用户名: 密码: 验证码:
生物医用超细晶钛合金及其表面改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强度、低弹性模量且不含有害元素的医用钛材的成分、组织结构优化及其表面改性成为当前生物医用植入材料领域的研究热点之一。超细晶/纳米晶结构钛和钛合金由于其优良的力学相容性和生物相容性,在硬组织修复材料领域具有广阔的应用前景。植入体表面的活化处理和多孔结构设计可诱导骨组织向内生长,增加界面结合强度、加快骨修复进程,从而改善治疗效果。超细晶/纳米晶结构钛和钛合金的制备工艺、微观结构、细化机制和化学/电化学反应特性等值得深入研究。
     为了研发兼备优良力学性能和表面性能的硬组织替代材料,本文在超细晶钛合金的制备、表征、表面改性及其理论探讨等方面做了如下工作:
     1.制备了3种超细晶钛材,对材料的微观结构、形成机理、力学性能、热稳定性及其在模拟体液中的耐蚀性能进行研究,分析其用于硬组织替代材料的可行性。钛表面高能喷丸(HESP)处理工艺制备了表面粗糙度(Ra)-4.8μm、厚度>40μm、晶粒直径(D)-100nm的超细晶层。由OM、XRD、TEM和HRTEM逐层分析变形层微观结构和应力分布的结果表明:高能喷丸处理中,钛表层剧烈塑性变形,首先产生一定量位错,随后变形以孪生为主,产生多系孪晶且发生强烈交割作用,使晶粒不断细化,最终在大的应变量、高应变速率和多方向重复载荷作用下,形成等轴状、随机取向的纳米-亚微米晶粒。经450℃退火处理的样品晶粒尺寸增加不明显,晶体缺陷减少。由于HESP样品表面粗糙度增加、存在宏观缺陷,表面层(0-40μm)在模拟体液中的耐蚀性能有所下降;次表层(40-70μm)内部存在大量非平衡态的界面和位错等,易形成钝化膜,耐蚀抗力改善,但钝态稳定性较差。通过等径角挤压(ECAP)工艺制备了在横截面方向晶粒直径约为200nm、强度增加到1050 MPa的大块超细晶纯钛。经热轧及后续冷轧制备的纳米α+β双相Ti2448钛合金板材达到高强度(~1150 MPa)和低弹性模量(~65 GPa)的最佳结合,且不引入有害合金元素。
     2.采用在(CH3COO)2Ca·H2O和NaH2PO4·2H2O混合电解液中的微弧氧化处理工艺,在超细晶ECAP Ti上制备含羟基磷灰石(HA)的多孔结构生物活性氧化层。通过SEM、EDX、XRD、XPS、TEM和EELS等测试手段,对比研究经不同反应时间超细晶钛和粗晶钛表面氧化层的相组成、成份、表面形貌、厚度及微观结构等,分析多孔活性氧化层的形成机理,揭示晶粒细化对微弧氧化行为的影响:含有大量非平衡态的缺陷和晶界的超细晶结构提高了氧、钙、磷等元素的扩散能力,加速了晶态钙磷化合物的生成。相同条件下,超细晶钛表面氧化层的钙、磷含量和钙磷比明显高于粗晶钛上的。经20 min反应的细晶钛表面氧化层中形成纳米晶HA和α-Ca3(PO4)2相,在模拟体液中浸泡2天即可形成类骨磷灰石层,表明其具有优良的生物活性。通过纳米压痕仪和EBSD研究超细晶钛在微弧氧化过程中的热稳定性:对比原始ECAP Ti,20 min反应后的钛基体硬度下降8%到~2.9 GPa,但仍远高于粗晶钛的~1.5 GPa。超细晶ECAP Ti经过合适的微弧氧化处理可获得力学性能和表面生物学性能俱佳的硬组织植入材料。
     3.在100℃的5 mol/L NaOH溶液中处理的HESP Ti与CP Ti表面均形成颗粒状的钛酸钠。HESP工艺提高钛表面在碱液中的反应活性,表面颗粒大且多,加速了碱热处理钛表面HA的沉积速度;较大的表面粗糙度提高了矿化层与基体的结合力;在90℃下经5 mol/L NaOH溶液处理的两类钛表面均形成纳米网状结构。两类样品改性层的表面形貌及矿化能力差异不明显:在模拟体液中浸泡14天,样品表面均形成半球状的HA颗粒;HESP Ti表面的HA颗粒较大,某些区域已扩展成层。
     由Ca(NO3)2·4H2O和P2O5制备前驱溶液,采用溶胶-凝胶法制备高结晶度的晶粒尺寸为5-10 nm的高纯HA粉末。在HESP Ti表面涂覆的HA层与基体的拉伸强度可达18.0MPa,拉伸时于HA层内部断裂,可见基层结合力大于18.0 MPa。CP Ti基体与HA层的结合力为9.0 MPa,断口在基层的界面处。HESP Ti表面涂层由于其细小的针状组织而具良好的抗凝血性能;
     高能喷丸超细晶预处理促进晶态α-Ca3(PO4)2在微弧氧化过程中在钛表面的形成,有效改善表面生物活性;粗糙钛表面上形成的氧化层与基体具有微机械咬合作用,可提高基体和氧化层的结合力。
     4.在Ti2448钛合金表面采用微弧氧化法制备含钙、磷元素的多孔氧化层,材料的腐蚀性能、血液相容性等得到改善,基体的力学性能保持稳定(硬度下降3%、弹性模量基本不变),但其生物活性改善不明显。为进一步提高钛合金表面氧化层的生物活性,通过后续浓碱处理在其上制备纳米结构的钛酸钠层(孔径~100 nm),氧化层中磷元素溶解。通过SEM、EDX、XRD和XPS等分析碱处理对氧化层组织、成分和形貌等的影响。在模拟体液中的矿化试验表明,表层Na+和溶液中H3O+交换,形成了Ti-OH,表面带负电,促进了Ca2+和PO43-交替吸附,依次形成钛酸钙、磷酸钙和磷灰石。在矿化过程中,微弧氧化层中的高含量的Ca2+易扩散到模拟体液中,保持体液中Ca2+的过饱和度,从而增加磷灰石生长动力。经20 min氧化及碱处理样品在模拟体液中浸泡10天即可产生类骨磷灰石层,体现出良好生物活性。建立了微弧氧化及后续碱处理工艺的生物活化机制和在模拟体液中的矿化模型。
The improvement of chemical composition and microstructure, surface modification of titanium alloys with high strength and low elastic elastic modulus without the addition of harmful alloying elements have been widely investigated recently for biomedical implants applications. Ultrafine-grained titanium and titanium alloys, owing to their superior bio-conductibility and biocompatiblity, are usually frequently used for orthopedic and dental implants. The preparation process, microstructure, mechanism of grain refinement and response characteristics of ultrafine-grained/nano-crystaline titanium alloys during chemical and electrochemical reaction for surface modification were investigated:
     1. Three kinds of ultrafine-grained titanium materials were preduced by severe plastic deformation and alloying processes. An ultrafine-grained surface layer up to 40μm thick was formed on commercially pure (CP) titanium by means of the High energy shot peening (HESP) process. The microstructural features of the HESP Ti surface layer were systematically characterized by cross-sectional optical microscopy observations, transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) investigations. The grain refinement mechanism of the surface layer during the HESP will be analyzed:Firstly, a great deal of dislocations and twin crystals were formed in due order, while severe plastic deformation of the Ti surface layer; After that, the grain size of Ti decreased owing to the interwoven twin crystals cross each other; Finally grains further refined and equiaxed nano-crystaline or sub-micro grains were producted under high-frequency and multi-directional loading. The grain size stability can be maintained up to 450℃, crystal defects decrease after annaling