用户名: 密码: 验证码:
广东始兴南山地区燕山期花岗岩与钨锡多金属矿成矿关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南山花岗岩体位于广东省始兴县最有代表性的贵东复式岩体之北、陂头复式岩体西端,岩体所处的粤北地区是我国重要的钨、锡、钼、铅、锌多金属矿集中区。本学位论文以南山矿区钨钼多金属矿床及其赋矿岩石南山花岗岩为研究对象,通过赋矿花岗岩的同位素年代学、地球化学特征的研究,探讨其成岩机理,阐述其形成的构造环境,进而探索南山花岗岩体与钨锡多金属矿内在成因联系。
     南山矿区内出露大量的燕山期花岗岩,南山花岗岩锆石的SHRIMP U-Pb年龄为158.1±1.8Ma,岩性以细粒黑云母花岗岩、二云母二长花岗岩和中粒似斑状黑云母花岗岩为主,岩石地球化学特征显示,南山燕山期花岗岩以高硅、富碱、准铝-过铝、贫Ca和Mg以及高TFeO/MgO、低CaO/Na2O为特征,属于准铝-过铝质碱性岩石。微量元素特征显示富Zr、Y、U、Nb等高场强元素,贫Ba、Sr、Ti等元素,与铝质A型花岗岩地球化学特征相符,稀土配分图呈典型的A型花岗岩特有的海鸥型,Eu强烈亏损,表明岩浆发生过强烈的分异结晶作用。本学位论文认为,南山花岗岩归属于H型花岗岩,是在中晚侏罗世相对挤压和拉张转换背景下,由地壳的泥质岩和少量砂质岩受到幔源物质混染发生部分熔融上侵形成的。
     南山矿区钨锡多金属矿床为“多位一体”的复合矿床,矿化类型主要分为花岗岩型钨钼矿、矽卡岩型钨锡多金属矿和石英脉型钨铝矿三类。从空间分布看,“体中体”式燕山期花岗岩型钨铝多金属矿体主要受控于燕山期早期第二阶段第二次侵入和燕山早期第三阶段侵入的花岗岩中,矿体赋存在成矿花岗岩内及其与围岩接触带内带;石英脉型钨钼矿体往往产于岩体穹顶内外接触带,主要受控于花岗质岩浆侵位时产生的节理和裂隙,层控型矽卡岩型钨锡铋矿体赋存于氧化矽卡岩和石榴石透辉石矽卡岩中,矿体明显受岩体接触带控制,呈层状产出。
     矿区含矿花岗岩属高分异的H型花岗岩,成岩成矿年龄的一致亦表明成岩成矿的密切联系。
     综上所述,通过本次工作获得了南山钨锡多金属矿床与南山花岗岩体关系密切,南山花岗岩体为成矿提供了物质来源、热源和热液,是南山钨锡多金属矿床的成矿母岩。根据南山矿区花岗岩演化特征及矿床特征,本学位论文系统论证了南山地区燕山期花岗岩与南山钨锡多金属矿的成矿关系,认为成矿模式从上自下依次为矽卡岩型、石英脉型(受节理、裂隙带控制)和花岗岩型钨锡多金属矿体。
The Nanshan granite pluton is located in the north of the Guidong composite granite pluton,a most representative granite pluton in Shixing county, north of Guangdong province, and in the south of the Beitou composite granite pluton. The north Guangdong area, where the Nanshan pluton is situated, is an mineralized area in China. This academic degree paper focuses the Nanshan tungsten-molybdenum polymetallic deposit and Nanshan granites as the host rocks of the deposit, to discuss lithogenesis mechanism and tectonic environment during the formation of the pluton, then to expounds the genetic relationship between Nanshan granite pluton and tungsten-tin polymetallic mineralization, based on the study of isotope age and geochemical characteristics of the host rocks.
     The Yanshanian granites are widely exposed in the Nanshan mineralized region. The Nanshan pluton mainly consists of fine-granied granites, two-mica monzogranites and middle porphyritic biotite granites. The SHRIMP zircon U-Pb age is 158.1±1.8Ma. The lithogeochemical features of Nanshan Yanshanian granites show that they exhibit high Si and alkali,strongly-peraluminous,low Ca and Mg,high TFeO/MgO and low CaO/Na2O, belonging to the aluminum alkaline granites. In trace element compositions, the granites are enriched in high strength field elements of Zr,Y,U,Nb, and depleted in Ba,Sr,Ti, indicative of a consistency with aluminum A-type granites. REE patterns are nearly horizontally V-shaped characteristic of A-type granites, with a stong depletion of Eu, indicating the magma experienced a strong crystallization differentation. Thus, the present study considers that the Nanshan granites are belongto H-type granites,which were formed by upwelling partial melting of the pelite and less clay-derived meet contaminated by the mantle-derived material in the condition of transition from relative compression to extenion.
     Nanshan tungsten-tin polymetallic deposit is a "multi-type" composite deposit. Mineralization types are mainly divided into three types,i.e. granite type tungsten-molybdenum,skarn type tin polymetallic and quartz vein type tungsten-molybdenum mineralizations. In terms of spatial distribution, granite type ore bodies are mainly controlled by the granites formed in the second intrusion and the third intrusion of the second phase of the Early Yanshanian movement,and occurred in the ore-forming granites and inner contact zone between ganites and their surrounding rocks;quartz vein type ore bodies are occurred in the inner contact and exocontact zones in the dome of the pluton, and controlled by joints and cracks produced during emplacement of the by granitic magma skarn type ore bodies are occurred in oxidized skarns and garnet-diopside skarns, which show a stratified occurrence,and obviously controlled by contact zone of the pluton.
