用户名: 密码: 验证码:
东中国海热通量及热收支变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东中国海位于北太平洋西侧,拥有世界上最宽广的陆架海域之一。黑潮作为北太平洋重要的西边界流,沿东中国海陆架外缘和陆坡之间向北流动,对中国近海的温盐和环流结构产生重要的影响。在东中国海环流系统中,黑潮、台湾暖流、对马暖流及黄海暖流等共同组成东中国海的外海流系,构成海水进出东中国海的主要通道。深入研究这样一个复杂的海洋系统中海气之间相互作用的特征和机制以及大洋对陆架边缘海的影响,将更好的理解黑潮在东中国海物理环境场变化中的作用,有助于我们认识大尺度海洋环流及海气相互作用,具有重要的科学意义。本文在回顾前人研究的基础上,从热通量和热收支的角度对黑潮及中国东部陆架边缘海进行研究。利用已有的客观分析海气热通量数据和海洋同化资料,揭示东中国海海表面热通量的季节变化规律,通过分析季节时间尺度上海表面温度变化与海表面热通量的关系,研究黑潮平流项在海表面温度和海表面热通量变化中的控制机制,揭示黑潮在西北太平洋陆架边缘海海气耦合系统中的关键作用。基于长时间序列的海表面热通量资料以及海洋再分析资料,分析东中国海海域潜热通量的长期变化特征,并探讨与局地和太平洋海域影响因素的关系。从黑潮对东中国海热通量和热收支的角度探讨东海陆架边缘海与黑潮的相互作用,进一步认识中国东部陆架海环流,温度和盐度结构以及热量收支情况,确定黑潮向陆架热量通量输运及变化的成因及动力过程,探讨东中国海热含量在年际时间尺度上变化特征及影响因素。
     为了理解东中国海海表面热通量和海表面温度的季节变化特征及变化机制,利用来自客观分析海气热通量产品(OAFlux)和国际卫星云气候计划(ISCCP)的海表面净热通量资料,分析了西北太平洋陆架边缘海海气热通量的季节变化,及其在海表面温度季节变化中的作用。海表面净热通量的季节变化由潜热通量的季节变化决定。考虑净热通量和海表面温度的关系,东中国海可以被分为两个区域:在黑潮以外近岸海区,海表面温度的变化由海表面净热通量所强迫;而在黑潮及其延伸体海区,热通量是对由平流引起的海表面温度变化的响应。海气比湿差是联系海表面热通量和海表面温度的关键变量,并解释了沿黑潮海域的最大失热。黑潮的热量输运使得沿黑潮及其延伸体失热时间更长。海洋热含量的正异常值与在黑潮流域的最大失热相对应。研究认为海洋热平流项决定了热含量的基本变化,进而决定了海表面净热通量的基本变化。
     在年际以上时间尺度上,利用1958-2008年OAFlux潜热通量资料,分析了东中国海海域潜热通量的长期变化特征,并探讨了与局地和太平洋海域影响因素的关系。结果表明:近50年东中国海潜热通量显著增加,沿黑潮主轴增幅最大。通过分析阿留申低压区(30°N-60°N,160°E-140°W)风场的变化,发现其风应力旋度与东中国海潜热通量变化的主要影响因素海气比湿差存在显著的正相关,表明可能是北太平洋风应力旋度的变化而不是东中国海域风场的变化导致了潜热的长期增加。超前和滞后相关分析表明,东中国潜热通量的变化比北太平洋风应力旋度的变化存在4年左右的延迟,可能是副热带环流对风场变化调整所需的时间。
     在海表面热通量研究的基础上,利用在东中国海局部加密的全球海洋模式,我们研究了东中国海的热量收支情况。模式结果表明穿过台湾海峡,对马海峡以及台湾和日本之间200米等深线的时间平均的温度通量分别为0.20PW,0.21PW和0.05PW。进入东中国海的剩余热通量为0.04PW,这与时间平均的海表面失热相平衡。穿过200米等深线的涡动温度通量为0.005PW,占总温度通量的11.2%。黑潮向岸的温度通量主要有两个来源,黑潮在台湾以东的入侵和九州岛西南的入侵。由风应力引起的东中国海中的Ekman温度通量与黑潮向岸的温度通量表现出相同的季节循环和振幅,在秋季最大,夏季最小。我们认为Ekman温度通量决定了黑潮向岸温度通量的季节变化。此外,上层海洋热含量的年际变化主要由热平流项决定,局地大气强迫作用较小。
The East China Sea (ECS) is a marginal sea adjacent to a vast continental shelf towards the western Pacific. The Kuroshio which is the strong western boundary current of the Pacific Ocean flows along the continental slope and brings huge amount of heat from South to North. It is known has important influence on the thermal structure and circulation. Cold, fresh shelf water is distributed on the continental shelf, while warm saline Kuroshio water occupies the area around the shelf break and further offshore.The shelf break is a key region influencing the water properties on the shelf as there, important onshore cross-frontal transports of heat and freshwater from the Kuroshio take place.
