can maintain the optimal growth condition of bamboo.
     8, The height of bamboo and eye-high were in inverse proportion to the incidence of bamboo foot rot. When the height of bamboo is up to 13.1m, the incidence of rot was 7.7%, which was the lowest; when the height of forest is down to 7.6m, the incidence of rot was 29.0%, which was the highest. The average eyebrow diameters, with the incidence rates of the root rot from low to high, were 9.4cm, 8.8cm, 8.3cm, 7.2cm, 6.1cm. while the incidence of foot rot was from low to high. The strongest resistance was nearly 1.5 times as much as the weakest resistance.
     9, There is generally a V-type trend between Canopy density and the incidence of bamboo foot rot. When the stand density was 7.7, the incidence of bamboo foot rot is at the lowest level; when the stand density was greater or less than this value, the incidence of foot rot rate will increase.
     10, Through the research and analysis of the relationship between the four enzymes in bamboo leaves and the incidence of rot, a certain correlation between the increasing of PAL and the increasing of the ability to resist disease could be seen; PPO can produced significant toxicity on the plant pathogen, so the PPO activity in the body of resistance bamboo are larger than that in round bamboo; through the variance analysis of disease incidence, the difference of POD activity was not significant; from the variance analysis table (P = 0.035541 <0.05), we can see that there is a significant difference in the CAT activity in the body of bamboo and round bamboo The CAT activity of bamboo is slightly higher than round bamboo.
     11,Through the high resolution HPLC-DAD-MS analysis, we can see that the round bamboo has one more clear peak than bamboo. The compound may be quinone or flavonoid derivatives. The susceptibility to tar spot disease of round bamboo may be related to this matter. After infected with tar pot disease, the defensive substance that is produced in bamboo can prevent pathogenic bacteria from further infection
引文
[1]崔鸿侠,熊德礼,张维等.不同立地条件对毛竹生长影响研究[J].湖北林业科技, 2007, 149: 8~11.
    [2]邱尔发,洪伟.郑郁善.中国竹子多样性及其利用译述[J].竹子研究汇刊, 2001,20(2): 11~l4.
    [3]赵忠保.毛竹丰产栽培技术[J].安徽农学通报, 2010,16(3): 185~186.
    [4]朱熙樵.竹丛枝病的研究I.症状、病菌分离和接种试验[J].林业科学, 1988, 24 (4): 483~487
    [5]朱熙樵.竹丛枝病的研究Ⅱ.病原菌的形态及其生物学特性[J].竹子研究汇刊, 1989, 8(1): 44~50.
    [6]朱熙樵.关于类菌原体引起竹丛枝病的探讨[J].竹子研究汇刊, 1992, 11(1): 4~9.
    [7]林雪坚,吴光金,徐静辉.水竹丛枝病的研究[J].中南林学院学报, 1987, 7(2): 132~135.
    [8]王华清,陈岭伟等.广东省毛竹丛枝病研究初报[J]. Forest Pest and Disease, 1999,3(8): 22~25.
    [9]吴跃开.园林植物煤污病研究报告[J].贵州林业科技, 2005,33(4): 51~55.
    [10]于福华.淡竹竹秆锈病与防治[J].安徽林业科技, 2002,3: 15.
    [11]姚薇羿,刘素芬等.杨歧山毛竹枯梢病发生规律及综合防治技术[J].江西林业科技, 2001,6: 26~27.
    [12]蒋捷,张文勤.毛竹枯梢病综合防治的研究[J]. EC0NOMIC FOREST RESEARCHES, 2000:7~8.
    [13]何益良.毛竹枯梢病综合防治技术的研究[J].福建林业科技, 1995, 22(3): 59~62.
    [14]吴跃开.园林植物煤污病研究报告[J].贵州林业科技, 2005,33(4): 51~55.
    [15]吴跃开.园林植物煤污病研究报告[J].贵州林业科技, 2005,33(4): 51~55.
    [16]吴跃开.园林植物煤污病研究报告[J].贵州林业科技, 2005,33(4): 51~55.
    [17]俞彩珠,陈继团,张立钦.竹秆锈病防治方法的研究[J].竹子研究汇刊, 1989,8(3): 47~57.
    [18]李昌维,林其瑞,蔡琴等.淡竹竹秆锈病综合防治技术探讨[J].江苏林业科技, 2003,30(1): 39~40.
    [19]张立钦,方志刚,刘振勇.竹秆锈病防治试验及其推广应用[J].竹子研究汇刊, 2000,19(2): 72~75.
    [20]于福华.淡竹竹秆锈病与防治[J].安徽林业科技, 2002,3: 15.
    [21]李昌维,林其瑞等.江苏林业科技[J]. 2002, 30(1):39~40.
    [22]朱谦,高健.皖南毛金竹黑粉病发生与防治[J].安徽林业科, 2007,12:12.
    [23]张素轩,曹越,张宁等.毛竹基腐病发生发展规律的研究[J].林业科学研究, 1997 10(4): 356~359.
    [24]张素轩,章卫民,曹越等.毛竹基腐病病原的研究[J].南京林业大学学报, 1995,19(1):1~6.