     Ore-bearing granites in the Nanshan mineralized area belong to high differentational H-type granites. The consistency between lithogenesis age and metallogenic age also suggests a close relationship between lithogenesis and mineralization.
     To sum up, Nanshan granites provided metallogenic material,thermal source,hydrothermal fluid for mineralization, and represented as the minerogenetic parent rocks of the Nanshan tungsten-molybdenum polymetallic deposit. Basing on the characteristics of evolution of Nanshan granites and features of the deposit, this paper testified systematically relationship between Yanshanian granite pluton-related tungsten-tin polymetallic deposit in the Nanshan area,in which skarn type,quartz vein type are formed (controlled by joints and cracks) and granite type tungsten tin polymetallic ore bodis from top to bottom in the granite pluton.
引文
(?)肖惠良,《湘赣粤相邻地区钨矿远景调查成果报告》,2008
    ②肖惠良,《南岭东段钨锡多金属矿地质特征、成矿模式及找矿方向》,2010
    [1]肖惠良,陈乐柱,吴涵宇,等.广东始兴南山钨钼多金属矿床的发现及其意义[J].高校地质学报,2008,14(4):558~564.
    [2]Leake BE, Braon GC, Hallyday AN. The origin of granite magmas[J]. Geol. Soc.1980,137: 93~96.
    [3]Read HH. Granites and granites[J]. Geol. Soc. Am. Mem,1948,28:1~19.
    [4]Chappell BW and White AJR. Two contrasting granite types[J]. Pacific Geol.1974,8: 173~174.
    [5]Ishihara S. The magnetite-series and ilmenite-series granitic rocks[J]. Mining Geology.1977, 27:293~305.
    [6]Loiselle MC and Wones DR. Characteristics and origin of anorogenic granites[J]. Geol. Soc. Am. Abstr. Prog.,1979,11:468.
    [7]Collins WJ, Beams SD, White AJR and Chappell BW. Nature and origin A-type granites with particular reference to Southeastern Australia[J].Contrib. Mineral. Petrol,1982,80:189~200.
    [8]Whalen JB, Currie KL and Chappell BW. A-type granites:Geochemical characteristics, discrimination and petrogenesis[J]. Contrib. Mineral. Petrol.,1987,95:407~419.
    [9]Pitcher WS. Granite Type and Tectonic Environment. In:Hsu. K. (Ed.), Mountain Building Processes, Academic Press, London,1983,19~40.
    [10]中国科学院贵阳地球化学研究所.华南花岗岩类的地球化学[M].科学出版社,1979.
    [11]莫柱孙,叶伯丹,潘维祖,等.南岭花岗岩地质学[M].地质出版社,1980.
    [12]南京大学地质学系.华南不同时代花岗岩类及其成矿关系[M].科学出版社,1981.
    [13]徐克勤等.华南两类不同成因花岗岩岩石学特征[J].岩矿测试,1982a,(2):1~12.
    [14]徐克勤,胡受奚,孙明志,等.华南两个成因系列花岗岩及其成矿特征[J].矿床地质,1982b,1(2):1~14.
    [15]刘家远.以江西花岗岩为例试论花岗岩的成因分类[J].岩石矿物及测试,1983.(1):21~24.
    [16]章崇真.华南花岗岩的成因类型及其演化系列[J].岩石矿物及测试,1983,(1):9~12.
    [17]涂光炽,张玉泉,赵振华.华南两个富碱侵入岩带的初步研究[A].见徐克勤、涂光炽主编,花岗岩地质和成矿关系[C].南京:江苏科学技术出版社,1984.21~37.
    [18]干德滋,彭亚明,袁朴.福建魁歧花岗岩的岩石学和地球化学特征及成因探讨[J].地球化学,1985,(3):197~205.
    [19]吴利仁.中国东部中生代花岗岩类[J].岩石学报,1985,(1):1~10.
    [20]杨超群.华南不同成因花岗岩类的稀土元素地球化学特征[J].矿物岩石地球化学通讯,1986,(1):8~10.
    [21]安三元,姜常义,胡能高.关于花岗岩成因问题的讨论[J].矿物岩石,1986,(2):149~150.
    [22]张德全,孙桂英.中国东部花岗岩——中国东部构造岩浆演化与成矿规律研究系列成果之三[M].中国地质大学出版社,1988.
    [23]洪大卫.花岗岩研究的最新进展及发展趋势[J].地学前缘,1994,(Z1):79~68.
    [24]洪大卫,王式洸,韩宝福,等.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学(B辑),1995,25(4):418~426.
    [25]杨超群.华南两种类型的花岗岩和两个成矿系列[J].花岗岩地址和成矿关系国际研讨会.1982.
    [26]Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic enwironment[J]. Lithos,1999,46:605~626.
    [27]Shand. S J.Eruptive rocks.The Woodbridge Press.1927.
    [28]Peacock.M A.Classification of igneous rock series[J].J.Geol.1931,39.
    [29]Pupin J P. Zircon and granite petrology[J]. Contrib Mineral Petrol.1980,73:207~220.
    [30]Pearce JA, Harris NBW, Tindle AG. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Petrol.1984,25:956~983.
    [31]Lameyre J.Granites and evolution of the crust[J].Revista Brasileira de Geociencias,1987,17: 349~359.
    [32]Maniar PD and Piccoli PM. Tectonic discrimination of granitoids[J]. Geol. Soc. Am. Bull., 1989,101:635~643.