     In order to study the heat flux at air-sea interface on seasonal and inter-annual time scales, we use a net surface heat flux (Qnet) product obtained from the Objectively Analyzed air-sea Fluxes (OAFlux) project and the International Satellite Cloud Climatology Project (ISCCP), to study the seasonal variations of air-sea heat fluxes in the Northwestern Pacific Marginal Seas (NPMS) and their role in sea surface temperature (SST) seasonality. The seasonal variations of Qnet which is generally determined by the seasonal cycle of LH are in response to the advection-induced changes of SST over Kuroshio and its Extension. The oceanic thermal advection which have a significant effect on the SST and hence the sea-air humidity plays a primary role and explains the maximum heat losing along the Kuroshio. The heat transported by the Kuroshio makes it have a longer period of heat losing over Kuroshio and its Extension. The positive anomaly of heat content corresponds with the maximum heat loss along the Kuroshio. The oceanic advection is inferred to control the variations of heat content and hence the surface heat flux. This study will help us to understand the mechanism controlling variations of the coupled ocean-atmosphere system in the NPMS.
     The latent heat flux(LH) from OAFlux dataset through 1958 to 2006 were used to investigate the long-term variations of LH in the East China Sea (ECS). The relationships between LH and the related physical variables in both ECS and the Pacific are examined. The study showed that there is a steady increase in the ESC averaged LH in the last 50 years, with the maximum increasing rate along the axis of the Kuroshio. By examining the wind stress curl variations in the Aleutian low area, it's indicated that the wind stress curl there is highly correlated with the sea-air humidity difference which dominants LH in the ECS. It might be the wind stress curl in the North Pacific not the local wind in the ECS dominants the variations of LH. The lead and lag correlation, related the sea-air humidity difference in the ECS and the wind stress curl in the Aleutian low area (30°N-60°N,160°E-140°W) indicates a 4-yr lag of LH in the ECS to the wind stress curl. This delay might because the adjustment of the gyre circulation to a change in the wind field.
     In order to understand the role of the Kuroshio in the East China Sea, we use a global ocean model with regionally focused high resolution (1/10°) in the East China Sea (ECS), to study the oceanic heat budget in the ECS. The time-averaged temperature flux across the Taiwan Strait (TWS), Tsushima Strait (TSS) and the 200m isobath between Taiwan and Japan are 0.20PW,0.21PW and 0.05PW, respectively. The residual heat flux of 0.04PW into the ECS is balanced by the surface heat loss. The eddy temperature flux across the 200m isobath is 0.005PW, which accounts for 11.2% of the total temperature flux. The Kuroshio onshore temperature flux has two major sources, the Kuroshio intrusion northeast of Taiwan and southwest of Kyushu. The Ekman temperature flux induced by the wind stress in the ECS shows the same seasonal cycle and amplitude with the onshore temperature flux with a maximum in autumn and a minimum in summer. We conclude that the Ekman temperature flux dominants the seasonal cycle of Kuroshio onshore flux. The inter-annual variability is dominated by the variations of sea surface height caused by the advection rather than the local atmospheric forcing.
