用户名: 密码: 验证码:
造纸废水培养富油微藻的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微藻制备生物柴油已越来越受到各国的重视,而成本过高是制约其发展的主要问题之一。本文研究了利用造纸废水培养富油微藻的可行性,以期为降低微藻柴油成本寻找一条新的途径。论文进行了微藻的筛选、紫外诱变和条件优化,对造纸废水进行了成分分析、水解及初步脱毒处理,最后考察了微藻对水解液的利用情况。
     选取了6株微藻进行初筛。结果显示藻的含油量在17%~26%之间,其中栅藻的含油量最高,为25.77%。C16和C18为几株藻的主要脂肪酸组分。除小新月菱形藻外,其他藻异养能力均较强。六碳糖和二糖(麦芽糖)是较好的碳源,藻对五碳糖的利用情况较差。葡萄糖的加入可大大提高微藻的生长速率,兼养组小球-1,小球藻-2和栅藻收获时生长量分别是自养时的4.4,7.5,6.3倍。综合考虑生长量和含油量两个因素,筛选出栅藻进行下一步研究。
     通过紫外诱变,筛选出一株栅藻编号为栅-1,其生长速率较未优化前增长了39%,含油量达到了28%,颜色深绿,生长旺盛。并通过2*(6-2)部分析因设计实验筛选得出氮源和温度为影响栅藻油脂产率的显著因素。通过L9 (33)的正交实验,确定出适于栅藻产油的最佳条件为氮源浓度为6.0mM,温度25℃,光照强度为4000lux,葡萄糖浓度10g/L,pH值5,在此条件下油脂产率可达到75.46 mg·L~(-1)d~(-1)。
     对马尾松硫酸盐黑液进行了成分分析,结果表明:黑液中还原糖为1.92 g/L,半纤维素含量为35.69 g/L。在培养基中添加不同比例的黑液,随着培养基中黑液浓度的增大,黑液对栅藻的影响增大。在显微镜下观察发现在100%黑液中,栅藻形态发生了变化。说明黑液中存在着对微藻生长不利的物质。
     对黑液进行水解。考察了不同水解方法下还原糖获得量。结果显示同酸水解相比,酶水解效率较高。脱木素后再酶水解,水解液中还原糖可达到9.18g/L。脱木素的最佳条件为pH值3.0,温度75℃,硫酸浓度6%,此时上清液中的半纤维素含量最高,达到47.61g/L。对水解液做液相色谱分析,发现水解液中主要成分为葡萄糖3.63 g/L,其次为纤维二糖1.81 g/L,并有少量阿拉伯糖和木糖,含量分别为0.02g/L和0.8g/L。同时检测出水解液中含有较多甲酸和乙酸,浓度分别为3.10 g/L,2.90 g/L。利用石灰过中和,减压真空浓缩和活性炭进行脱色脱毒处理,水解液变为浅黄色,透光率增大,还原糖损失率为5.64%。
     利用脱毒处理后的黑液水解液培养栅藻-1,其生长量较未处理的黑液葡萄糖培养基大幅度提高,达到了1.23g/L,测定含油量为24.52%,油脂产率达到23.20 mg·L~(-1)d~(-1),栅藻-1的形态恢复正常。
     将纤维素从黑液中提取出,水解培养微藻,结果表明在半纤维素水解液培养基中的栅藻-1,其生长量与处理后的黑液水解液培养基相比有所提高,通过调整培养基配方,半纤维素水解液中栅藻干重达到2.70 g/L,比葡萄糖培养基提高了20%,含油量为25.70%,油脂产率可达到53.37 mg·L~(-1)d~(-1)。
Biodiesel from micro algae has been gaining national attention. But high cost is one of the major problem restricting the development of algal biodiesel.The feasibility of using paper mill wastewater for oil-riched algae cultivation was studied, hoping to find a new way to reduce the cost of biodiesel from algae. Algae with high oil-content and growth rate was screened, mutagenized by ultraviolet and cutivitation conditions were optimized. Then the composition of wastewater was analyzed. After hydrolysis and detoxification, the hydrolysate was used for algae cultivation.