    [33]Pitcher W S.The nature, ascent and emplacement of granite magma[J].Geoligy Society of London, Journal,1979,136,617~662
    [34]Pitcher W S. The Nature and Origin of Granite[J]. Blackie Acad.and prof.ed.,1993, London: 321.
    [35]Barbarin B. Granitoids:main petrogenetic classifications in relation to origin and tectonic setting [J]. Geol.J.,1990,25:227~238.
    [36]Barbarin B. Genesis of the two main types of peraluminous granitods[J]. Geology,1996,24: 295~298.
    [37]涂绍雄,汪雄武.20世纪90年代国外花岗岩类研究的某些重大进展[J].岩石矿物学杂志,2002,21(2):107~130.
    [38]Eby G N. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos,1990,26:115~134.
    [39]Eby G N. Chemical subdivision of the A-type granitoids:Petrogenesis and tectonic implications[J]. Geology,1992,20:641~644.
    [40]周珣若,吴克隆,严炳全等,.漳州I-A型花岗岩基岩石学特征及构造岩浆深化.中国东南沿海火山地质与矿产论文集.北京:地质出版社,1992a,252~284.
    [41]周珣若.花岗岩混合作用[J].地学前缘,]994,(Z1):87~97.
    [42]杨超群.A型花岗岩简介[J].云南地质,1984,(2):202~204.
    [43]张兴隆,王家炳,沈波春.苏州A型花岗岩性质的研究[J].岩石学报,1987,2:1~5.
    [44]方大钧,蔡惠兰.浙江A型花岗岩的性质、成因及其与成矿的关系[J].矿物岩石地球化学通讯,1987,4:234~235.
    [45]Creaser R A, Price R C, Wormald R J. A-type granites revisited:assessment of residual-source model [J]. Geology,1991,19:163~166.
    [46]Turner S P, Foden J D and Morrison R S.Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway Ridge, South Australia[J]. Lithos,1992, 28:151~179.
    [47]王德兹,赵广涛,邱检生.中国东部晚中生代A型花岗岩的构造制约[J].高校地质学报,1995,1(2):13~21.
    [48]汪建明,杨年强,李康强,等.苏州A型花岗岩的岩浆分异与成矿作用[J].岩石学报,1993,9(1):3~43.
    [49]邢凤鸣,徐详.安徽两A型花岗岩带[J].岩石学报,1994,10(4):357~369.
    [50]Landenberger B and Collins WJ. Derivation of A-type granites from a dehydrated charnockitic lower crust:Evidence from the Chaelundi complex, Eastern Australia[J]. J. Petril.,1996,37: 145~170.
    [51]陈培荣,章邦桐.A型花岗岩类研究综述[J].国外花岗岩类地质与矿产,1994,(4):9-14.
    [52]陈培荣,章邦桐,孔兴功,等.赣南寨背A型花岗岩体的地球化学特征及其构造地质意义[J].岩石学报,1998,14(3):289~298.
    [53]卢欣祥.龙王石童A型花岗岩地质矿化特征[J].岩石学报,1989,5(1):67~77.
    [54]卢欣祥等,1996,东秦岭印支期沙河湾奥长环斑花岗岩及其动力学意义[J],中国科学(D辑),26(3):244~248
    [55]卢欣祥等,东秦岭花岗岩的基本特征[C],见《中国东部岩石圈结构与构造岩浆演化论文集》,北京:地质出版社,1997.
    [56]许保良.富集型与亏损型A型花岗岩—以燕山地区和乌伦古河岩石为例[J].北京大学学报,1988,34:352~362.
    [57]许保良.燕山地区碱性-过碱性A型花岗岩系的岩石学、岩石成因学及其地球动力学意义[A].岩石圈地质科学[C].北京:地震出版社,1994,1~20.
    [58]许保良,阎国翰,张臣等.A型花岗岩的岩石学亚类及其物质来源[J],地学前缘,1998,5(3):113~124
    [59]Sylvester P J.Post-collisional alkaline granites[J]. J.Geo.,1989,97:261~280.
    [60]Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos,1998,45:29~44.
    [61]薛良伟,尉向东,赵太平.嵩山A型花岗岩的地质地球化学特征和构造环境[J].岩石学报,1996,12(1):137~144.
    [62]樊金涛,陈炯达,潘明宝,等.苏北牛山片麻状A型花岗岩及其成因[J].江苏地质,1999,23(1):24~29.
    [63]魏春生,郑永匕,赵子福.苏州A型花岗岩氢氧同位素地球化学研究[J].岩石学报,1999,15(2):224~236.
    [64]魏春生,郑永飞,赵子福.中国东部A型花岗岩形成时代及物质来源的Nd-Sr-O同位素地球化学制约[J].岩石学报,2001,17(1):95~111.
    [65]King P L, White A J R, Chappell B W and Allen C M.Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J].J. Petrol.,1997, 38:371~391.
    [66]King P L,Allen C M,Chappell B W and White A J R.Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite[J].Australian J. Earth Sci.2001,48:501~514.
    [67]袁忠信.关于A型花岗岩命名问题的讨论[J].岩石矿物学杂志,2001,20(3):293~296.
    [68]苏玉平,唐红峰.A型花岗岩的微量元素地球化学[J].矿物岩石地球化学通报,2005,24(3):242~251.
    [69]吴锁平,王梅英,戚开静.A型花岗岩研究现状及其述评[J].岩石矿物学杂志,2007,26(1):57~66.
    [70]Bonin B. A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos,2007,97 (1-2):1~29.