    [25]张素轩,曹越等.毛竹基腐病发生发展规律的研究[J].林业科学研究, 1997,10(4): 356~359.
    [26]邵柏君.福建省毛竹主要病害及其治理对策[J]. Forest Pest and Disease, 2001,1: 40~43.
    [27]邵柏君.福建省毛竹主要病害及其治理对策[J]. Forest Pest and Disease, 2001,1: 40~42.
    [28]李传道,周仲铭,鞠国柱.森林病理学通论[M].北京:中国林业出版社, 1984: 51.
    [29]海蒂弗斯主编,朱有红,宋左衡译.植物病理生理学[M].北京:中国农业出版社, 1991: 27.
    [30]周仲铭.林木病理学[M].北京:中国林业出版社, 1987: 84.
    [31] Ostrosky W D, Blanchard R O. Role of periderm in resistance of Eucalyptus marginata roots against Phytophthora cinnamomi [J]. European Journal of Forest Pathology, 1984,14(7): 431~439.
    [32] Tippett J T, Shigo A L. Barrier zone anatomy in red pine roots invaded by Heterobasidium annosum [J]. Canadian Journal of Forest Research, 1980,10(2): 224~232.
    [33] Rioux D, Ouelletle G B. Barrier zone formation in host and nonhost trees inoculated with Opiostoma ulmi, I. Anatomy and biochemistry [J]. Canadian Journal of Botany, 1991,69(9): 2055~2073.
    [34] Elgerma D M. Resistance mechanisms of elms to Ceratocystis ulmi [J]. Foresty Abstracts, Vol, 1969(30): 41~85.
    [35] Elgerma D M. Tylose formation in elms after inoculation with Cetatocystis ulmi [J]. Netherlands Joyrnal of Pathology, 1973,79(5): 218~220.
    [36]王芷.竹类植物代谢合成中的苯丙氨酸解氨酶[J].科技导报, 2009,22: 8.
    [37]李靖.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报, 1991,21(4): 277~283.
    [38]高志民,彭镇华,李雪平等.毛竹苯丙氨酸解氨酶基因的克隆及组织特异性表达分析[J].林业科学研究, 2009,22(3): 449~453.
    [39]张慧君,张建农.甜瓜抗白粉病的生理机制[J].江苏农业学报, 2009,25(5): 1129~1131.
    [40]李荣林,方辉遂.一个世纪以来对多酚氧化酶研究的进展[J].福建茶叶, 1997,(4): 10~14.
    [41]谢春艳,宾金华,陈兆平.多酚氧化酶及其生理功能[J].生物学通报1999,34(6): 11~13.
    [42] Steffens J C, Hare, and Hunt M D. Polyphenol oxidase. Geneitc Engineering of Plant Secondary Metabolism. 1994, 275~312.
    [43]徐东生,孟志卿,月季抗黑斑病机理研究[J].安徽农业科学, 2007, 35(27): 8532~8533.
    [44] Raa J. Cytochemical localization of peroxidase in plant cells [J]. Physiol. Plant, 1973,28: 132~133.
    [45] Parish R W. The Intracellular Location of Phenol Oxidase in Stem of Spinach beet (Beta vulgaris L.) [J]. Z.Pflanzenphysiol.,1972,66: 176~188.
    [46]权威,于卓,王月华等.蒙古病草*航道病草杂种F4代株系同工酶分析[J].草地学报, 2006,14(1): 14~19.
    [47]邢会琴,李敏权,徐秉良等.过氧化物酶和苯丙氨酸解氨酶与苜蓿白粉病抗性的关系[J].草地学报, 2007,15(4): 376~380.
    [48]陈学平,姚忠达,郭家明等.不同烟草品种感染TMV病程过程中CAT、PAL活力变化研究[J].安徽农业大学学报, 2002,29 (2): l03~107.
    [49]阵晓重,刘培.植物次生代谢的分子生物学及基因工程[J].生命科学, 1999,8(2): 8~10.
    [50]陈伟,叶明志,周洁.植物酚类物质研究进展[J].福建农业大学学报, 1997,26(4): 502~508.
    [51]黄丽华.酚类物质与小麦抗赤霉病关系的初探[J].安徽农业大学学报,1995,22(增刊): 215~219.
    [52]王胜坤,徐大平,张淑红.枣树叶片酚类物质和绿原酸含量与枣树抗枣疯病关系的研究[J].陕西农业科学, 2006(6): 5~7.
    [53]贾克锋,汪剑林,华正媛.毛竹基腐病发生状况及防治对策[J].浙江林业科技, 2001,22(4): 69~72.
    [54]刘立权,曾瑞明.开发毛竹资源,搞好综合利用[J]. 1989,4: 14~18.
    [55]徐梅卿,戴玉成,范少辉中国竹类病害记述及其病原物分类地位(上) [J].林业科学研究, 2006,19(6): 692~699.
    [56]束庆龙,刘世琪.安徽枣树病害调查研究初报[J].安徽农学院学报1990,(1): 37~.41.
    [57]束庆龙,徐建敏,肖斌等.土壤肥力对板栗枝干病害的影响[J].应用生态学报2003,14(10): 1617~1621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700