     The oil content of six algae used was between 17%~26%. Scenedesmus obliquus was with the highest oil content of 25.77%.C16 and C18 were major fatty acid of these algae. Except Nitzschia closterium, the other five algae were with heterotrophic ability. Hexose and disaccharide(maltose) were good carbon source, but algae could not utilize pentose. Growth rate was highly increased when glucose was added in the medium. Mass growth of Chlorella sp-1,Chlorella sp-2 and S. obliquus cultivated mixtrophically was 4.4, 7.5 and 6.3 times higher than that of autotrophically. Based on growth rate and oil content, S. obliquus was screened for further research.
     A strain named S.obliquus -1 was screened by UV mutagenesis, the growth rate of which increased by 39% than that of pre-mutagenesis. The strain was with an oil content of 28%. Conditions for lipid productivity were optimized in two stages: fractional factorial design (FFD) and orthogonal experiments. Nitrogen and temperature were selected as significant factors. And the optimal conditions occurred at nitrogen 6.0mM, temperature 25℃,illumination 4500 lux, glucose 10g/L and pH 5.0, with the highest lipid productivity of 75.46mg L~(-1)d~(-1).
     The component of pine kraft black liquor was analyzed. Result shows that there were reducing sugar 1.92 g/L and hemicellulose 35 g/L. Dilute acid hydrolysate mainly contained glucose and some cellobiose. S obliquus -1 was cultivated in medium with different proportion of black liquor.Result show that with the increase concentration of black liquor, the influence of black liquor on algae increased. It was observed that the morphology of S.obliquus -1 changed, which means that the black liquor maybe contains some toxic substances for algae.
     The black liquor was hydrolyzed and reducing sugar content was investigated using different hydrolysis methods. Result shows that compared with acid hydrolysis, enzymatic hydrolysis was with higher reducing sugar content. A reducing sugar content of 9.18g/L was obtained by enzymatic hydrolysis after delignification. And the optimum conditions for delignification was pH 3.0, temperature 75℃,sulfuric acid concentration 6%, when the highest hemicellulose content of 47.61 g/L was obtained in the wupernatant residual.
     The main sugar in hydrolysate was glucose 3.63 g/L, followed by cellobiose 1.81 g/L, xylose 0.8 g/L and arabinose 0.2 g/L. Meanwhile, 3.10 g/L formic acid and 2.90 g/L acetic acid was detected. After overliming by Ca(OH)2, decompression vacuum concentration and detoxification of activated carbon bleaching, hydrolysate became light yellow and light transmission rate increased. Reducing sugar loss rate was 5.64%.
     When S.obliquus -1was cultivated in hydrolysate after treatment, its growth yield reached to 1.23 g/L, greatly increased than that of in black liquor medium with glucose, oil content was 24.52 % and lipid productivity was 23.20 mg L~(-1)d~(-1) , the morphology of S.obliquus -1 returned to normal.
     Hemicellulose was extracted from black liquor and hydrolyzed. The hydrolysate was used to cultivate S.obliquus -1. It was found that growth yield of S.obliquus -1 greatly increased than that of black liquor medium. By adjusting medium formula, growth yield of S.obliquus -1 increased to 2.7g/L, an increase of 20 % than that of in glucose medium, oil content was 25.7%, the final lipid productivity reached 53.37mg L~(-1)d~(-1).
引文
[1]宋湛谦.生物质资源与林产化工[J].林产化学与工业,2005,增刊:10-15.
    [2]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-81.
    [3]聂小安,蒋剑春,杨凯华,戴伟娣.我国生物柴油产业化制备技术及其发展趋势[J].生物质化学工程,2006,40(B12),66-68.
    [4]宋东辉,侯李君,施定基.生物柴油原料资源高油脂微藻的开发利用[J],生物工程学报,2008,24(3):341-348.
    [5] YUSUF Chisti. Biodiesel from microalgae[J].Biotechnology Advances,2007,25:294–306.
    [6]梅洪,张成,殷大聪等.利用微藻生产可再生能源研究概况[J].武汉植物学研究,2008,26(6):650-660.
    [7]童牧,周志刚.新一代生物柴油原料——微藻[J].农业工程技术:新能源产业,2009,5:19-26.
    [8]郑洪立,张齐,马小琛,纪晓俊,金平,黄和.产生物柴油微藻培养研究进展[J].2009,29(3):110-116.