    [71]Dickin A P, Halliday A N, Bowden P A.Pb, Sr and Nd isotope study mof the basement and Mesozoic ring complxes of the Jos plateau, Nigeria[J]. Chemical Geology,1991,94:23~32.
    [72]赵广涛,王德滋,曹钦臣等,1997,崂山花岗岩岩石地球化学与成因[J],高校地质学报,3:1~15.
    [73]Castro A, Moreno-Ventas I and de la Rosa JD. H-type (hybrid)granitoids:a proposed revision of the granite-type classification and nomenclature[J]. Earth Sci. Rev.,1991,31:237~253.
    [74]周殉若,金志云.同化混染实验.五大莲池-克洛-二克山富钾火山岩[M].武汉:中国地质大学出版社,1991.178~180.
    [75]周珣若等.长江中下游中生代侵入岩与板内断褶-岩浆活动特征.“七五’地质科技重
    要成果学术交流会议论文选集(C).北京::北京科学技术出版社,1992b,213~217.[76]毛景文,华仁民,李晓波.浅议大规模成矿作用与大型矿集区[J].矿床地质,1999,18(4):291~299.
    [77]毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地学前缘,2004a,11(2):45-56.
    [78]华仁民,毛景文.试论中国东部中生代成矿大爆发[J].矿床地质,1999,18(4):300~308.
    [79]华仁民,陈培蓉,张文兰,等.华南中、新生代与花岗岩类有关的成矿系统[J].中国科学(D辑),2003,33(4):225~243.
    [80]陈毓川,朱裕生,等.中国矿床模式[M].1993,北京:地质出版社,1~367.
    [81]毛景文,李红艳,宋学信,等.湖南柿竹园钨锡钼铋多金属矿床地质与地球化学[M].1998,北京:地质出版社,215p.
    [82]刘义茂,王昌烈,胥友志,等.柿竹园超大型钨多金属矿床的成因特征、成矿作用与成矿模式[M]..//涂光炽等.中国超大型矿床(Ⅰ).北京:科学出版社,2000:27~48.
    [83]华仁民,陈培蓉,张文兰,等.论华南地区中生代3次大规模成矿作用[J].矿床地质,2005,24(2):99~107.
    [84]陈毓川,裴荣富,张宏良,等.南岭地区与中生代花岗岩有关的有色及稀有金属矿床地质[M].北京:地质出版社,1989,1~508.
    [85]地矿部南岭项日花岗岩专题组.南岭花岗岩地质及其成岩和成矿作用[M].北京:地质出版社,1989,1~471.
    [86]陈俊,陆建军,陈卫峰,等.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报,2008,14(4):459~473.
    [87]邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004,1~381.
    [88]Li Z L, Hu R Z, Yang J S, et al.He, Pb and S isotopic constraints on the relationship between the A-type Qitianling granite and the Furong tin deposit, Hunan Province, China[J].Lithos,2007, 97:161~173.
    [89]蒋少涌,赵葵东,姜耀辉,等.华南与花岗岩有关的一种新类型的锡成矿作用:矿物学,元素和同位素地球化学证据[J].岩石学报,2006,22(10):2509~2516.
    [90]朱金初,张佩华,谢才富,等.骑田岭岩体.2007-a//周新民.南岭地区晚中生代花岗岩成因与岩石圏动力学演化.北京:科学出版社,520~533.
    [91]朱金初,张佩华,谢才富,等.花山-姑婆山岩体[M].2007b//周新民.南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京:科学出版社,366~382.
    [92]朱金初,王汝成,张佩华,等.南岭中西段燕山早期北东向含锡钨A型花岗岩带[J].高校地质学报,2008,14(4):474~484.
    [93]Taylor R G. Geology of tin deposits.Elsevier Scientific Publishing Company, Amesterdrn, 1979, p.543.
    [94]Kawak T A P.W-Sn skarn deposits and related metamorphic skarns and granitoids[J].Econ.Geol.,1982,77:50~59.
    [95]Plimer I R.Fundamental parameters for the formation of granite-related tin deposits[J].Geol, Rundschau.,1987,71:23~40.
    [96]Heinrich C A.The chemistry of hydrothermal tin (-tungsten) ore deposition[J].Econ.Geol., 1990,85:457~481.
    [97]Heinrich C A.Geochemical evolution and hydrothermal mineral deposition in Sn (-W-base metal) and other granite-related ore systems:some conclusions from Australian examples[J]. In:Magamas, Fludis, and Ore Depostis (J.F.H.Thompson.eds.), Mineralogical Association of Canada, Short course series, Victoria, British Columbia,203~220.
    [98]曾志方.湖南大坳矿区控矿构造特征及其对云英岩体型钨-锡矿的控制作用[J].矿产与地质,2006,20(6):44-67.
    [99]Mao J W, Chen Y C, Bi C S, et al.Geology of tin deposits in China[J].Scientia Geologica Sinica,4 (2):121~177.
    [100]裴荣富,熊群尧.中国特大型金属矿床成矿偏在性与成矿构造聚敛(场)[J].矿床地质,1999,18:37~46.
    [101]毛景文,谢桂青,郭春丽,等.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报,2007,23(10):2329~2338.
    [102]涂光炽,赵振华.燕山期成矿作用的多样性[J].地质论评,1983a,(1):57-65.
    [103]涂光炽.漫谈花岗岩类与成矿研究的几个方面[J].矿物岩石地球化学通报,1983b,(3):13~16.
    [104]张宏良,裴荣富.南岭钨锡花岗岩的地质特征及成矿作用[J].湖南地质,1988,(1):8-24.