引文
[1]Wyrtki K. The average annual heat balance of the North Pacific Ocean and its relation to ocean circulation. Journal of Geophysical Research,1965,70 (18):4547-4559
    [2]赵保仁,方国洪.东海主要水道的流量估算.海洋学报,1991,13(2):169-178
    [3]Ichikawa H, Beardsley R C. Temporal and spatial variability of volume transport of the Kuroshio in the East China Sea. Deep-Sea Research,1993,40:583-605
    [4]Liu C T, Cheng S P, Chuang W S, et al. Mean Structure and transport of Taiwan Current (Kuroshio). Acta Oceanographica Taiwanica,1998,36:159-176
    [5]袁耀初,刘勇刚,苏纪兰.1997-1998年El Nina至La Nina期间东海黑潮的变异.地球物理学报,2001,44(2):20-31
    [6]苏纪兰.中国近海的环流动力机制研究.海洋学报,2001,23(4):1-16
    [7]刘秦玉,刘倬腾.黑潮在吕宋海峡的形变及动力机制.青岛海洋大学学报,自然科学1996,26(4):413-420
    [8]李崇银,龙振夏.冬季黑潮增暖对我国东部汛期降水影响的数值模拟研究.eds.气候变化若干问题研究.北京:科学出版社,1992.145-156
    [9]黄荣辉,郭其蕴,孙安健,1996.中国气候灾害分布图集.海洋出版社,北京.
    [10]叶笃正,黄荣辉,1996.长江黄河流域旱涝规律和成因研究.山东科学技术出版社,济南.
    [11]Blanc T V. Variation of Bulk-Derived Surface Flux, Stability, and Roughness Results Due to the Use of Different Transfer Coefficient Schemes. Journal of Physical Oceanography,1985,15: 650-669
    [12]Weare B C. Uncertainties in estimates of surface heat fluxes derived from marine reports over tropical and subtropical oceans. Tellus,1989,41 A:357-370
    [13]Taylor P K. The determination of surface fluxes of heat and water by satellite microwave radiometry and in situ measurements. In:Gautier C, Fieux M, eds. Large-scale Oceanographic experiments and Satellites. Norwell:Reidel,1984.223-246
    [14]Webster P J, Lukas R. TOGA COARE:The coupled ocean-atmosphere response experiment. Bulletin of the American Meteorological Society,1992,73:1377-1416
    [15]Zeng X, Zhao M, Dickinson R E. Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. Journal of Climate,1998, 11:2628-2644
    [16]Brunke M A, Fairall C W, Zeng X, et al. Which Bulk Aerodynamic Algorithms are Least Problematic in Computing Ocean Surface Turbulent Fluxes? Journal of Climate,2003,16: 619-635
    [17]赵永平,张必成,任允武.渤、黄、东海年平均海面热量平衡状况及其与海洋环流的关系.海洋与湖沼,1991,22(6):517-523
    [18]Na J, Seo J, Lie H. Annual and seasonal variations of the sea surface heat fluxes in the East Asian marginal seas. Journal of Oceanography,1999,55:257-270
    [19]褚健婷,陈锦年,许兰英.海-气界面热通量算法的研究及在中国近海的应用.海洋与湖沼,2006,37(6):481--487
    [20]陈锦年,伍玉梅,何宜军.中国近海海气界面热通量的反演.海洋学报,2006,28(4):26-35
    [21]Hirose N, Lee H C, Yoon J H. Surface Heat Flux in the East China Sea and the Yellow Sea. Journal of Physical Oceanography,1999,29:401-417
    [22]张学洪,俞永强,刘辉.冬季北太平洋海表热通量异常和海气相互作用——基于一个全球海气耦合模式长期积分的诊断分析.大气科学,1998,22(4):511-521
    [23]马雷鸣,秦曾灏,端义宏,et al.海洋热通量对东海气旋发展影响的数值试验.海洋学报,2002,24(增刊1):112-122
    [24]樊孝鹏,黄大吉,章本照.东海黑潮的气候态数值模拟.浙江大学学报(工学版),2006,40(5):916-920
    [25]Ramage C S. Can shipboard measurements reveal secular changes in air-sea heat flux? Journal of Applied Meteorology,1984,23:187-193
    [26]Barnett T P. Long-term trends in surface temperature over the oeeans. Monthly Weather Review,1984,112:303-312
    [27]Ward M N, Hoskins B J. Near-surface wind over the Global Oeean 1949-1988. Journal of Climate,1996,9:1877-1895
    [28]Cayan D R. Variability of latent and sensible heat fluxes estimated using bulk formulae. Atmosphere-Ocean,1992,30 (1):1-42