at 450℃. Corrosion resistance of the HESP Ti surface layer with depth within 40μm in SBF was decreased because surface roughness increase and macroscopic defect exist. Accordingly, passive film forming ability and corrosion resistance of subsurface (depth within 40~70μm) enhanced evidently due to their high defect density and a large number of high-energy grain and sub-grain boundaries, which stored a large excess enery as extra driving force. Equal channel angular pressing (ECAP) results in ultrafine-grained (200~500 nm) Ti with superior mechanical properties without harmful alloying elements, which benefits medical implants.
     2. To further improve the bioactivity of Ti surfaces, Ca/P-containing porous titania coatings were prepared on ultrafine-grained and coarse-grained Ti by micro-arc oxidation (MAO) in electrolyte mixed with (CH3COO)2Ca·H2O and NaH2PO4·2H2O. The phase identification, composition, morphology and microstructure of the coatings and the thermal stability of ultrafine-grained Ti during MAO were investigated subsequently. The enhanced diffusivity of O, Ca, P and the improvement of the chemical reactivity of Ti may originate from a large volume fraction of non-equilibrium grain boundaries (GBs)/sub-GBs and a considerable amount of defects density (dislocation) in the present ultrafine-grained Ti sample processed by means of the ECAP technique.The amounts of Ca, P and the Ca/P ratio of the coatings formed on ultrafine-grained Ti were higher than those on coarse-grained Ti. Nanocrystalline hydroxyapatite (HA) and a-Ca3(PO4)2 phases appeared in the MAO coating formed on ultrafine-grained Ti for 20 min (E20). Incubated in a simulated body fluid, bone-like apatite was completely formed on the surface of E20 for 2 days, as evidence of preferable bioactivity. Compared with initial ultrafine-grained Ti, the microhardness of the E20 substrate was reduced by 8% to 2.9 GPa, which is considerably higher than that of coarse-grained Ti (~1.5 GPa). Therefore, the reuslts clearly demonstrate that the MAO coating formed on the ECAP-treated Ti exhibits an optimum combination of mechanical and bioactivity.
     3. The CP Ti and HESP Ti specimens were soaked in 5 mol/L solution of NaOH at temperatures of 100℃and 90℃. Lots of granular sodium titanate was formed on their surfaces at 100℃. The HESP process enhanced the chemical reactivity of the Ti, the sodium titanate particles become larger in size and amount. The acceleration in the rate of apatite formation is significant, as it should allow for earlier load bearing of prostheses following implantation. Surface roughness increasement narrowed the coating cracks, and enhanced the cohesion between the substrate and coating. A thin nano-porous network structural sodium titanate layer formed on the two kinds of substrate by the NaOH treatment at 90℃. Hemispherical HA deposition formed on the treated Ti surface when immersed in SBF for 14 days. The larger HA particles formed on the HESP Ti, which have already spread out and become layer on some areas.
     Nano-crystaline HA powders with grain size of 5-10 nm and HA coatings on HESP Ti and CP Ti were prepared by the sol-gel technique using Ca(NO3)2·4H2O and P2O5 as calcium and phosphorus precursors, respectively. The coating layer formed on HESP Ti was porous, and adhered to HESP Ti substrate strongly with adhesion strength of about 18.0 MPa. Adhesion strength between HA coating and CP Ti was 9.0 MPa. The coating on HESP Ti has better anticoagulant property, because of their small acicular structrue.
     To improve the bioactivity of Ti surfaces, porous titania coating were prepared on HESP and CP Ti by MAO. The phase identification, thickness, composition and morphology of the coating were analyzed. The amounts of Ca, P and Ca/P ratio of the MAO coating formed on the HESP-treated Ti were higher than those of CP Ti obviously. The a-Ca3(PO4)2 phase appeared in H10 MAO coating. Due to roughness of HESP Ti increased, the oxidation rate is different in different locations, which leads the micro-mechanical occlusion and cohesion improvement between substrate and coating.