    [105]张宏良,裴荣富.南岭地区花岗岩矿床的控矿条件及成矿规律[J].上海地质,1989,(1):1~12.
    [106]肖惠良,陈国栋,班宜忠,等.论南岭东段钨多金属矿找矿方向[J].资源调查与环境,2006,27(2):85~93.
    [107]肖惠良,陈乐柱,鲍晓明,等.广东始兴南山矿区钨锡多金属矿床特征及资源潜力[J].资源调查与环境,2010,31(4):271~277
    [108]付建明,李华芹,屈文俊,等.粤北始兴地区石英脉型钨矿成矿时代的确定及其地质意义[J].大地构造与成矿学,2008,32(1),:57~62.
    [109]Williams IS, Claesson S. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss from the Seve Nappes, Scandinavian Caledonian, Ⅱ.Ion microprobe zircon U-Th-Pb[J]. Contrib. Mineral. Petrol.,1987.,97:205~217.
    [110]Compston W, Williams IS, Kirschcink JL et al., Zircon U-Pb ages for the Early Cambrian time-scale[J]. J.Geol. Soc.London,1992,49:171~184.
    [111]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作,年龄测定及有关对象讨论[J]. 地质评论,2002,48(增刊):26~31.
    [112]简平,刘敦一,孙晓猛.滇川西部金沙江石炭纪蛇绿岩SHRIMP测年:古特提斯洋盆演化的同位素年代学制约.地质学报,2003,7(92):217~228.
    [113]Wu YB, Zheng YF. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin,2004,49 (15):1554~1569.
    [114]刘义茂,戴幢谟,卢焕章,等.千里山花岗岩成岩成矿的40Ar-39Ar和Sm-Nd同位素年龄[J].中国科学(D辑),1997,27(5):425~430.
    [115]刘义茂,许继峰,戴幢谟,等.骑田岭花岗岩40A/39Ar同位素年龄及其地质意义[J].中国科学(D辑).2002,32(增刊):40~48.
    [116]刘珺,毛景文,叶会寿,等.江西武功山地区浒坑花岗岩的锆石U-Pb定年及元素地球花学特征[J].岩石学报,2008a,24(8):1813~1822.
    [117]刘珺,毛景文,叶会寿,等.江西武功山地区浒坑辉钼矿的锆石Re-Os定年及其地质意义[J].地质学报,2008b,82(11):1576~1584.
    [118]刘善宝,王登红,陈毓川,等.赣南崇义-大余-上饶矿集区不同类型含矿石英中自云母40Ar-39Ar年龄及其地质意义[J].地质学报,2008,82(7):932~940.
    [119]李华芹,路远发,王登红,等.湖南骑田岭芙蓉矿田成岩成矿时代的厘定及其地质意义[J].地质论评,2006,52(1):113~121.
    [120]李金东,柏道远,伍光英,等.湘南郴州地区骑田岭花岗岩锆石的SHRIMP定年及其地质意义[J].中国地质,2005,24(5):411~414.
    [121]顾晟彦,华仁民,戚华文.广西姑婆山花岗岩单颗粒锆石LA-ICP-MS U-Pb定年及期全岩Sm-Nd同位素研究[J].地质学报,2006,80(4)543~553.
    [122]郭春丽,王登红,陈毓川,等.赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP年龄及石英脉Rb-Sr年龄测定[J].矿床地质,2007,26(4):432~442.
    [123]付建明,马吕前,谢才富,等.湖南骑田岭岩体东缘菜岭岩体的SHRIMP锆石定年及其意义[J].中国地质,2004a,31(1):96~100.
    [124]付建明,马昌前,谢才富,等.湖南九嶷山复式花岗岩体东缘菜岭岩体SHRIMP锆石定年及其意义[J].大地构造与成矿学,2004b,28(4):370~378.
    [125]江西根,柏道远,陈建超,等.湘东南宝峰仙地区燕山早期花岗岩地球化学特征及其构造环境[J].大地构造与成矿学,2006,30(2):206~219.
    [126]丰成友,丰耀东,许建祥,等.赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位素证据[J].中国地质,2007a,34(4):642~650.
    [127]丰成友,许建祥,曾载淋,等.赣南天门山-红桃岭钨锡矿田成岩成矿时代惊喜测定及其地质意义[J].地质学报,2007b,81(7):925~963.
    [128]朱金初,黄革非,张佩华,等.湘南骑田岭岩体菜岭超单元花岗岩侵位年龄和物质来源研究[J].地质论评,2003,49:245~252.
    [129]朱金初,张辉,谢才富,等.湘南骑田岭竹枧水花岗岩的SHRIMP锆石U-Pb年代学和岩石学[J].高校地质学报,2005,11:335~342.
    [130]张敏,陈培蓉,张文兰,等.南岭中段大东山花岗岩体的地球化学特征和成因[J].地球化学,2003,32(6):529~539.
    [131]毛景文,李晓峰,Bernd Lehmann,等.湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar年龄及其地球动力学意义[J].矿床地质,2004b,23(2):164~175.
    [132]姚军明,华仁民,屈文俊,等.湘南黄沙坪铅锌钨钼多金属矿床辉钼矿的Re-Os同位素定年及其意义[J].中国科学(D辑),2007,37(4):471~477.
    [133]姚军明,华仁民,林锦福.湘东南黄沙坪花岗岩LA-ICP-MS锆石U-Pb定年及岩石地球化学特征[J].岩石学报,2005,21(3):688~696.
    [134]赵葵东,蒋少涌,姜耀辉,等湘南骑田岭岩体芙蓉超单元的锆石SHRIMP U-Pb年龄及其地质意义[J].岩石学报,2006,22(10):2611~2616.