    [29]Josey S A. Seasonal to interannual variability in the SOC air-sea flux dataset and Hadley Centre Atmospheric Model Version3. Southampton Oceanograpny Centre Internal Document, 1999, No.51
    [30]daSilva A M, Young C C, Levitus S. Atlas of Surface Marine Data 1994, Volume I. Algorithms and procedures. NOAAAtlas NESDIS,1994,6:51pp
    [31]Kondo J. Heat balance of the East China Sea during the Air Mass Transformation Experiment. Journal of the Meteorological Society of Japan,1976,54:382-398
    [32]Hirose N, Kim C H, Yoon J H. Heat budget in the Japan Sea. Journal of Oceanography, 1996,52:553-574
    [33]Kato K, Asai T. Seasonal variation of heat budgets in both the atmosphere and the sea in the Japan Sea area. Journal of the Meteorological Society of Japan,1983,61:222-238
    [34]Lee H-C. A numerical simulation for the water masses and circulations in the Yellow Sea and the East China Sea:[Ph.D. thesis]. Kyushu:Kyushu University,1996
    [35]Chu P, Chen Y, Kuninaka A. Seasonal Variability of the Yellow Sea/East China Sea surface fluxes and thermohaline structure. Advances in Atmospheric Sciences,2005,22:1-20
    [36]Deser C, Alexander M A, Timlin M S. Upper-ocean thermal variations in the north Pacific during 1970-1991. Journal of Climate,1996,9:1840-1855
    [37]Kelly K. The relationship between oceanic heat transport and surface fluxes in the western North Pacific:1970-2000. Journal of Climate,2004,17:573-588
    [38]Davis R E. Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. Journal of Physical Oceanography,1976,6:249-266
    [39]Bretherton C S, Battisti D S. An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophysical Research Letters,2000,27:767-770
    [40]Huang R X, Qiu B. Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. Journal of Physical Oceanography,1994,24:1608-1622
    [41]Qiu B, Huang R X. Ventilation of the North Atlantic and the North Pacific:Subduction versus obduction. Journal of Physical Oceanography,1995,252374-2390
    [42]Houghton R W. The relationship of sea surface temperature to thermocline depth at annual and interannual time scales in the tropical Atlantic Ocean. Journal of Geophysical Research,1991, 96:15173-15185
    [43]Niiler P P, Kraus E B. One-dimensional models of the upper ocean. In:Kraus E B eds. Modelling and Prediction of the Upper Layers of the Ocean. New York:Pergamon,1977.143-172
    [44]Moisan J R, Niiler P P. The seasonal heat budget of the North Pacific:net heat flux and heat storage rates (1950-1990). Journal of Physical Oceanography,1998,28:401-421
    [45]赵永平,MaBean G A黑潮海域海洋异常加热与北半球大气环流的相互作用.海洋与湖沼,1995,26(4):383-388
    [46]赵永平,MaBean G A黑潮海域海洋异常加热对后期北半球大气环流影响的分析.海洋与湖沼,1996,27(3):246-250
    [47]刘衍韫,刘秦玉,潘爱军.太平洋海气界面净热通量的季节、年际和年代际变化.中国海洋大学学报,2004,34(3):341-350
    [48]Yu L, Weller R A. Objectively Analyzed Air-Sea Heat Fluxes for the Global Ice-Free Oceans (1981-2005). Bulletin of the American Meteorological Society,2007,88:527-539
    [49]Yu L. Global variations in oceanic evaporation (1958-2005):the role of the changing wind speed. Journal of Climate,2007,20:5376-5390
    [50]Latif M, Barnett T P. Cause of decadal climate variability over the North Pacific and North America. Science,1994,266:634-637