    [9] Han Xu, Xiaoling Miao, Qingyu Wu. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters[J]. Journal of Biotechnology, 2006,126:499-507.
    [10]曾少君,李华林.中国柴油发展的现状、问题及对策分析[J].化工进展,2008,27(10):1485-1489.
    [11]缪晓玲,吴庆余.藻类异养转化制备生物油燃料技术[J].可再生能源,2004,4:41-45.
    [12]YUSUF C. Biodiesel from microalgae[J]. Biotechnology Advances, 2007, 25: 294–306.
    [13]魏东,郭祀远,李琳.利用废水、废弃物培养螺旋藻生产单细胞蛋白[J].海洋科学,1998,(5):30-31.
    [14] Lima A C,Castro P M L,Morais R. Biodegradation of p -nitrophenol by microalgae[J]. Journal of Applied Phycology,2003,15(2/3):137-142.
    [15] Yewalkar S N,Dhumal K N,Sainis J K. Chromium(Ⅵ)-reducing Chlorella spp. Isolated from disposal sites of paper-pulp and electroplating industry[J]. J. Appl. Phycol.,2007,19(5):459-465.
    [16] Masil K,Naoto Y. Effect of L-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06[J]. Bioresource Technology,2008,99(3):575-582.
    [17] Mu?oz R,Guieysse B. Algal–bacterial processes for the treatment of hazardous contaminants:A review[J]. Water Rearch,2006,40(15):2799-2815.
    [18] Pinto G,Pollio A,Previtera L,et al. Biodegradation of phenols by microalgae[J]. BiotechnologyLetters,2004,24(24):2047-2051.
    [19] Alejandro R M,Leopoldo G,Mendoza E,et al. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater[J]. Bioresource Technology,2010 101(1):58-64.
    [20]姜建国,黄洋,宋古祥.啤酒厂排放水培养盐藻的研究进展[J].海湖盐与化工,2003,32(2):13-15.
    [21] An J Y,Sim S J,Lee J S,et al . Hydrocarbon production from secondarily treaded piggery wastewater by the green alga Botyeocoecus braunii [J]. J. Appl. Phycol.,2003,15(2/3):185-191.
    [22]órpez R,Martínez M E,Hodaifa G,et al. Growth of the microalga Botryococcus braunii in secondarily treated sewage[J]. Desalination,2009,246(1-3):625-630.
    [23] Tarlan E,Dilek F B,Yetis U .Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater[J]. Bioresource Technology,2002,84(1):1-5.
    [24] Kulandaivel S,Prakash R,Anitha R,et,al. Comparative studies on biochemical profile of spirulina platensis and oscillatoria sp. on synthetic medium and dairy effluent[J]. Journal of Pure & Applied Microbiology,2007,1(1):109-112.
    [25] Ma Toyub,Mi Miah,Mab Habib. Change in some chemical parameters of two environment polluting waste(fertilizer factory effluent and sweetmeat factory waste)media after culture of three important microalgae[J].Bangladesh Journal of Scientific and Industrial Research,2007,42(3):299-310.
    [26] Peng Hui,Liu Yunguo,Zeng Guangming. Biosorption of Cu(II)and Zn(II)by intact and pre-treated biomass of Oscillatoria planctonica[J]. International Journal of Environment and Pollution,2009,38(1-2):1-14.
    [27] Rathinam A,Jonnalagadda R R,Balachandran U N. Application of a chemically modified green macro alga as a biosorbent for phenol removal[J]. Journal of Environmental Management,2009,90(5):1877-1883.
    [28] Aravindhan R,Rao J R,Nair B U. Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis[J]. Journal of Hazardous Materials,2007,142(1-2):68-76.
    [29]胡洪营,李鑫.利用污水资源生产微藻生物柴油的关键技术及潜力分析[J].生态环境学报,2010,19(3):739-744.
    [30]李艳霞,陈同斌,罗维,等.中国城市污泥有机质及养分含量与土地利用[J].生态学报,2003,23(11):2464-2474.
    [31]王起华,张岚翠,王冰.固定化藻类细胞去除氮、磷的研究进展[ J ].工业水处理,2005,25(6):6-8.
    [32] Chauhan V S,Singh G,Ramamurthy V. Eucalyptus kraft black liquor enhances growth and productivity of Spirulina in outdoor cultures[J]. Biotechnol. Prog,1995,11(4):457-460.
