用户名: 密码: 验证码:
快速成形制造关键工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速成形制造(Rapid Prototyping & Manufacturing)技术是由CAD、激光、精密机械、数控及新材料相结合的一种复合技术,是先进制造领域的发展前沿。在快速成形制造工艺中,普遍存在零件变形、翘曲、坍塌等问题,易导致成形失败,即使加工成功也会对成形后零件质量产生很大的影响。开展快速成形制造关键工艺的研究对于解决上述问题,提高快速成形制造研究水平有重要的意义。为此,本文分别从快速成形制造工艺中的支撑工艺、扫描方式以及扫描系统数据处理三个关键部分进行重点研究,其主要研究内容及结论如下:
     在支撑工艺研究方面,针对基于STL格式的实体模型支撑区域拾取算法速度慢、效率低且不易识别裂缝等问题。本文提出采用递归方式搜索模型表面来快速拾取支撑区域。具体为利用模型中所有三角面片数据构造拓扑信息,通过面片相邻和边重合关系递归搜索,对每个满足条件的三角面片只搜索一次,因此提高了生成速度,其算法效率达到O(n),效率高。并能够轻易的识别出STL文件的裂缝,搜索完成后自动生成三维区域轮廓边界环。对于复杂形状的STL模型,针对支撑生成时支撑线与实体模型的相交计算复杂的问题,采用标识计算的原理,实现每条支撑线与其对应三角面片作一次三维相交计算,优化后的算法大幅度提高效率,并在实际中得到检验。以上算法为基础,应用在网格支撑的生成算法中,降低了支撑生成算法的时间复杂度,提高了支撑的生成效率。
     在扫描方式研究方面,针对逐行或分块变向扫描方式加工复杂零件容易产生应力集中引起翘曲变形的问题,通过采用“基于Voronoi图的螺旋扫描”方式,减少扫描矢量方向和垂直扫描矢量方向上的应力,降低翘曲变形的趋势,然后应用在复杂零件的选择性激光熔化工艺中,解决逐行或分块变向扫描方式加工复杂零件容易引起翘曲变形等关键问题,加工出零部件。针对圆盘型具有内部空腔特征的零件的选择性激光熔化工艺,提出“基于复合环形算法的扫描”方式,该扫描方式能够在每一层熔化成形同时进行预热扫描,解决了逐行或分块变向扫描方式加工圆盘型零件的翘曲变形问题。
     在快速成形扫描系统数据处理方面,通过对扫描过程中扫描行程和空行程之间的连接过渡进行优化、二维振镜几何校正快速算法、对激光扫描进行延迟处理以及扫描体系采用双线程传送扫描数据等四个方面进行了研究,优化并完善了扫描系统。
     在选择性激光熔化工艺研究方面:针对加工复杂零部件时易翘曲变形的问题分析,提出了一系列的新型子工艺以及工艺的优化:针对变形累积效应,提出在加工过程中动态改变层厚工艺;针对选择性激光熔化工艺中零件底部添加支撑的问题,研究了体支撑的应用方式和算法;加工方向上,即垂直方向(Z向)和水平方向的摆放问题,对加工方向进行了实验研究,提出在Z向上应保持底部面积大,顶部面积小的正金字塔方向,在水平摆放上应使零件的长边与铺粉辊的运动方向平行;针对复杂零件Z向上有空腔时导致一些层面直接在粉床上熔化易翘曲变形的问题,作者提出一种新型的反变形支架结构来抑制这种变形;最后对于减少零件内应力的退火工艺也进行了简单的研究。通过对上述加工子工艺的实验与应用表明,在加工复杂零部件时能够抑制翘曲变形,保证顺利加工。
     通过分析上述问题的产生机理,采用对扫描数据进行优化处理、优化支撑工艺、采用上述提出的两种新型扫描方式来解决零件变形、翘曲、坍塌等问题,并在此基础上对金属零件的选择性激光熔化工艺进行研究,提出了若干子工艺,减少选择性激光熔化工艺中的翘曲变形问题,提高选择性激光熔化的研究水平。
     通过本论文的系统研究,解决了快速成形制造工艺中的一些关键工艺问题,为快速成形制造工艺的完善奠定了基础。
Rapid Prototyping is a kind of complex technology which combines CAD, laser, precision machine, CNC with new materials, which belongs to the frontier field of advanced manufacturing technology. In the rapid prototyping production technics, some issues are immanent such as deformation, warping, collapsing and so on which lead to failure. Even if the parts have been manufactured successfully, it will have the big influences on the quality of shaped parts. The research of the rapid prototyping production technics is carried out which plays an important role in solving the above issues and improve the research level of rapid prototyping. In order to solve the above issues, this paper is mainly focused on research of the three key parts including scanning system data processing, scanning strategy and support technics. The main research contents and results are as follows:
     In rapid prototyping scanning system data processing, two-dimensional scanner geometry correction fast algorithm is proposed, and do the research on deferred processing of laser scanning and so on, meanwhile, scanning system is optimized and completed by optimizing velocity and acceleration in scanning process, optimizing connected transition between scanning stroke and idle stroke, and using pipeline organization in scanning system.