    [51]Latif M, Barnett T P. Decadal climate variability over the North Pacific and North America: dynamics and predictability. Journal of Climate,1996,9:2407-2423
    [52]郭伟其,沙伟,沈红梅,et al东海沿岸海水表层温度的变化特征及变化趋势.海洋学报,2005,27(5):1-8
    [53]Tomita H, Kubota M. Increase in turbulent heat flux during the 1990s over the Kuroshio/Oyashio extension region. Geophysical research letters,2005,32:L09705, doi:10.1029/2004GL022075
    [54]Yasuda T, Kitamura Y. Long-term variability of North Pacific subtropical mode water in response to spin-up of the subtropical gyre. Journal of Oceanography,2003,59:279-290
    [55]任允武,赵永平,张必成.渤海、黄海、东海海面热量平衡的平均状况Ⅱ.季节变化特征海洋科学,1990,5:18-24
    [56]Liu W T, Katsaros K B, Businger J A. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. Journal of Atmospheric Sciences 1979,36:1722-1735
    [57]Sverdrup H. Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc Natl Acad Sci,1947,33,318-326
    [58]Deser C, Alexander M A, Timlin M S. Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. Journal of Climate,1999,12: 1697-1706
    [59]Miller A J, Cayan D R, White W B. A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. Journal of Climate,1998,11:3112-3127
    [60]Qiu B, Joyce T M. Interannual variability in the mid-and low-latitude western North Pacific]. Journal of Physical Oceanography,1992,22:1062-1079
    [61]翁学传,张启龙,杨玉玲,等.东海黑潮热输送及黄淮平原区汛期降水的关系.海洋与湖沼,1996,27(3):237-245
    [62]温娜,刘秦玉.台湾以东黑潮流量变异与冬季西北太平洋海洋-大气相互作用.海洋与湖沼,2006,37(3):264-270
    [63]Ichikawa K, Tokeshi R, Kashima M, et al. Kuroshio variations in the upstream region as seen by HF radar and satellite altimetry data. International Journal of Remote Sensing,2008,29 (21):6317-6326, doi:6310.1080/01431160802175454
    [64]Ichikawa K. Variation of the Kuroshio in the Tokara Strait induced by meso-scale eddies. Journal of Oceanography,2001,57:55-68
    [65]Tang T Y, Tai J H, Yang Y J. The flow pattern north of Taiwan and the migration of the Kuroshio. Continental Shelf Research,2000,20:349-371
    [66]Hsueh Y, Chern C S, Wang J. Blocking of the Kuroshio by the continental shelf northeast of Taiwan. Journal of Geophysical Research,1993,98:12351-12359
    [67]Chang P-H, Isobe A. A numerical study on the Changjiang Diluted Water in the East and Yellow China Seas. Journal of Geophysical Research,2003,108(C9),3299, doi: 10.1029/2002JC001749
    [68]Yuan D, Qiao F. Cross-shelf penetrating front off the southeast coast of China observed by MODIS. Geophysical Research Letters,2005,32, L19603, doi:10.1029/2005GL023815
    [69]Shiah F K, Chung S W, Kao S J, et al. Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait. Continental Shelf Research,2000, 20:2029-2044
    [70]Chen C T A, Liu C T, Chuang W S, et al. Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typhoon in the southern East China Sea. Journal of Marine Systems,2003,42:65-79
    [71]Siswanto E, Ishizaka J, Yokouchi K, et al. Estimation of interannual and interdecadal variations of typhoon-induced primary production:A case study for the outer shelf of the East China Sea. Geophysical Research Letters,2007,34, L03604, doi:10.1029/2006GL028368