     4. Nanostructured Ti2448 alloy (Ti-24Nb-4Zr-7.9Nb), which contains no harmful elements and has an elastic modulus close to human bone and high strength, the alloy has been processed by MAO in a solution containing Ca/P. The corrosion resistance, hemocompatibility of Ti2448 alloy with composite coatings was superior evidently to that with merely MAO film, but the influence of MAO process on the bioactivity improvment of the Ti2448 alloy substrate is not quite obvious. To further improve bioactivity of Ti2448 alloys, a surface layer containing porous titania and sodium titanate is successfully formed by subsequent Alkline treatment. The phase identification, composition and morphology of the MAO coatings before and after alkaline treatment (MAO-A) were analyzed by XRD, SEM equipped with EDX and XPS. The amounts of Ca, P in MAO coating increased with increasing oxidation time, but the P element dissolved into the NaOH solution after alkaline treatment. It was demonstrated that alkaline treatment significantly improves the bioactivity of coatings as compared with MAO alone. Soaking in the SBF, Na+ ions in the MAO-A samples were release via exchange with the H3O+ ions in the fluid to form Ti-OH (Nb-OH) groups, which accelerated the nucleation of hydroxyapatite in SBF. Compared with sample T05A, which contains 3.6% Ca, incubated in SBF within 7 days, bone-like apatite was formed on sample T20A (contains 12% Ca), together with improved bioactivity. Mineralization experiments show that a high concentration of Ca in the MAO coating leads to a preferred release into SBF to keep its high consistency of Ca2+ and leads to accelerated growth of hydroxyapatite.
引文
[1]Stupp S I, Braun P V. Molecular manipulation of microstructures:biomaterials, ceramics, and semiconductors. Science,1997,277:1242-1248.
    [2]郑金斌.专家建议应大力发展生物材料产业.科学时报,2009-5-18(B4).
    [3]Ishaug-Riley S L, Crane G M, Gurlek A, et al. Ectopic bone formation by marrow stromal osteoblast transplantation using poly (DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. Journal of Biomedical Materials Research,1997,36 (1):1-8.
    [4]Hench L L, Wilson J. Surface-active biomaterials. Science,1984,226:630.
    [5]Jarcho M, Bolen C H, Thomas M B et al. Hydroxylapatite synthesis and characterization in dense polycrystalline form. Journal of Materials Science,1976,11(11):2027-2035.
    [6]Hench L L, Bioceramics-from concept to clinic. Journal of the American Ceramic Society,1991,74(7): 1487-1510.
    [7]Burg K J L, Porter S, Kellam J F. Biomaterial developments for bone tissue engineering. Biomaterials, 2000,21(23):2347-2359.
    [8]Polmear I J. Titanium alloys.//Light alloys.London:Edward Pub,1981:162.
    [9]Leyens C, Peters M. Titanium and titanium alloys:fundamentals and applications. Weinheim:WILEY, 2005.
    [10]Wang K. The use of titanium for medical applications in the USA. Materials Science and Engineering A,1996,213(1-2):134-137.
    [11]Dubruille J H, Viguier E, Naour G L, et al. Evaluation of combinations of titanium, zirconia, and alumina implants with 2 bone fillers in the dog. The International Journal of Oral and Maxillofacial Implants,1999,14(2):271-277.
    [12]Jinno T, Goldberg V M, Davy D, et al. Osseointegration of surface-blasted implants made of titanium alloy and cobalt-chromium alloy in a rabbit intramedullary model. Journal of Biomedical Materials Research,1998,42(1):20-29.
    [13]Guglielmotti M B, Renou S, Cabrini R L. A histomorphometric study of tissue interface by laminar implant test in rats. The International Journal of Oral and Maxillofacial Implants,1999,14(4):565-570.
    [14]Hure G, Donath K, Lesourd M, et al. Does titanium surface treatment influence the bone-implant interface? SEM and histomorphometry in a 6-month sheep study. The International Journal of Oral and Maxillofacial Implants,1996,11(4):506-511.
    [15]Kienapfel H, Sprey C, Wilke A, et al. Implant fixation by bone ingrowth. The Journal of Arthroplasty, 1999,14(3):355-368.
    [16]Suzuki K, Aoki K, Ohya K. Effects of surface roughness of titanium implants on bone remodeling activity of femur in rabbits. Bone,1997,21(6):507-514.
    [17]Wennerberg A, Albrektsson T, Andersson B. An animal study of c.p. titanium screws with different surface topographies. Journal of Materials Science:Materials in Medicine,1995,6:302-309.
    [18]Grizon F, Aguado E, Hure G, et al. Enhanced bone integration of implants with increased surface roughness:a long term study in the sheep. Journal of Dental Research,2002,30(5-6):195-203.
    [19]Lamolle S F, Monjo M, Rubert M, et al. The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials,2009,30(5): 736-742.
    [20]Agins H J, Alcock N W, Bansal M, et al. Metallic wear in failed titanium-alloy total hip replacements-a histological and quantitative analysis. The Journal of Bone and Joint Surgery,1988,70(3):347-356.
    [21]Witt J D, Swann M. Metal wear and tissue response in failed titanium alloy total hip replacements. Journal of Bone and Joint Surgery-British Volume,1991,73(4):559-563.
    [22]Strietzel R, Hosch A, Kalbfleisch H, et al. In vitro corrosion of titanium. Biomaterials,1998,19(16): 1495-1499.
    [23]Long M, Rack H J. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials,1998,19(18):1621-1639.
    [24]Zatta P F, Alfrey A C. Aluminum toxicity in infants'health and disease. London:World Scientific, 1997.
    [25]Macky E A, Becker P R, Demiralp R. Bioaccumulation of vanadium and other trace metals in livers of Alaskan cetaceceans and pinniples. Archives of environmental contamination and toxicology,1996,30: 503-512.
    [26]Sabbioni E, Kueera J, Pietra R. A critical review on normal concentrations of vanadium in human blood, serum and urine. The science of the total environmental,1996,188:49-58.
    [27]Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering A,1998,243(1-2):244-249.
    [28]Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science,2000,45(2):103-189.
    [29]Valiev R Z, Alexandrov I V, Zhu Y T, et al. Paradox of strength and ductility in metals processed by severe plastic deformation. Journal of Materials Research,2002,17(1):5-8.
    [30]Valiev R Z, Ivanisenko Y V, Rauch E F, et al. Structure and deformation behaviour of armco iron subjected to severe plastic deformation. Acta Materialia,1996,44(12):4705-4712.