     On the research of scanning strategy, concerning the problem of producing stress concentration in processing complex parts by progressive scan or changing directon scanning strategy which causes the deformation warping, the helix scanning strategy on the basis of Voronoi diagram is used to reduce the stress in scanning vector direction and vertical scanning vector direction, lower the trend of deformation warping, and then be applied in SLM, meanwhile, solve the crucial issues such as the warping deformation which are easily produced in processing complex parts by progressive scan or changing direction scanning strategy, and produce the complex aviation parts and components. Concerning SLM of the round parts with cavity inside, complex ring algorithm scanning strategy is proposed to preheat and scan when every layer has melted and formed, and solve the warping deformation on processing round parts by progressive scan or changing direction scanning strategy.
     In the research of support technic, it puts forward many types of support generation algorithm, has analyzed the application characteristics of various types of support, and puts forward rapid recursion area gleaned algorithm through constructing the topology relation among the triangles and edges in STL model, and applies to the generation algorithm of region support. For STL model in complex shape, the generation algorithm of suspension support is presented. Through the analysis of suspension points and geometrical characteristics of the overhang lines, it puts forward a method which can automatically extract the overhang points needing support, support-waiting plane of the overhang lines and the to-support position, consequently, aiming at the complex situation of intersection calculation between support line and STL model when the generation of the regional support, the traditional algorithm is optimized and then the algorithm improve efficiency greatly, finally it is tested in practice.
     In selective laser melting (SLM) production technic research, based on the analysis of some existing serious problems, especially on the analysis of easily warping deformation problem in the process of processing complex components in SLM, a series of new production sub technic and the technic optimization have been put forward: according to deformation cumulative effects, it puts forward changing the layer thickness of technic dynamically in the process of production; according to the problem of adding support at the bottom of the parts in SLM technic as needed in SLA technic, has studied the application mode and algorithm of body support; according to different production directions in SLM technic, especially on the laid problem in Z direction and horizontal direction, has been studied by the experiment in forming direction, and puts forward keeping large area at the bottom in Z direction and small area on the top which can form into position pyramid direction, and in the level location should make the long side of the parts and the movement direction of powder roller parallelize; according to some layers arising melting and warping deformation in powder bed directly when the complex components have cavity in Z direction, the author puts forward a new kind of backward deformation support production structure to suppress this deformation; finally also has some simple research on annealing technology of reducing the internal stress of the parts.
     By analyzing mechanism of production of the above issues, optimization process on the scanning data, optimization support technics and two new type scanning strategy are use to solve the above issues which can reduce the deformation of the parts, warping and collapsing. On the basis of the research on selective laser melting (SLM) production technics, some sub-technics are proposed to reduce the warping deformation in SLM, and improve the research level of SLM.
     Through above-mentioned the experiment of processing sub technic and application, it indicates that it will not cause failure because of warping deformation in the process of making complex components, which can ensure smooth production and improve the surface precision of the parts after production.