    [33]蒋培森,蒋加伦,汪富三,等.蛋白核小球藻在废水污泥中培养的研究[J].海洋湖沼通报,1999(1):77-81.
    [34] Yang Congfa,Ding Zhongyang,Zhang Keechang. Growth of Chlorella pyrenoidosa in wastewater from cassava ethanol fermentation[J]. World Journal of Microbiology and Biotechnology,2008,24(12):2919-2925.
    [35] Lixin,Hu Hong Ying,Yang Jia. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga,Scenedesmus sp. LX1 growing in secondary effluent[J]. New Biotechnology,2010,27(1):59-63.
    [36] Woertz I,Feffer A,Lundquist T,et al. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock[J]. Journal of Environmental Engineering,2009,135(11):1115-1122.
    [37] Machael J B,Wen Zhi You. Development of an attached microalgal growth system for biofuel production[J]. Applied Microbiology and Biotechnology,2010,85(3):1079-1085.
    [38] Chinnasamy S,Bhatnagar A,Hunt R W,et al. Microalgae cultivation in a wastewater dominated by carpet mill for biofuel applications[J]. Bioresource Technology,101(9):3097–3105.
    [39]李凝,弥永利,兰玉,等.利用生活污水和工业废水生产微藻的方法:中国,200910131333[P] 2009-09-09.
    [40]杜仰民.造纸工业废水治理进展与评述[J].工业水处理,1997,17(3):1-5.
    [41]何洁,刘秉铖.制浆黑液中糖类物质的回收利用[J].黑龙江造纸,2004,3:24-26.
    [42]于建仁,张曾,迟聪聪.生物质精炼与纸浆造纸工业相结合的研究[J].中国造纸学报,2008,23(1):80-85.
    [43] Dilek F B, Taplamac yoelu H, Tarlan E. Colour and AOX removal from pulping effluents by algae[J].Appl.Microbiol.Biotechnol.,1999,52:585-591.
    [44] GrahamLF,WileoxLW .Algae.Prentice-Hall,EnglewoodCliffs,NJ,2000.
    [45] Swati N Yewalkar, K.N.D., J.K. Sainis. Chromium(VI)-reducing Chlorella spp. isolatedfrom disposal sites of paper-pulp and electroplating industry[J]. J Appl Phyco, 2007. 19:459-465.
    [46]Lee Juno,Lee Jinsuk,Shin Chulseung,et al. Method to enhance tolerances of chlorella KR-1 to the toxic compounds in flur gas [J].Appl. Biochem. Biotechnol.,2000,84-86(1-9):329-342.
    [47] Esra Tarlan, F.B.D.U.. Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater[J]. Bioresource Technology , 2002. 84: 1-5.
    [48] M ?ER?áKOVá,E. GOLIS. Testing of the Cytotoxic Effects of Sulfate Pulp Mill Waste Waters[J]. Folia Microbiol, 1994, 39 (4):307-314.
    [49] Rosemarin, A. Effects of pulp mill chlorate on baltic sea algae[J]. Environmental Pollution, 1994. 85(1): 3-13.
    [50]董芳芳.藻类对造纸废水中COD的去除效率研究[D].武汉,华中师范大学: 2009.
    [51] GRIFFITHS M J, HARRISON S T L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production[J]. J Appl Phycol , 2009, 21: 493–507.
    [52] HU Q, SOMMERFELD M, JARVIS E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances[J]. The Plant Journal, 2008, 54(4): 621–639.
    [53] XU H, MIAO XL, WU QY. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters [J]. J Biotechnol, 2006, 126(4): 499-507.
    [54]齐沛沛,王飞.制备生物柴油用小球藻的油脂富集培养研究[J].现代化工,28(增):36-41
    [55]刘永定,范晓,胡征宇.中国藻类研究[M].武汉:武汉出版社,2001,254-261.
    [56]李荷芳,周汉秋.海洋微藻脂肪酸组成的比较研究[J].海洋与湖泊,1999,30(1):34-40.
    [57]Renaud S M, Zhou H C ,Parry D L , et al . Effect of temperature on the growth ,total lipid content and fatty acid composition of recently is olated tropical microalgae Isochrysis sp., Nitzschiaclosterium, Nitzschiapaleacea, and commercial species Isochrysis sp[J ] . Appl Phycol ,1995 ,7 :595 - 602.