    [31]Zhilyaev A P, Nurislamova G V, Kim B K, et al. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Materialia,2003,51(3): 753-765.
    [32]Jiang H G, Zhu Y T, Butt D P, et al. Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2000,290(1-2):128-138.
    [33]Ivanisenko Y, Lojkowski W, Valiev R Z, et al. The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion. Acta Materialia,2003,51(18): 5555-5570.
    [34]Ivanisenko Y, Valiev R Z, Fecht, H J. Grain boundary statistics in nano-structured iron produced by high pressure torsion. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2003,390(1-2):159-165.
    [35]Shinde V D, Chakrabarti A K, Ray K K. A study on multiple microalloyed forging grade steels. Steel Research,2002,73(11):491-497.
    [36]Guo Q, Yan H G, Chen Z H, et al. Effect of multiple forging process on microstructure and mechanical properties of magnesium alloy AZ80. Acta Metallurgica Sinica,2006,42, (7):739-744.
    [37]Richert M, Stuwe H P, Zehetbauer M J, et al. Work hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2003,355(1-2):180-185.
    [38]Lin J B, Wang Q D, Peng L M, et al. Microstructure and high tensile ductility of ZK60 magnesium alloy processed by cyclic extrusion and compression. Journal of Alloys and Compounds,2009,476(1-2): 441-445.
    [39]Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science,2006,51(7):881-981.
    [40]Gholinia A, Prangnell P B, Markushev M V. The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE. Acta Materialia,2000, 48(5):1115-1130.
    [41]Stolyarov V V, Zhu Y T, Alexandrov I V, et al. Influence of ECAP routes on the microstructure and properties of pure Ti. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2001,299(1-2):59-67.
    [42]Yamashita A, Horita Z, Langdon T G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2001,300(1-2):142-147.
    [43]Ferrasse S, Segal V M, Hartwig K T, et al. Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,1997,28(4):1047-1057.
    [44]Stolyarov V V, Zhu Y T, Lowe T C, et al. Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2001,303(1-2):82-89.
    [45]Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials-Development of the accumulative roll-bonding (ARB) process. Acta Materialia,1999,47(2):579-583.
    [46]Saito Y, Tsuji N, Utsunomiya H, et al. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scripta Materialia,1998,39(9):1221-1227.
    [47]Terada D, Inoue S, Tsuji N. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process. Journal of Materials Science,2007,42(5):1673-1681.
    [48]Huang J Y, Zhu Y T, Jiang H, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Materialia,2001,49(9):1497-1505.
    [49]Huang J Y, Zhu Y T, Alexander D J, et al. Development of repetitive corrugation and straightening. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2004, 371(1-2):35-39.
    [50]Rajinikanth V, Arora G, Narasaiah N, et al. Effect of repetitive corrugation and straightening on Al and Al-0.25Sc alloy. Materials Letters,2008,62(2):301-304.
    [51]Lu K, Lv J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. Journal of Materials Science and Technology,1999,15(3):193-197.
    [52]Lu K, Lv J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2004,375:38-45.
    [53]Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of alpha-titanium using SMAT. Acta Materialia,2004,52(14):4101-4110.
    [54]Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Materialia,2002,50(18):4603-4616.
    [55]Liu G, Wang S C, Lou X F, et al. Low carbon steel with nanostructured surface layer induced by high-energy shot peening. Scripta Materialia,2001,44(8-9):1791-1795.
    [56]Tong W P, Tao N R, Wang Z B, et al. Nitriding Iron at lower temperatures. Science,2003,299: 686-688.
    [57]Wang Z B, Tao N R, Tong W P, et al. Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment. Acta Materialia,2003,51 (14):4319-4329.
    [58]Roland T, Retraint D, Lu K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Materialia,2006,54 (11): 1949-1954.
    [59]Zhang X N. Patent No.200510027155.5 (2006).
    [60]Segal V M. USSR Patent No.575892 (1977).
    [61]Segal V M, Reznikov V I, Drobyshevskiy A E, et al. Plastic working of metals by simple shear. Russian Metall,1981,1:115.
    [62]Vinogradov A, Miyamoto H, Mimaki T, et al. Corrosion, stress corrosion cracking and fatigue of ultra-fine grain copper fabricated by severe plastic deformation. Annales de Chimie Science des Materiaux, 2002,27(3):65-75.
    [63]Yamasaki T, Miyamoto H, Mimaki T, et al. Stress corrosion cracking susceptibility of ultra-fine grain copper produced by equal-channel angular pressing. Materials Science and Engineering A,2001,318(1-2): 122-128.
    [64]Chung M K, Choi Y S, Kim J G, et al. Effect of the number of ECAP pass time on the electrochemical properties of 1050 Al alloys. Materials Science and Engineering A,2004,366(2):282-291.
    [65]Balyanov A, Kutnyakova J, Amirkhanova N A, et al. Corrosion resistance of ultra fine-grained Ti. Scripta Materialia,2004,51(3):225-229.
    [66]Hao Y L, Li S J, Sun B B, et al. Ductile titanium alloy with low poisson's ratio. Physical Review Letters,2007,98(21):216405-216408.
    [67]Hao Y L, Li S J, Sun S Y, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. Acta Biomaterialia,2007,3(2):277-286.
    [68]Sheeja D, Tay B K, Nung L N. Feasibility of diamond-like carbon coatings for orthopaedic applications. Diamond and Related Materials,2004,13(1):184-190.
    [69]Liu X M, Wu X L, Chu P K. In vitro corrosion behavior of TiN layer produced on orthopedic nickel-titanium shape memory alloy by nitrogen plasma immersion ion implantation using different frequencies. Surface and Coatings Technology,2008,202(11):2463-2466.
    [70]Wiora M, Briihne K, Floter A, et al. Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD. Diamond and Related Materials,2009,18(5-8):927-930.
    [71]Ong J L, Chan C N. Hydroxyapatite and their use as coatings in dental implants:a review. Critical Reviews in Biomedical Engineering,1999,28:667-707.