引文
[1] 黄树槐,肖跃加,莫健华等.快速成形技术的展望.中国机械工程,2000,11(1,2):195-200
    [2] Kruth. J. P., Material Increase Manufacturing by Rapid Prototyping Techniques. Annual of the CIRP, 1991, 40(2): 603-614
    [3] 颜永年,张伟,卢清萍等.基于离散/堆积成型概念的RPM原理和发展.中国机械工程,1994,5(4):64-66
    [4] 熊晓明,张连洪.快速成形技术的现状及进展.金属成形工艺,2001,19(6):1-4
    [5] 朱林泉,白培康,朱江淼.快速成型与快速制造技术.第1版.北京:国防工业出版社,2003.3-16
    [6] 韩明,毛锋,李军超.金属板料无模单点渐近成形控制系统研究.锻压机械,2002,217(01):43-44
    [7] 卢清萍.快速原型制造技术.第1版.北京:高等教育出版社,2001.12-21
    [8] Swaelens B., Pauwels J. and Vancraen W. Support generation for rapid prototyping. Proceedings of the 9th European Conference on Rapid Prototyping and Manufacturing. Dickens Academic Press, 2000, 16(4): 115-121
    [9] 王军杰.光固化法快速成型中零件支撑及制作方向的研究.西安:西安交通大学机械工程学院,1997:33-43,62-91
    [10] 3D Systems Inc., Stereolithgraphy Interface Specification, July, 1988
    [11] CEMT: Soup 600 user's guide, 1995: 24-45
    [12] http://www.materialise.com
    [13] Charles F. K., Kirschman. Automated support structure design for stereolithographic parts. South Carolina, USA: The Graduate School of Clemson University, 1991
    [14] Charles F. K., Jara-Almonte C. C., Bagchi A, et al. Computer Aided Design of Support Structures for Stereolithographic Components. Proceedings of the 1991 ASME Computers in Engineering Conference, Santa Clara, 1991: 443-448.
    [15] Swaelens B., Pauwels J. and Vancraen W. Support generation for rapid prototyping. Dickensed P M. Belgirate Proceedings of the 9th European Conference on Rapid Prototyping and Manufacturing. Dickens Academic Press, 2000. 115-121
    [16] 刘国承.新型光固化快速成形支撑自动生成技术研究.武汉:华中科技大学,2007,15-19
    [17] 董学珍,莫健华,张李超.光固化快速成形中柱形支撑生成算法的研究.华中科技大学学报,2004,32(8):16-18
    [18] 洪军.面向STL模型特征的支撑生成技术研究.西安:西安交通大学,2000:6-9
    [19] 洪军,武殿梁,卢秉恒.光固化快速成形中待支撑区域识别技术研究[J].中国机械工程,2000,11(10):28-30.
    [20] 李卫,吴任东,颜永年.快速成形中齿形支撑结构的自动生成算法[J].中国机械工程,2003,14(24):2127-2129.
    [21] 董涛,侯丽雅,朱丽.快速成型制造中的工艺支撑自动生成技术[J].上海交通大学学报,2002,36(7):1044-1048.