    [72]Takikawa T, Yoon J H, Cho K D. The Tsushima Warm Current through Tsushima Straits estimated from ferryboat ADCP data. Journal of Physical Oceanography,2005,35:1154-1168
    [73]Teague W J, Jacobs G A, Ko D S, et al. Connectivity of the Taiwan, Cheju, and Korea straits. Continental Shelf Research,2003,23:63-77
    [74]Liang W-D, Tang T-Y, Yang Y-J, et al. Upper-ocean currents around Taiwan. Deep-Sea Research II,2003,50:1085-1105
    [75]Lin S F, Tang T Y, Jan S, et al. Taiwan Strait current in winter Continental Shelf Research, 2005,25:1023-1042
    [76]Jan S, Sheu D D, Kuo H-M. Water mass and throughflow transport variability in the Taiwan Strait. Journal of Geophysical Research,2006,111, C12012, doi:10.1029/2006JC003656
    [77]Isobe A. Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves. Journal of Oceanography,2008,64569-584
    [78]Lee J-S, Matsuno T. Intrusion of Kuroshio water onto the continental shelf of the East China Sea. Journal of Oceanography,2007,63:309-325
    [79]Guo X,.Miyazawa Y, Yamagata T. The Kuroshio onshore intrusion along the shelf break of the East China Sea:the origin of the Tsushima Warm Current. Journal of Physical Oceanography, 2006,36:2205-2231
    [80]Isobe A, Beardsley R C. An estimate of the cross-frontal transport at the shelf break of the East China Sea with the Finite Volume Coastal Ocean Model. Journal of Geophysical Research, 2006, 111,C03012,doi:10.1029/2005JC003290
    [81]Isobe A, Ando M, Watanabe T, et al. Freshwater and temperature transports through the Tsushima-Korea Straits. Journal of Geophysical Research,2002,107(C7), doi: 10.1029/2000 JC000702
    [82]Qiu B, Toda T, Imasato N. On Kuroshio front fluctuations in the East China Sea using satellite and in situ observational data. Journal of Geophysical Research,1990,95 (C10): 18,191-118,204
    [83]Chen C, Robert C, Richard L. The structure of the Kuroshio southwest of Kyushu:velocity, transport and potential vorticity fields. Deep-Sea Research,1992,39 (2):245-268
    [84]Chuang W-S, Liang W-D. Seasonal variability of intrusion of the Kuroshio Water across the continental shelf northeast of Taiwan. Journal of Oceanography,1994,50:531-542
    [85]郭炳火,葛人峰.东海黑潮锋面涡旋在陆架水与黑潮水交换中的作用.海洋学报,1997,19(6):1-11
    [86]郭炳火,李兴宰,李载学.夏季对马暖流区黑潮水与陆架水的相互作用-兼论对马暖流的起源.海洋学报,1998,20(5):1-12
    [87]Guo X, Hukuda H, Miyazawa Y, et al. A triply nested ocean model for simulating the Kuroshio-Roles of horizontal resolution on JEBAR. Journal of Physical Oceanography,2003,33: 146-169
    [88]Hsueh Y, Wang J, Chern C S. The intrusion of the Kuroshio across the continental shelf northeast of Taiwan. Journal of Geophysical Research,1992,97:14323-14330
    [89]Hsueh Y, Lie H-J, Ichikawa H. On the branching of the Kuroshio west of Kyushu. Journal of Geophysical Research,1996,101 (C2):3851-3857
    [90]Fang G, Wei Z, Choi B-H, et al. Interbasin freshwater, heat and salt transport through the boundaries of the East and South China Seas from a variable-grid global ocean cirbulation model. Science in China (Series D):Earth Science,2003,46:149-161
    [91]Guan B, Fang G. Winter counter-wind currents off the southeastern China coast:A review. Journal of Oceanography,2006,62:1-24.