    [135]马铁球,柏道远,邝军,等.湘东南茶陵地区锡田岩体锆石SHRIMP定年及其地质意义[J].地质通报,2005,24(5):415~419.
    [136]张文兰,华仁民,王汝成,等.赣南大吉山花岗岩成岩成矿年龄的研究[J].地质学报,2006,80(7):956-962.
    [137]Li X H, Liu D Y, Sun M, et al. Precise Sm-Nd and U-Pb isotopic dating of the supper-giant Shizhuyuan polumetallic deposit and its host granites, SE China[J].Geological Mgazine,2004. 141:225~231.
    [138]Wright_JB. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine,1969,106:370~384.
    [139]Lehmann B.Metallogeny of Tin[M].Springer-Verlag,1990,1~211.
    [140]Cocherie A, Johan V, Rossi P, et al. Trace element variation and lanthanide tetrad effect studied in a Variscan lithium albite granite:case of the Cinovec granite (Czechoslovakia) [M].//Pagel M and Leroy J L.Source, Transport and Deposition of Metals.Rotterdam:Balkema, 1991,745~749.
    [141]Suwimonprecha P, Cerny P and Friedrich G.Rare metal mineralization related to granites and pegmatites, Phnket, Thailand[J].Economic Geology,1995,90:603~615.
    [142]Srivastava P K and Sinba A K.Geochemical characterization of tungsten-bearinggranitesfrom Rajasthan, India[J].Journal of Geochemical Exploration,1997,60:173~184.
    [143]Ray G E, Webster I C L, Ballantyne S B, et al.The geochemistry of three tin-bearing skarns and their related plutonic rocks, Atlin, Northern British Columbia[J].Economic Geology,2000, 95:1349~1365.
    [144]Bodanina E V, Trumbull R B, Dalski P, et al.The behavior of rare-earth and lithophile trace element in rare-metal garnites:a study of fluorite, melt inclusions and host rocks from the Khangilay complex, Transbaikalia, Russia[J].The Canadian Mineralogist,2006,4:667~692.
    [145]Chappell B W and White A J R.I-and S-type granites in the Lachlan Fold Belt[J].Trans.Royal Soc.Edinburg:Earth Sci.,1992,83:1~26.
    [146]徐克勤,朱金初,刘吕实等.华南花岗岩类的成因系列和物质来源.南京大学学报(地球科学版),1989,3:1~18.
    [147]刘吕实,朱金初.华南四种成因类型花岗岩类岩石化学特征对比[J].岩石学报,1989,2:9~14.
    [148]刘吕实,陈小明,王汝成,等.广东龙口南昆山铝质A型花岗岩的成因[J].岩石矿物学杂志,2003a,22(1):1~10.
    [149]陈江峰,Foland KA,刘义茂.苏州复式花岗岩体的精确40Ar-39Ar定年[J].岩石学报,1993,9:77~85.
    [150]King PI, White AJR, Chappell BW et al., Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt.Southeastern Australia[J].J Petrol,1997,38(3):371~391.
    [151]邱检生,王德滋,蟹泽聪史,等.福建沿海铝质A型花岗岩的地球化学及岩石成因[J].地球化学,2000,29 (4):(313~321).
    [152]Sun S.-s, McDonough WF. Chemical and isotopic systematics of oceanic basalts:Implication for mantle composition and processes [A]. Saunders AD, Norry MJ. Magmatism in the Ocean Basins[C]. Geological Society Special Publication,1989,42:313~345.
    [153]张绍立,王联魁,朱为方,等.用磷灰石中稀土元素判别花岗岩成岩成矿系列[J].地球化学,1985,14(1):45~57.
    [154]杨富贵,王中刚,刘丛强,等.西北准噶尔地区碱性花岗岩体角闪石的地质地球化学意义[J].矿物学报,1999,19(1):70~76.
    [155]赵振华,熊小林,韩小东.花岗岩稀土元素四分组效应形成机理探讨——以千里山和巴尔哲花岗岩为例[J].中国科学,1999,29(4):331~338.
    [156]Marks M, Ralf H, Thomas W et al. Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites:Implicating for mineral-melt trace-element partitioning[J].Chem Geol,2004,211:185~215.
    [157]付建明,马昌前,谢才富,等.湖南金鸡岭铝质A型花岗岩的厘定及构造环境分析[J].地球化学,2005,34(30):215~226.
    [158]刘吕实,陈小明,陈培荣,等.A型研讨的分类、判别标志和成因[J].高校地质学报,2003b,9(4):573~591.
    [159]Wood A D, Joron J L, Treuil M, et al. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor[J]. Contrib Mineral Petrol,1979,70:319~339.
    [160]Green T H.Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J].Chem.Geol.,1995,120:347~359.
    [161]Rudnick R L, Fountain D M.Nature and composition of the continental crust:A lower crustal perspective[J]. Rev. Geophys.,1995,33:267~309.
    [162]Gao S, Luo T C, Zhang B R et al.,.Chemical composition of the continental crust as revealed by studies inEast China[J]. Geochim. Cosmochim. Acta,1998,62:1959~1975.
    [163]Green T H, Pearson N J.An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature[J].Geochim.Cosmochim.Acta, 1987,51:55~62.
    [164]Barth M G, Mcdonough W F, Rudnick R L.Tracking the budge of Nb and Ta in the continental crust.Chem[J].Geol.,2000,165:197~213.
    [165]肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北京:地质出版社,2002:41~43.