    [72]Herman H. Plasma spraydeposition processes. MRS Bull,1988,12:60-7.
    [73]Khor K A, Gu Y W, Pan D, et al. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings. Biomaterials,2004,25(18):4009-4017.
    [74]Zheng X B, Huang M H, Ding C X. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials,2000,21(8):841-849.
    [75]Filiaggi M J, Coombs N A, Pilliar R M. Characterization of the interface in the plasma-sprayed HA coating/Ti-6Al-4V implant system. Journal of Biomedical Materials Research,1991,25(10):1211-29.
    [76]Cui F Z, Luo Z S. Biomaterials modification by ion-beam processing. Surface and Coatings Technology,1999,112(1-3):278-285.
    [77]Luo Z S, Cui F Z, Feng Q L, et al. In vitro and in vivo evaluation of degradability of hydroxyapatite coatings synthesized by ion beam-assisted deposition. Surface and Coatings Technology,2000,131(1-3): 192-195.
    [78]Katto M, Nakamura M, Tanaka T, et al. Hydroxyapatite coatings deposited by laser-assisted laser ablation method. Applied Surface Science,2002,197-198:768-771.
    [79]Katto M, Kurosawa K, Yokotani A, et al. Poly-crystallized hydroxyapatite coating deposited by pulsed laser deposition method at room temperature. Applied Surface Science,2005,248(1-4):365-368.
    [80]Ding S J. Properties and immersion behavior of magnetron-sputtered multi-layered hydroxyapatite/ titanium composite coatings. Biomaterials,2003,24(23):4233-4238.
    [81]Hsieh M, Perng L H, Chin T S. Hydroxyapatite coating on Ti6Al4V alloy using a sol-gel derived precursor. Materials Chemistry and Physics,2002,74(3):245-250.
    [82]Cheng K, Zhang S, Weng W J. The F content in sol-gel derived FHA coatings:an XPS study. Surface and Coatings Technology,2005,198(1-3):237-241.
    [83]Cheng K, Zhang S, Weng W J, et al. The adhesion strength and residual stress of colloidal-sol gel derived β-Tricalcium-Phosphate/Fluoridated-Hydroxyapatite biphasic coatings. Thin Solid Films,2008, 516(10):3251-3255.
    [84]Kuo M C, Yen S K. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Materials Science and Engineering C,2002,20(1-2):153-160.
    [85]Zhitomirsky I. Electrophoretic hydroxyapatite coatings and fibers. Materials Letters,2000,42(4): 262-271.
    [86]Stoch A, Brozek A, Kmita G, et al. Electrophoretic coating of hydroxyapatite on titanium implants. Journal of Molecular Structure,2001,596(1-3):191-200.
    [87]Nishiguchi S, Kato H, Fujita H, et al. Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials,2001,22(18):2525-2533.
    [88]Lu X, Leng Y, Zhang X D, et al. Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo. Biomaterials,2005,26(14):1793-1801.
    [89]Feng B, Chen J Y, Qi S K, et al. Carbonate apatite coating on titanium induced rapidly by precalcification. Biomaterials,2002,23(1):173-179.
    [90]Guntherschulze A, Betz H. Neue Untersuchungen uber die elektrolytische Ventilwirkung. Zeitschrift fur Physik,1932,78:196-210.
    [91]Guntherschulze A, Betz H. Die Elektronenstromung in Isolatoren bei extremen Feldstarken. Zeitschrift fur Physik,1934,91:70-96.
    [92]Dittrich H H, Krysmann W, Kurze P, et al. Structure and properties of ANOF Layers. Crystal Research and Technology,1984,19(1):93-99.
    [93]Brown S D, Kuna K J, Tranbaov. Anodic spark deposition from aqueous solutions of NaAlO2 and Na2Si03. Journal of the American ceramic socity,1971,54(8):384-387.
    [94]Van T B, Brown S D, Wirtz G P. Mechanism of anodic spark deposition. The Bulletin of the American Ceramic Society,1977,56(6):563-566.
    [95]Wirtz G P, Brown S D, Kriven W M. Ceramic coatings by anodic spark depostion. Materials and Manufacturing Processes,1991,6(1):87-115.
    [96]Krysmann W, Kurze P, Dittrich K H, et al. Process characteristics and parameters of anodic oxidation by spark discharge (ANOF). Crystal Research and Crystal Technology,1984,19(7):973-979.
    [97]Kurze P, Krysmann W, Schreckenbach J, et al. Coloured ANOF layers on aluminium. Crystal Research and Crystal Technology,1987,22(1):53-58.
    [98]Kurze P. Magnesiumlegierungen elektrochemisch beschichten. Metalloberflache,1994,48(2): 104-105.
    [99]Chu P K, Jin F, Xu G D, et al. Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes. Materials Science and Engineering A-Structural Materials:Properties, Microstructure and Processing,2006,435-436: 123-6.
    [100]Timoshenko A V, Opara B K, Kovalev A F. Microarc oxidation D16T alloy with alternating-current in an alkali electrolyte. Protection of Metals,1991,27(3):340-346.
    [101]Timoshenko A V, Magurova Y V. Microplasma oxidation of Al-Cu alloys. Protection of Metals, 1995,31(5):474-481.
    [102]Yang X Z, He Y D, Wang D R, et al. Cathodic micro-arc electrodeposition of thick ceramic coatings. Electrochemical and Solid State Letters,2002,5(3):C33-C34.
    [103]Sul Y T, Johansson C B, Kang Y M, et al. Bone reactions to oxidized titanium implants with electrochemical anion sulphuric acid and phosphoric acid incorporation. Clinical Implant Dentistry and Related Research,2002,4(2):78-87.
    [104]Guo H F, An M Z, Huo H B, et al. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions. Applied Surface Science,2006, 252(22):7911-7916.
    [105]Lv G H, Gu W C, Chen H A, et al. Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte. Applied Surface Science,2006,253(5): 2947-2952.