    [22] 史玉升,钟庆,陈学彬等.选择性激光烧结新型扫描方式的研究及实现.机械工程学报,2002,38(2):35-39
    [23] Xie J. W., Fox P., O'Neill W. et al. Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels. Journal of Materials Processing Technology, 2005, 170: 516-523
    [24] Kruth J. P., Froyen a, Vaerenbergh. Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 2004, 149(1-3): 616-622
    [25] Osakada K., Shiomi M. Flexible manufacturing of metallic products by selective laser melting of powder. International Journal of Machine Tools & Manufacture, 2006, 46(11): 1188-1193
    [26] Mumtaz K. A., Erasenthiran P., Hopkinson N. High density selective laser melting of Waspaloy. Journal of materials processing technology, 2008, 95(1-3): 77-87
    [27] Mercelis P., Kruth J-P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 2006, 12(5): 254-265
    [28] Childs T H C, Hauser C. Raster scan selective laser melting of the surface layer of a tool steel powder bed. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2005, 219(4): 379-384
    [29] 邓琦林.激光烧结陶瓷粉末成形零件的研究.大连理工大学学报,1998,38(6):733-737
    [30] Zhang R. J., Sui G. H., Zeng G. et al, Study on scanning process of selective laser sintering (SLS). Proceedings of the first international conference on rapid prototyping&manufacturing, 1998, Beijing, Shan xi Science and Technology P erss: 72-78
    [31] 王军杰,李占利,卢秉恒.激光快速成型加工中扫描路径的研究.机械科学与技术,1997,16(2):303-305
    [32] 陈剑虹,张舜德,刘振凯,卢秉恒.基于Voronoi图的快速成型扫描路径策略研究.21世纪新产品快速开发技术.卢秉恒,唐一平,陕西科学技术出版社,2000,137-142
    [33] 刘征宇,宾鸿赞,张小波等.生长型制造中扫描路径对薄层残余应力场的影响.中国机械工程,1998,10(8):848-850
    [34] 章文献.选择性激光熔化快速成形关键技术研究.武汉:华中科技大学,2008
    [35] 刘斌,张征,孙延明等.快速成型系统中OFFSET型填充算法,华南理工大学学报,2001,29(3):64-66
    [36] 许丽敏,杨永强,吴伟辉等.选区激光熔化快速成型扫描路径优化算法研究,机电工程技术,2007,36(01):46-48
    [37] 徐雪松.STL模型表面点快速拾取技术.工程图学学报,2005,3:18-22
    [38] Hearn D., Banker M. P. Computer Graphics: C version (2ed Ed). USA: Prentice Hall, 1997: 183-215
    [39] Ruiz J., Miras, Feito F. R. Inclusion test for curved-edged polygons. Computer & Graphics, 1997, 21 (6): 815-824
    [40] 刘伟军,张嘉易.快速成形容错切片中线段集合自适应连接方法.中国机械工程,2004,15(22):1975-1978
    [41] 周培德.计算几何--算法设计与分析(第二版).北京:清华大学出版社,2005: 217-255
    [42] 姚辉学,卢章平.一种任意复杂程度二维多边形的求交算法.工程图学学报,2006,27(2):127-131
    [43] 周培德.判定点集是否在多边形内部的算法.计算机研究与发展,1997,34(9):672-674
    [44] 孙家广,杨长贵.计算机图形学(第二版).北京:清华大学出版社,1997:178-190
    [45] 周培德,王树武,李斌.连接不相交线段成简单多边形(链)的算法及其实现.计算机辅助设计与图形学学报,2002,14(6):522-525
    [46] 王从军.快速成形数据处理及若干关键技术的研究.武汉:华中科技大学,2000
    [47] 李湘生,韩明,史玉升等.SLS成形件的收缩模型和翘曲模型.中国机械工程,2001,12(8):887-889
    [48] Gusarov A. V., Yadroitsev I., Smurov I.. Heat transfer modelling and stability analysis of selective laser melting. Applied Surface Science, 2007, 254(4), 975-979
    [49] 李湘生,殷燕芳,黄树槐.激光选区烧结的成型收缩研究.材料科学与工程学报,2003,21(6):137-138
    [50] Shiomil M., Osakadal K., Nakamural K., et al. Residual Stress within Metallic Model Made by Selective Laser Melting Process. CIRP Annals - Manufacturing Technology, 2004, 53(1): 195-198
    [51] Zhang W. X.; Shi Y. S. Consecutive sub-sector scan mode with adjustable scan lengths for selective laser melting technology. International Journal of Advanced Manufacturing Technology, 2009, 41(7-8): 706-713
    [52] 刘征宇,宾鸿赞,张小波等.生长型制造中扫描路径对薄层残余应力场的影响.中国机械工程,1999,10(8):848-850
    [53] 刘征宇,宾鸿赞,张小波等.生长型制造中分形扫描路径对温度场的影响.华中理工大学学报,1998,26(8):32-34
    [54] 李湘生,黄树槐,黎建军等.激光选区烧结中铺粉过程分析.现代制造工程,2008,2:99-101
    [55] Chen T., Zhang Y. A partial shrinkage model for selective laser sintering of a two-component metal powder layer. International Journal of Heat and Mass Transfer, 2006, 49(7-8): 1489-1492