    [92]Yu L, Weller R A, Sun B. Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988-1999) by a synthesis approach. Journal of Climate,2004a,17:373-393
    [93]Yu L, Jin X, Weller R A. Role of net surface heat flux in seasonal variations of sea surface temperature in the Atlantic Ocean. Journal of Climate,2006,19:6153-6169
    [94]Wentz F J. A well-calibrated ocean algorithm for SSM/I Journal of Geophysical Research, 1997,102:8703-8718
    [95]Chou S-H, Nelkin E, Ardizzone J, et al. Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version2 (GSSTF2). Journal of Climate, 2003,16:3256-3273
    [96]Chelton D B, Wentz F J. Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bulletin of the American Meteorological Society,2005,86:1097-1115
    [97]Uppala S, Coauthors. The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society,2005,131:2961-3012
    [98]Kalnay E, Coauthors. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society,1996,77:437-471
    [99]Yu L, Weller R A, Sun B. Mean and variability of the WHOI daily latent and sensible heat fluxes at in situ flux measurement sites in the Atlantic Ocean. Journal of Climate,2004b,17: 2096-2118
    [100]Zhang Y-C, Rossow W B, Lacis A A, et al. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets. Refinements of the radiative transfer model and the input data. Journal of Geophysical Research,2004,109, D19105, doi: 10.1029/2003JD004457
    [101]Carton J A, Chepurin G, Cao X, et al. A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-1995, Part 1:methodology. Journal of Physical Oceanography,2000a,30: 294-309
    [102]Carton J A, Chepurin G, Cao X, et al. A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-1995 Part 2:results. Journal of Physical Oceanography,2000b,30: 311-326
    [103]Carton J A, Giese B S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Monthly Weather Review,2008,136:2999-3017
    [104]Montegut d B, Madec C G, Fischer A S, et al. Mixed layer depth over the global ocean:an examination of profile data and a profile-based climatology. Journal of Geophysical Research, 2004.,109, C12003, doi::10.1029/2004JC002378
    [105]Grotzner A, Latif M, Barnett T P. A decadal climate cycle in the North Atlantic Ocean as simulated by the ECHO coupled GCM. Journal of Climate,1998,11:831-847
    [106]Halliwell G R, Jr. Simulation of North Atlantic decadal/multidecadal winter SST anomalies driven by basin-scale atmospheric circulation anomalies. Journal of Physical Oceanography,1998, 28:5-21
    [107]Yuan D, Interannual horizontal heat advection in the surface mixed layer over the equatorial Pacific Ocean:assimilation versus TAO analysis. Theoretical and Applied Climatology, 2009,97:3-15
    [108]Yuan, D, Hsueh, Y, Inverse determination of surface heat flux over the yellow sea in winter 1986 from sea surface temperature data. Journal of Physical Oceanography,1998,28:984-990.
    [109]Yuan, D, Rienecker, M M, Inverse estimation of sea surface heat flux over the equatorial Pacific Ocean:Seasonal cycle. Journal of Geophysical Research,2003,108:C8,3247, doi:10.1029/2002JC001367
    [110]James C, Wimbush M, Ichikawa H. Kuroshio meanders in the East China Sea. Journal of Physical Oceanography,1999,29:259-272
    [111]Liu Q, Xie S-P, Li L, et al. Ocean thermal advective effect on the annual range of sea surface temperature. Geophysical Research Letters,2005,32, L24604, doi: 10.1029/2005GL024493
    [112]Dong S, Kelly K A. Heat budget in the Gulf Stream region:the importance of heat storage and advection. Journal of Physical Oceanography,.2004,34:1214-1231
    [113]Griffies S M, Harrison M J, Pacanowski R C, et al.,2005. A Technical Guide to MOM4. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, USA.
    [114]Large W G, Mc Williams J C, Doney S C. Oceanic vertical mixing:a review and a model with nonlocal boundary layer parameterization. Reviews of Geophysics,1994,32:363-403
    [115]Conkright M E, Boyer T P. World Ocean Atlas 2001:Objective Analyses, Data Statistics, and Figures, CD-ROM Documentation, National Oceanographic Data Center, Silver Spring, MD, 2002,17 pp.