    [58]Zhu C J ,Lee Y K,Chao TM, et al . Diurnal changes in gross chemical composition and fatty acid profiles of Isochrysis galbana in outdoor closed tubular photobioreactors [ J ] . J Mar Biotech , 1997 (5) : 153 -157.
    [59]张薇,吴虹,宗敏华.蛋白核小球藻发酵产油脂的研究[J].微生物学通报,2008,35(6):855-860.
    [60]缪晓玲,吴庆余.藻类异养转化制备生物油燃料技术[J].可再生能源,2004,4:41-45.
    [61]张大兵,吴庆余.小球藻细胞的异养转化[J].植物生理学通讯,1996,32(2):140-141.
    [62]张玉静.分子遗传学[M].北京:科学出版社,2005.
    [63]微生物诱变育种编写组.微生物诱变育种[M].北京:北京科学出版社,1973.
    [64] ILLMAN A M, SCRAGG A H, SHALES S W. Increase in Chlorella strains calorific values when grown in low nitrogen medium[J]. Enzyme Microb Tech, 2000, 27, 631–635.
    [65] CONVERTI A, CASAZZA A A, ORTIZ E Y, et al. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production[J]. Chem Eng Process, 2009, 48(6): 1146–1151.
    [66] OOIJKAAS L P, WILKINSON E C, TRAMPER J, et al. Medium optimization for spore production of Coniothyrium minitans using statistically based experimental design[J]. Biotechnol Bioeng ,2009,64(1):92–100.
    [67] KWAK K O, JUNG S J, CHUNG SY. Optimization of culture conditions for CO2 fixation by a chemoautotrophic microorganism, strain YN-1 using factorial design[J]. Biochem Eng J ,2006,31 (1): 1–7.
    [68]马正飞,殷翔.数学计算方法与软件的工程应用[M].北京:化学工业出版社,2002.
    [69] KITANO M, MATSUKAWA R, KARUBE I. Changes in eicosapentsenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions[J]. Journal of Applied Phycology, 1997, 9:559-563.
    [70]方尚玲,李世杰,张慧婧.海藻糖产生菌的诱变育种[J].生物技术,2006,16(5):23-26.
    [71]于建仁,张曾,迟聪聪.生物质精炼与纸浆造纸工业相结合的研究[J].中国造纸学报,2008,23(1):80-85.
    [72]石淑兰,何福望.制浆造纸分析与检测[M],中国轻工业出版社,2006.
    [73]谢来苏,詹怀宇.制浆原理与工程[M].北京:中国轻工业出版社,2001.
    [74]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [75]张继颖,胡慧仁.从APMP纸浆废液分离所得半纤维素的改性和应用[J].中国造纸学报,2010,25(1):33-39.
    [76]杨淑惠.植物纤维化学[M],中国轻工业出版社,2005.
    [77]彭枫,赵雪冰,刘灿明,刘德华.活性炭脱毒甘蔗渣稀酸水解液用于酵母油脂的合成[J].可再生能源,2009,27(4):32-37.
    [78]吴昊,姚嘉旻,刘宗敏,陈可泉,左鹏,姜岷,韦萍.玉米籽皮稀酸水解液脱毒发酵制备丁二酸的可行性[J].农业工程学报,2009,25(2):267-273.
    [79]湛含辉,黄丽霖.木质纤维原料预处理与水解技术的研究进展[J].酿酒科技,2010,4:83-87.
    [80]丁兴红,夏黎明,薛培俭.半纤维素水解液发酵木糖醇的关键因子[J].浙江大学学报(工学版),2007,41(4):683-688.
    [81]武银华,造纸黑液资源分层多级利用及治理技术研究[D].苏州大学,2007.
    [82] F.A.Agblevor, J.Fu, B.Hames, et al. Identification of microbial inhibitory functional groups in corn stover hydrolysate by carbon-13 nuclear magnetic resonance spectroscopy[J]. Applied Biochemistry and Biotechnology, 2004, 119(2): 97~120.
    [83]钱名宇,杨秀山.燃料酒精生产中对木质纤维素稀酸水解液的脱毒处理[J].太阳能,2005,(2):49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700