    [106]Zheng H Y, Wang Y K, Li B S, et al. The effects of Na2WO4 concentration on the properties of microarc oxidation coatings on aluminum alloy. Materials Letters,2005,59(2-3):139-142.
    [107]Kim D Y, Kim M, Kim H E, et al. Formation of hydroxyapatite within porous TiO2 layer by micro-arc oxidation coupled with electrophoretic deposition. Acta Biomaterialia,2009,5(6):2196-2205.
    [108]Rudnev V S, Yarovaya T P, Boguta D L, et al. Anodic spark deposition of P, Me(Ⅱ) or Me(Ⅲ) containing coatings on aluminium and titanium alloys in electrolytes with polyphosphate complexes. Journal of Electroanalytical Chemistry,2001,497(1-2):150-158.
    [109]Patcas F, Krysmann W, Honicke D, et al. Preparation of structured egg-shell catalysts for selective oxidations by the ANOF technique. Catalysis Today,2001,69(1-4):379-383.
    [110]Guo H F, An M Z. Effect of surfactants on surface morphology of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation. Thin Solid Films,2006,500(1-2):186-189.
    [111]Xin S G, Jiang Z H, Wang F P, et al. Effect of current density on Al alloy microplasma oxidation. Journal of Materials Science and Technology,2001,17(6):654-660.
    [112]Yang G L, Lv Y Y, Bai Y Z, et al. The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating. Journal of Alloys and Compounds,2002, 345(1-2):196-200.
    [113]Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering. Surface and Coatings Technology,1999,122:73-93.
    [114]Yerokhin A L, Nie X, Leyland A, et al. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy. Surface and Coatings Technology,2000,130(2-3):195-206.
    [115]Nie X, Leyland A, Matthews A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surface and Coatings Technology,2000,125(1-3):407-414.
    [116]Nie X, Meletis E I, Jiang J C, et al. Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surface and Coatings Technology,2002:149(2-3):245-251.
    [117]Yerokhin A L, Shatrov A, Samsonov V, et al. Fatigue properties of Keronite(?) coatings on a magnesium alloy. Surface and Coatings Technology,2004,182(1):78-84.
    [118]Verdier S, Boinet M, Maximovitch S, et al. Formation, structure and composition of anodic films on AM60 magnesium alloy obtained by DC plasma anodising. Corrosion Science,2005,47(6):1429-1444.
    [119]Meyer S, Gorges R, Kreisel G. Preparation and characterisation of titanium dioxide films for catalytic applications generated by anodic spark deposition. Thin Solid Films,2004,450(2):276-281.
    [120]Monfort F, Berkani A, Matykina E, et al. Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte. Corrosion Science,2007,49(2):672-693.
    [121]Barchiche C E, Rocca E, Juers C, et al. Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods. Electrochimica Acta,2007,53(2):417-425.
    [122]Matykina E, Arrabal R, Skeldon P, et al. Plasma electrolytic oxidation of a zirconium alloy under AC conditions. Surface and Coatings Technology,2010,204(14):2142-2151.
    [123]Li Y, Lee I S, Cui F Z, et al. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials,2008,29(13):2025-2032.
    [124]Han Y, Chen D H, Sun J F, et al. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings. Acta Biomaterialia,2008,4(5):1518-1529.
    [125]Li L H, Kong Y M, Kim H W, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials,2004,25(14):2867-2875.
    [126]Sul Y T. The significance of the surface properties of oxidized titanium to the bone response:special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials,2003,24(22): 3893-3907.
    [127]Chen Z, Jin M C, Zhen C, et al. Properties of modified Anodic-spark-deposited alumina porous ceramic films as humidity sensors. Journal of the American Ceramic Society,1991,74(6):1325-1330.
    [128]Guo H F, An M Z. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance. Applied Surface Science,2005, 246(1-3):229-238.
    [129]Tian J, Luo Z Z, Qi S K, et al. Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy. Surface and Coatings Technology,2002,154(1):1-7.
    [130]Snezhko L A, Pavlus S G, Tchernenko V I. Zashch Metal,1984,20(4):292.
    [131]Xue W B, Wang C, Chen R Y, et al. Structure and properties characterization of ceramic coatings produced on Ti-6A1-4V alloy by microarc oxidation in aluminate solution. Materials Letters,2002,52(6): 435-441.
    [132]Wu X H, Jiang Z H, Liu H L, et al. Photo-catalytic activity of titanium dioxide thin films prepared by micro-plasma oxidation method. Thin Solid Films,2003,441(1-2):130-134.
    [133]Wang Y M, Lei T Q, Jiang B L, et al. Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate-containing solution. Applied Surface Science,2004, 233(1-4):258-267.
    [134]Ishizawa H, Ogino M. Formation and characterization of anodic titanium oxide coatings containing Ca and P. Journal of Biomedical Materials Research,1995,29(1):65-72.
    [135]Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide coatings containing Ca and P by hydrothermal treatment. Journal of Biomedical Materials Research, 1995,29(9):1071-1079.
    [136]Ishizawa H, Ogino M. Hydrothermal precipitation of hydroxyapatite on anodic titanium oxide films containing Ca and P. Journal of Materials Science,1999,34:5893-5898.
    [137]Han Y, Hong S H, Xu K W. Structure and in vitro bioactivity of titania-based coatings by micro-arc oxidation. Surface and Coatings Technology,2003,168(2-3):249-258.
    [138]Song W H, Jun Y K, Han Y, et al. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials,2004,25(17):3341-3349.
    [139]Huang P, Xu K W, Han Y. Preparation and apatite layer formation by plasma electrolytic oxidation on titanium for biomedical application. Materials Letters,2005,59(2-3):185-189.
    [140]Sun J F, Han Y, Huang X. Hydroxyapatite coatings prepared by micro-arc oxidation in Ca-and P-containing electrolyte. Surface and Coatings Technology,2007,201(9-11):5655-5658.
    [141]Kim M S, Ryu J J, Sung Y M. One-step approach for nanocrystalline hydroxyapatite coating on titanium via micro-arc oxidation. Electrochemistry Communications,2007,9(8):1886-1891.