    [166]张舒,张招崇,艾羽,等.安徽黄山花岗岩岩石学、矿物学及地球化学研究[J].岩石学报,2009,25(1):25~38.
    [167]Qiu J S, Mclnnes B I A, Xu X S, et al.Zircon ELA-ICP-MS dating for Wuliting pluton at Dajishan, southern Jiangxi and new recognition about its relation to tungsten mineralization[J].Geological Review,2004,50(2):125-133.
    [168]Zhao Z F, Zheng Y F, Wei C S, et al.Zircon U-Pb age, element and C-O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie in east central, China[J].Lithos,2005,83:1~28.
    [169]Harris N B W, Inger S. Trace element modeling of pelite-derived granites[J].Contrib. Mineral. Petrol.,1992,110:46~56.
    [170]Kim J, Cho M. Low-pressure metamorphism and leucogranite magmatism, northeastern Yeongnam Massif, Korea:implication for Paleoproterozoic crustal evolution[J]. Precambrian Research,2003,122:235~251.
    [171]Miller C F. Are strongly peraluminous magmas derived from pelitic sedimentary sources? [J].Geology,1985,93:673~689.
    [172]Watson E B.Zircon saturation in felsic liquids:experimental data and applications to trace element geochemistry[J],Contrib.Mineral.Petrol.,1979,70:407~419.
    [173]Anderson JL. Proterozoic anorogenic granite plutionism of North America In:Medaris Jr LG, Byers C W, Mickelson DM and Shanks WC (eds), Proterozoic Geology[C]. Selected Papers from an International Proterozoic Symposium. Geo. Soc. Am. Memoir,1983,161:33~152.
    [174]Dall'Agnol R, Scaillet B and Pichavant M. An experimental study of a Lower Proterozoic A-type granite from the eastern Amazonian Craton[J]. Brazil Lithos (Ilmari Haapala),1999,80: 101~129.
    [175]Klimm K, Holtz F,Johannes W and King PL. Fractionation of mataluminous A-type granites: An experimental study of the Wangrah Suite, Lachlan Fold Belt, Austiralia[J]. Precam brian Res, 1997,124:327~341.
    [176]Scaillet B and Macdonld R. Phase relations of peralkaline silicic magmas and petrogenetic implications[J]. J Petrol.2001,42:825~845.
    [177]Scaillet B and Macdonld R.Experimental constraints on the relationships between peralkaline rhyolites of the Kenya Rift Valley[J]. J Petrol.2003,44 (10):1867~1894.
    [178]Patino Douce A E, Mc Carthy T C.Melting of crustalrock s during continental collisions and subduction[A].In:Hacker B R, Liou J G (eds).Where Continents Collide:Geodynamic and geochemistry of ultrahigh-pressure rocks[M].Kluwer Academic Publishers,1998,27~551.
    [179]Carter A, Roques D, Bristow C, Kinny P. Understanding Mesozoic accretion Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam[J].Geology,2001, 29 (3):211~214.
    [180]Ames L, Tihan G R, Zhou G Z. Timing of collision of the Sino-Korean and Yangtze crotons:U-Pb zircon dating of coesite-bearing eclogitse. Geology,1993,21 (4):339~343.
    [181]Zhou X M, Sun T, Shu W Z et al.,Petrogenesis of Mesozoic granitoids and volcanic rocks in South China.Episodes,2006,26~33.
    [182]舒良树,周新民,邓平,等.南岭构造带的基本地质特征[J].地址评论,2006,52(2):251-265.
    [183]毛建仁,陈蓉,李寄嵎,等.闽西南地区晚中生代花岗质岩石的同位素年代学、地球化学及其构造演化[J].岩石学报,2006,22(6):1723~1734.
    [184]于津生,桂训唐,黄琳.广东罗定泗纶混合岩田同位素组成[J].广东地质.1991,6(3):73~82.
    [185]郭峰,范蔚茗,林舟可.湘南道县辉长岩包体的年代学及成因探讨[J].科学通报,1997,42(15):1661~1663.
    [186]舒良树,孙岩,孙德兹等.华南武功山中生代伸展构造[J].中国科学(D辑),1998,28(5):431~438.
    [187]王岳军,Zhan YH,范蔚茗,等.湖南印支期过铝质花岗岩的形成:岩浆底侵与地壳加厚热效应的数值模拟[J].中国科学(D辑),2002,32(6):491~499.
    [188]王强,赵振华,简平等.武夷山洋坊霓辉石正长岩的锆石SHRIMP U-Pb年龄及其构造意义[J].科学通报,2003,48(14):1582~1588.
    [189]孙涛,陈培荣,周新民.中国东南部晚中生代伸展应力体制的岩石学标志[J].南京大学学报(自然科学版),2002,38(6):737~746.
    [190]孙涛,周新民,陈培荣,等.南岭东段中生代强过铝花岗岩成因及其大地构造意义[J].中国科学(D辑),2003,33(12):755~768.
    [191]凌洪飞,沈渭州,邓平,等.粤北笋洞花岗岩的形成时代、地球化学特征与成因[J].岩石学报,2004,20(3):413~424.
    [192]Zhou XM, Li WX. Origin of Late Mesozoic igneous rocks in Southeastern China: implications fro lithospehere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000,326:269~287.
    [193]范春芳,陈培荣.赣南陂头花岗岩体Nd-Sr同位素特征及其意义[J].地质找矿论丛,2000a,15:282~287.
    [194]范春芳,陈培荣.赣南陂头A型花岗岩的地质地球化学特征及其形成的构造环境[J].地球化学,2000b,29(4):358~366.