    [116]Oke P R, Schiller A, Griffin D A, et al. Ensemble data assimilation for an eddy-resolving ocean model of the Australian region. Quarterly Journal of the Royal Meteorological Society, 2005,131:3301-3311
    [117]Zhang D, Lee T N, Johns W E, et al. The Kuroshio east of Taiwan:modes of variability and relationship to interior ocean mesoscale eddies. Journal of Physical Oceanography,200131: 1054-1074
    [118]Yang Y, Liu C-T, Hu J-H, et al. Taiwan current (Kuroshio) and impinging eddies. Journal of Oceanography,1999,55:609-617
    [119]Sugimoto T, Kimura S, Miyaji K. Meander of the Kuroshio front and current variability in the East China Sea. Journal of Oceanography,198844:125-135
    [120]Fratantoni D M. North Atlantic surface circulation during the 1990's observed with satellite-tracked drifters. Journal of Geophysical Research-Oceans,2001,106 (C10): 22067-22093
    [121]Oka E, Kawabe M. Characteristics of variations of water properties and density structure around the Kuroshio in the East China Sea. Journal of Oceanography,1998,54:605-617
    [122]Hinata T. Seasonal variation and long-term trends of the oceanographic conditions along a fixed hydrographic line crossing the Kuroshio in the East China Sea Oceanography Magazine, 1996,45:9-32
    [123]Fang G, Zhao B, Zhu Y. Water volume transport through the Taiwan Strait and the continental shelf of the East China Sea measured with current meters, Oceanography of Asian Marginal Seas. In:Takano K eds.:Elsevier,1991.345-358
    [124]Wang Y H, Jan S, Wang D P. Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999-2001). Estuarine Coastal and Shelf Science,2003,57 (1-2):193-199
    [125]Teague W J, Jacobs G A, Perkins H T, et al. Low-frequency current observations in the Korea/Tsushima Strait. Journal of Physical Oceanography,2002,32 (6):1621-1641
    [126]Jan S, Wang J, Chern C S, et al. Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems,2002,35 (3-4):249-268
    [127]Chuang W S. Dynamics of subtidal flow in the Taiwan Strait. Journal of Oceanography Society. Japan,,1985,41:65-72
    [128]Chuang W S. A note on the driving mechanisms of current in the Taiwan Strait. Journal of Oceanography Society. Japan,1986,42:355-361
    [129]Ko D S, Preller R H, Jacobs G A, et al. Transport reversals at Taiwan strait during October and November 1999. Journal of Geophysical Research-Oceans,2003,108 (C11):3370, doi:3310.1029/2003JC001836
    [130]Schneider N, Miller A J, Alexander M A, et al. Subduction of decadal North Pacific temperature anomalies:Observations and dynamics. Journal of Physical Oceanography,1999,29: 1056-1070
    [131]Qiu B, Kelly K A. Upper-ocean heat balance in the Kuroshio Extension region. Journal of Physical Oceanography,1993,23:2027-2041
    [132]Kelly K A, Qiu B. Heat flux estimates for the North Atlantic. Part Ⅰ:Assimilation of satellite data into a mixed layer model. Journal of Physical Oceanography,1995,25:2344-2360
    [133]Qiu B. Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field. Journal of Physical Oceanography,2000,30:1486-1502
    [134]Vivier F, Kelly K A, Thompson L. Heat budget of the Kuroshio Extension region:1993-99. Journal of Physical Oceanography,2002,32:3436-3454
    [135]Sutton R, Mathieu P P. Response of the atmosphere-ocean mixed layer system to anomalous ocean heat flux convergence. Quart. J. Roy. Meteor. Soc.,2002,128:1259-1275
    [136]Yualeva E N, Schneider N, Pierce D W, et al. Modeling of North Pacific climate variability forced by ocean heat flux anomalies. Journal of Climate,2001,14:4027-4046
    [137]Obata A, Ishizaka J, Endoh M. Global verification of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data. Journal of Geophisical Research,1996,101:20657-20667
    [138]Monterey G, Levitus S. Seasonal variability of mixed layer variability of mixed layer depth for the world ocean. eds. NOAA Atlas NESDIS. Washington, D.C.:U.S. Govt. Print. Off.,1997. 14,000 PP
    [139]Chen X, Qiao F, Wang Q, et al. Barrier and compensation layers in the East China Sea. Acta Oceanologica Sinica,2008,27:70-78
    [140]Jones I, Leach H. Isopycnic modeling of the North Atlantic heat budget. Journal of Geophisical Research,1999,104:1377-1392
    [141]Battisti D S, Bhatt U S, Alexander M A. A modeling study of the interannual variability in the wintertime North Atlantic Ocean. Journal of Climate,1995,8:3067-3083
    [142]Deser C, Alexander M A, Timlin M S. Understanding the persistence of sea surface temperature anomalies in midlatitudes. Journal of Climate,2003,16:57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700