    [56] Abe E, Osakada K., Shimi M. The manufacturing of hard tools from metallic powders by selective laser melting. Journal of Materials Processing Technology, 2001, 111(1-3): 210-213
    [57] Yadroitsev I., Bertrand Ph., Smurov I. Parametric analysis of the selective laser melting process. Applied Surface Science, 2007, 253(19): 8064-8069
    [58] Tolochko N., Mozzharov S., Laoui T. et al. Selective laser sintering of single-and two-component metal powders. Rapid Prototyping Journal, 2003, 9(2): 68-78
    [59] Yadroitsev I., Thivillon L., Bertrand Ph., Smurov I. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Applied Surface Science, 2007, 254(4): 980-983
    [60] Kruth J. P., Kumar S. and Vaerenbergh J. Study of laser-sinterability of ferro-based powders. Rapid Prototyping Journal, 2005, 11 (5): 287-292
    [61] 李湘生,史玉升,黄树槐.粉末激光烧结中的扫描激光能量大小和分布模型.激光技术,2003,27(2):143-144
    [62] Gold C. M., Remmele P. M. and Roots T., Voronoi diagrams of line segments made easy. In Proceedings of the 7~(th) Canadian Conference on Computer Geometry. Quebec City, Canada, 1995, 223-228
    [63] Lee D. T., Drysdale R. L. Generalization of Voronoi diagrams in the plane. SIAM J. Computing. 1981, 10(1): 73-87
    [64] Held M. Voronoi diagrams and offset curves of curvilinear polygons. Computer-Aided Design, 1998, 30 (4): 287-300
    [65] Held M. On the Computational Geometry of Pocket Mathin. Vol 500 of Lecture Notes in Computer Science, Berlin: Springer Berlin / Heidelberg, 1991. 61-88
    [66] Held M. VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Computational Geometry, 2001, 18(2): 95-123
    [67] Ramamurthy R., Farouki R. T. Voronoi diagram and medial axis algorithm for planar domains with curved boundaries I. Theoretical foundations. Journal of Computational and Applied Mathematics, 1999,102(1): 119-141
    [68]Chen Z.M., Papadopoulou E., Xu J.H. Robustness of k-gon Voronoi diagram construction. Information Processing Letters, 2006,97(4): 138-145
    [69]Le N-M. Abstract Voronoi diagram in 3-space. Journal of Computer and System Sciences, 2004, 68(1): 41-79
    [70]Berman P., Lingas A. A nearly optimal paraller algorithm for the Voronoi diagram of a convex polygon. Theoretical Computer Science, 1997,174(1-2): 193-202
    [71]Ulrich K. Local calculation of Voronoi diagrams. Information Processing Letters,1998,68(6):307-312
    [72]Augenbaum J. M., Peskin C. S. On the construction of the Voronoi mesh on a sphere.Journal of Computational Physics, 1985, 59(4): 177-192
    [73]Chen X., McMains S. Polygon offsetting by computing winding numbers. ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. Long Beach, California, USA. September,2005. 24-28
    [74]Chou J.J. Voronoi diagrams for planar shapes. IEEE Computer Graphics Applications, 1995,15(2): 52-59
    [75]Amenta N., Benr M. Surface reconstruction by Voronoi filtering. Discrete and Computational Geometry, 1999,22(4):481-504
    [76]Lin M C. Efficient collision detection for animation and robotics. Berkeley:University of California, 1993
    [77]Kim D-S. Polygon ofsetting using a Voronoi diagram and two stacks. Computer Aided Design, 1998,30(14): 1076-1096
    [78]Aggarwal A., Guibas L. J., Saxe J. et al. A linear time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Computer Geormetry, 1989, 4(6):591-604
    [79]Chua C. K., Gan G K., Jacob. Interface between CAD and rapid prototyping systems. Part 1: A study of exiting interfaces. Advanced Manufacturing Technology,1997, 17(7):566-570
    [80]Kirkpatrick D.G Efficient computation of continuous skeletons. Proc. 20th Annu.IEEE Sympos. Found. Comput. Sci., 1979: 18-27