    [142]Nie X, Leyland A, Matthews A, et al. Effects of solution pH and electrical parameters on hydroxyapatite coatings deposited by a plasma-assisted electrophoresis technique. Journal of Biomedical Materials Research,2001,57(4):612-618.
    [143]Zhu X L, Kim K H, Jeong Y S. Anodic oxide coatings containing Ca and P of titanium biomaterial. Biomaterials,2001,22(16):2199-2206.
    [144]Wei D Q, Zhou Y, Jia D C, et al. Characteristic and in vitro bioactivity of a microarc-oxidized TiO2-based coating after chemical treatment. Acta Biomaterialia,2007,3(5):817-827.
    [145]Yang B C, Uchida M, Kim H M, et al. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials,2004,25(6):1003-1010.
    [146]Das K, Bose S, Bandyopadhyay A. Surface modifications and cell-materials interactions with anodized Ti. Acta Biomaterialia,2007,3(4):573-585.
    [147]Han Y, Hong S H, Xu K W. Synthesis of nanocrystalline titania coatings by micro-arc oxidation. Materials Letters,2002,56(5):744-747.
    [148]Han Y, Xu K W. Photo-excited formation of bone apatite-like coating on micro-arc oxidized titanium. Journal of Biomedical Materials Research,2004,71A(4):608-614.
    [149]范雄.金属X射线学.北京:机械工业出版社,1988:170.
    [150]Stolyarov V V, Zhu Y T, Alexandrov IV, et al. Influence of ECAP routes on the microstructure and properties of pure Ti. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2001,299(1-2):59-67.
    [151]Hao Y L, Yang R. High strength nano-structured Ti-Nb-Zr-Sn alloy. Acta Metallurgica Sinica,2005, 41(11):1183-1189.
    [152]Latysh V, Krallics G, Alexandrov I, et al. Application of bulk nanostructured materials in medicine. Current Applied Physics,2006,6(2):262-266.
    [153]Moskalyk R R, Alfantazi A M. Processing of vanadium:a review. Minerals Engineering,2003,16(9): 793-805.
    [154]Kim W J, Hyun C Y, Kim H K. Fatigue strength of ultrafine-grained pure Ti after severe plastic deformation. Scripta Materialia,2006,54(10):1745-1750.
    [155]Zhao Y H, Liao X Z, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Materialia,2004,52(15): 4589-4599.
    [156]Ivanisenko Y, Kurmanaeva L, Weissmueller J, et al. Deformation mechanisms in nanocrystalline palladium at large strains. Acta Materialia,2009,57(11):3391-3401.
    [157]Todaka Y, Umemoto M, Yamazaki A, et al. Effect of strain path in high-pressure torsion process on hardening in commercial purity titanium. Materials Transactions,2008,49(1):47-53.
    [158]Richert M, Liu Q, Hansen N. Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion-compression. Materials Science and Engineering A,1999,260(1-2): 275-283.
    [159]Stolyarov V V, Zhu Y T, Alexandrov I V, et al. Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Materials Science and Engineering A,2003,343(1-2):43-50.
    [160]Shin D H, Kim I, Kim J, et al. Microstructure development during equal-channel angular pressing of titanium. Acta Materialia,2003,51(4):983-996.
    [161]Vinogradov A, Hashimoto S, Kopylov V. Enhanced strength and fatigue life of ultra-fine grain Fe-36Ni Invar alloy. Materials Science and Engineering A,2003,355(1-2):277-285.
    [162]Sergueeva A V, Stolyarov V V, Valiev R Z, et al. Superplastic behaviour of ultrafine-grained Ti-6A1-4V alloys. Materials Science and Engineering A,2002,323(1-2):318-325.
    [163]Valiev R Z, Semenova I P, Latysh V V, et al. Nanostructured titanium for biomedical applications. Advanced Engineering Materials,2008,10(8):B15-B17.
    [164]Estrin Y, Kasper C, Diederichs S, et al. Accelerated growth of preosteoblastic cells on ultrafine grained titanium. Journal of Biomedical Materials Research A,2008,90A(4):1239-1242.
    [165]Park J W, Kim Y J, Park C H, et al. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomaterialia,2009, 5(8):3272-3280.
    [166]Heimann R B, Wirth R. Formation and transformation of amorphous calcium phosphates on titanium alloy surfaces during atmospheric plasma spraying and their subsequent in vitro performance. Biomaterials, 2006,27(6):823-831.
    [167]Liu X Y, Chu P K, Ding C X. Surface modification of titanium, titanium alloys and related materials for biomedical applications. Materials Science and Engineering R,2004,47(3-4):49-121.
    [168]Xie Y T, Liu X Y, Huang A P, et al. Improvement of surface bioactivity on titanium by water and hydrogen plasma immersion ion implantation. Biomaterials,2005,26(21):6129-6135.
    [169]Kim H W, Kim H E, Knowles J C. Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. Biomaterials,2004,25(17):3351-3358.
    [170]Cheng K, Han G R, Weng W J, et al. Ferreira Sol-gel derived fluoridated hydroxyapatite films. Materials Research Bulletin,2003,38(1):89-97.
    [171]Pham M T, Matz W, Reuther H, et al. Ion beam sensitizing of titanium surfaces to hydroxyapatite formation. Surface and Coatings Technology,2000,128-129:313-319.
    [172]Kim H W, Koh Y H, Li L H, et al. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials,2004,25(13):2533-2538.
    [173]Toworfe G K, Composto R J, Shapiro I M, et al. Nucleation and growth of calcium phosphate on amine-, carboxyl-and hydroxyl-silane self-assembled monolayers. Biomaterials,2006(4),27:631-642.
    [174]Wang Y M, Liang B L, Lei T Q, et al. Microarc oxidation coating formed on Ti6A14V in Na2SiO3 system solution:Microstructure, mechanical and tribological properties. Surface and Coatings Technology, 2006,201(1-2):82-89.
    [175]Li L H, Kim H W, Lee S H, et al. Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating. Journal of Biomedical Materials Research,2005,73A(1):48-54.