    [195]许美辉.福建永定地区早侏罗世双峰式火山岩及其构造环境[J].福建地质,1992,(2):115~125.
    [196]Chen P R, Lu J J, Fan C F, et al.Early Yanshanian post-orogenic granitoids in the Nanling region-Petrological constraints and geodynamic settings[J].Science in China (Series D:Earth Sciences),2002, (8):755~768.
    [197]Shu Liangshu, Deng Ping, Wang Bin, et al. Lithology, kinematics and geochronology related to late Mesozoic basin-mountain evolution in the Nanxiong-Zhuguang area, South China.Science in China (D),2004,47 (8):673~688.
    [198]赵振华,包志伟,张柏友.湘南中生代玄武岩类地球化学特征[J].中国科学(D辑),1998,28(增刊):7~14.
    [199]Chung SL, Cheng H, Jahn BM et al. Major and trace element, and Sr-Nd isotope contraints on the origin of Paleogene volcanism in South China prio to the South China Sea opening[J].Lithos,1997,40:203~220.
    [200]郭新生,陈江峰,张巽,等.桂东南高钾岩浆杂岩的Nd同位素组成:华南中生代地幔物质上涌事件[J].岩石学报,2001,17(1):19~27.
    [201赵振华,包志伟,张伯友,等.柿竹园超大型钨多金属矿床形成的壳幔相互作用背景[J].中国科学(D辑),2000,30(增刊):161~168.
    [202]武丽艳,胡瑞忠,毕献武,等.千里山花岗岩形成的壳-幔相互作用背景初探[J].矿物岩石地球化学通报2008,27:147~148.
    [203]Meinert L D. Skarns and skarn deposits, In:Sheahan P A, Cherry M E, Eds[J].Ore Deposit Models, Ⅱ,1993,117~134.
    [204]Einaudi M T.Petrogenesis of the copper bearing skarn at the Mason Valley Mine, Yerington district, Nevada[J].Econ, Geol.,1977,72:769~795.
    [205]Greenwood H J.Mineral equilibria in the system MgO-SiO2-H2O-CO2:In:Abelson P H, ed.Researches in Geochemistry Ⅱ [J].New York:Wiley,1967:542~547.
    [206]Slaughter J, Kerrrick D M, Wall W J.Experimental and thermodynamic study of equilibria in the system CaO-MgO-SiO2-O-CO2[J].Am.Jour.Sci.,1975,275:143~162.
    [207]Gilder S A, Gill J, Coe R S, et al.Isotopic and paleomagmatic constraints on the Mesozoic tectonic evolution of South China[J]. Journal of Geophysics Research,1996,101 (B7): 13137~16154.
    [208]Chen J F and Jahn B M.Crustal evolution of southeastern China:Nd and Sr isotopic evidence[J].Tectonophysics,1998,184:101~133.
    [209]Hong D W, Xie X L and Zhang J S.Isotopie geochemistry of granitoids in South China and their metallogeny[J].Resource Geology,1998,48:251~264.
    [210]Li X X, Chun S L, Zhou H W, et al.Jurassic intraplate magmatism in southern Hunan-eastern Guangxi:40Ar-39Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China[J].Geol.Soc.London Spec, Publ.,2004,226:193~215.
    [211]李献华.华南白垩纪岩浆活动与岩石圈伸展—地质年代学与地球化学限制[A].中国科学院地球化学研究所.资源环境与可持续发展[C].北京:科学出版社,1999,264~275.
    [212]谢桂青.中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探—以江西省为例[D].贵阳:中国科学院地球化学研究所,2003,1~128.
    [213]肖惠良,陈乐柱,鲍晓明,等.南岭东段钨锡多金属矿床地质特征、成矿模式及找矿方向[J].资源调查与环境,2011,32(2):107~119.
    [214]Taylor S R.Trace element abundances and the chondritic earth model[J].Geochim Cosmochim,1964, Acta 28:1989~1998.
    [215]黎彤,饶纪龙.中国岩浆岩的平均化学成分[J].地质学报,1963,43(3):271~280.
    [216]胡瑞忠,金景福.贵东花岗岩中煌斑岩的成因[J].矿物岩石,1990,10(4):1~7.
    [217]王学成.贵东岩体地质地球化学特征及339矿床成因研究(D).南京:南京大学地球科学系,1986.
    [218]陈郑辉,王登红,屈文俊,等.赣南崇义地区淘锡坑钨矿的地质特征与成矿时代[J].地质通报,2006,25(4):496~501.
    [219]付建明,李华芹,屈文俊,等.湘南九嶷山大坳钨锡矿的Re-Os同位素定年研究[J].中国地质,2007,34(4):651~656.
    [220]李红艳,毛景文,孙亚利.柿竹园钨多金属矿床的Re-Os同位素等时线年龄研究[J].地质论评,1996,42(3):261~267.
    [221]Peng J T, Zhou M F, Hu R Z, et al.,Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China[J].Mineralium Deposita,2006,41:661~669.
    [222]Yuan Shunda, Peng Jiantang, Shen Nengping, Hu Ruizhong and Dai Tongmo.40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic ore field in southern Hunanand its geological implications. Acta Geologica Sinica,2007,81 (2):278~286.
    [223]马丽艳,路远发,屈文俊等,.南黄沙坪铅锌多金属矿床的Re-Os同位素等时线年龄及地质意义[J].矿床地质,2007,26(4):597~618.
    [224]彭建堂,胡瑞忠,毕献武,等,湖南芙蓉锡矿床同位素年龄及地质意[J].矿床地质,2007,26:237~248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700