    [176]Ryu H S, Song W H, Hong S H. Biomimetic apatite induction of P-containing titania formed by micro-arc oxidation before and after hydrothermal treatment. Surface and Coatings Technology,2008, 202(9):1853-1858.
    [177]Nie X, Leyland A, Matthews A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surface and Coatings Technology,2000,125(1-3):407-414.
    [178]Song W H, Ryu H S, Hong S H. Apatite induction on Ca-containing titania formed by Micro-arc oxidation. Journal of the American Ceramic Society,2005,88(9):2642-2644.
    [179]Matykina E, Arrabal R, Skeldon P, et al. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium. Acta Biomaterialia,2009,5(4):1356-1366.
    [180]Frauchiger V M, Schlottig F, Gasser B, et al. Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials,2004,25(4):593-606.
    [181]Song W H, Jun Y K, Han Y, et al. Biomimetic apatite coating on micro-arc oxidized titania. Biomaterials,2004,25(17):3341-3349.
    [182]Han Y, Sun J, Huang X. Formation mechanism of HA-based coatings by micro-arc oxidation. Electrochemistry Communications,2008,10(4):510-513.
    [183]Wei D Q, Zhou Y. Preparation, biomimetic apatite induction and osteoblast proliferation test of TiO2-based coatings containing P with a graded structure. Ceramics International,2009,35(6):2343-2350.
    [184]Sun J F, Han Y, Cui K. Microstructure and apatite-forming ability of the MAO-treated porous titanium. Surface and Coatings Technology,2008,202(17):25.
    [185]Tong W P, Liu C Z, Wang W, et al. Gaseous nitriding of iron with a nanostructured surface layer. Scripta Materialia,2007,57(6):533-536.
    [186]Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006,27(15):2907-2915.
    [187]Kasuga T, Kondo H, Nogami M. Apatite formation on TiO2 in simulated body fluid. Journal of Crystal Growth,2002,235(1-4):235-240.
    [188]Sham T K, Lazarus M S. X-ray photoelectron spectroscopy (XPS) studies of clean and hydrated TiO2 (rutile) surfaces. Chemical Physics Letters,1979,68(2-3):426-432.
    [189]Dupraz A, Nguyen T P, Richard M, et al. Influence of a cellulosic ether carrier on the structure of biphasic calcium phosphate ceramic particles in an injectable composite material. Biomaterials,1999,20(7): 663-673.
    [190]Zhu X L, Chen J, Scheideler L, et al. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials,2004,25(18):4087-4103.
    [191]Viornery C, Chevolot Y, Leonard D, et al. Surface modification of titanium with phosphonic acid to improve bone bonding:characterization by XPS and ToF-SIMS. Langmuir,2002,18(7):2582-2589.
    [192]Wu Y, Yang B C, Chen J Y, et al. In vivo and in vitro studies on the bioactivity of anodic oxidized titanium metal. Key Engineering Materials,2005,284-286:251-254.
    [193]Lindberg F, Heinrichs J, Ericson F, et al. Hydroxylaptite growth on single-crystal rutile substrates. Biomaterials,2008,29(23):3317-3323.
    [194]Dorozhkin S V, Epple M. Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition,2002,41(17):3130-3146.
    [195]Ramakrishna S, Mayer J, Wintrmantel E, et al. Biomedical applications of polymer-composite materials:a review. Composites Science and Technology,2001,61(9):1189-1224.
    [196]Meyers M A, Chen P Y, Lin A Y, et al. Biological materials:structure and mechanical properties. Progress in Materials Science,2008(1),53:1-206.
    [197]Fecht H J, Ivanisenko Y. Nanostructured materials and composites prepared by solid state processing. In:Koch CC. Nanostructured materials:processing, properties and potential. Raleigh:William Andrew; 2006:73-42.
    [198]Tao X J, Li S J, Zheng C Y, et al. Synthesis of a porous oxide layer on a multifunctional biomedical titanium by micro-arc oxidation. Materials Science and Engineering C,2009,29(6):1923-1934.
    [199]Zheng Y, Li S J, Tao X J, et al. Calcium phosphate coating of Ti-Nb-Zr-Sn titanium alloy. Materials Science and Engineering C,2007,27(4):824-831.
    [200]Zheng CY, Li SJ, Tao XJ, Hao YL, Yang R. Surface modification of Ti-Nb-Zr-Sn alloy by thermal and hydrothermal treatments. Materials Science and Engineering C,2009,29(4):1245-1251.
    [201]Li S J, Zhang Y W, Sun B B, et al. Thermal stability and mechanical properties of nanostructured Ti-24Nb-4Zr-7.9Sn alloy. Materials Science and Engineering A,2008,480(1-2):101-108.
    [202]Aziz-Kerrzo M, Conroy K G, Fenelon A M, et al. Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials,2001,22(12):1531-1539.
    [203]Redey S A, Nardin M, Bernache-Assolant D, et al. Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite:role of surface energy. Journal of Biomedical Materials Research,2000,50(3):353-364.
    [204]Redey S A, Razzouk S, Rey C, et al. Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate:relationship to surface energies. Journal of Biomedical Materials Research,1999,45(2):140-147.
    [205]Ko T M, Lin J, Cooper S L. Surface characterization and platelet adhesion studies of plasma-sulphonated polyethylene. Biomaterials,1993,14(9):657-664.
    [206]杨化娟,杨柯,张柄春.含La医用316L不锈钢的体外抗凝血性能研究.金属学报,2006,9(42):959-964.
    [207]张悦,夏海斌,王爱华,等.不同表面处理的纯钛对血小板黏附特性的影响.武汉大学学报(医学版),2007,28(4):507-510.
    [208]Kwok S C H, Wang J, Chu P K. Surface energy, wettability, and blood compatibility phosphorus doped diamond-like carbon films. Diamond and Related Materials,2005,14(1):78-85.
    [209]Xue W C, Liu X Y, Zheng X B, et al. In vivo evaluation of plasma-sprayed titanium coating after alkali modification. Biomaterials,2005,26:3029-3037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700