    [81] Lee D. T. Medial axis transformation of a planar shape. IEEE Trans. Pattern Anal. Machine Intell., 1982, PAMI-4(4): 363-369
    [82] Ohya T., Iri M., Murota K. Improvements of the incremental method for the Voronoi diagram withcomputational comparison of various algorithms. J. Oper. Res. Soc., 1984, 27(4): 306-336
    [83] Molina-Carmona R., Jimeno A., Rizo-Aldeguer R. Morphological Offset Computing for Contour Pocketing. Transactions of the ASME, 2007, 129(4): 400-406
    [84] 张李超,韩明,黄树槐.快速成形激光光斑半径补偿算法的研究.华中科技大学学报(自然科学版),2002,30(6):16-18
    [85] BIAN H. Y., LIU W. J., WANG T. R. A selective-subarea offset-scanning path generating algorithm for stereolithography based on profiled outline convex decomposition. High technology letters, 2005, 15(7), 35-39
    [86] Tiller. W. and Hanson, E. G. Offsets of two-dimensional profiles. IEEE Computer Graphics and Applications, 1984, 4(9): 36-46
    [87] Mackawa. T. An Overview of Offset Curves and Surfaces. Computer-Aided Design, 1999, 31(3): 165-173
    [88] 郭飞,胡兵,应花山等.双振镜扫描几何失真的硬件校正.激光技术,2003,27(4):337-338
    [89] 陈忠,刘晓东.激光振镜扫描系统的快速软件校正算法研究.华中科技大学学报(自然科学版),2003,31(5):68-69
    [90] 赵毅,卢秉恒.振镜扫描系统的枕形畸变校正算法.中国激光,2003,30(3):216-218
    [91] 谢军,段正澄,史玉生.用于SLS快速成形制造中振镜式激光扫描系统的关键技术.制造业自动化,2004,26(4):9-12
    [92] 张李超,钱波,黄树槐.高性能激光打标机软件体系结构.现代机械,2006,2:1-2
    [93] 刘爱林.片材叠层制造中若干关键技术的研究.武汉:华中科技大学,1999
    [94] Wehmller M., Warnke P. H., Zilian C., et al. Implant design and production--a new approach by selective laser melting. International Congress Series, 2005, 1281:690-695
    [95]Labudovic M., Hu D., and Kovacevic R. A three dimensional model for direct laser metal powder deposition and rapid prototyping. Journal of Materials Science, 2003,38(1):35-49
    [96]Santos E., Osakada K., Shiomi M., et al. Fabrication of titanium dental implants by selective laser melting. PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE), 2004,5662:268-273
    [97]Badrossamay M. and Childs T.H.C. Further studies in selective laser melting of stainless and tool steel powders. International Journal of Machine Tools and Manufacture, 2007,47(5):779-784
    [98]Matsumoto M., Shiomi M., Osakada K., et al. Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. International Journal of Machine Tools and Manufacture, 2002,42(1):61-67
    [99]Childs T.H.C. and Tontowi A.E. Selective laser sintering of a crystalline and a glass-filled crystalline polymer: Experiments and simulations. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2001,215(11):1481-1495
    [100]Childs T.H.C. and Hauser C. Raster scan selective laser melting of the surface layer of a tool steel powder bed. Proceedings of the Institution of Mechanical Engineers,Part B: Journal of Engineering Manufacture, 2005, 219(4):79-84
    [101]Childs T.H.C, Hauser G, and Badrossamay M. Selective laser sintering (melting) of stainless and tool steel powders: Experiments and modelling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2005,219(4):339-357
    [102]Nikolay K. T., Maxim K. A., Andrey V. G, et al. Mechanisms of selective laser sintering and heat transfer in Ti powder. Rapid Prototyping Journal, 2003, 9(5):314-326
    [103]Elsen M., Farid A.B. and Kruth J.P. Application of dimensional analysis to selective laser melting. Rapid Prototyping Journal, 2008,14(1):15-22
    [104]Agarwala M., Bourell David., Beaman Joseph., et al. Post-processing of selective laser sintered metal parts. Rapid Prototyping Journal, 1995, 1(2):36-44
    [105]Zhang W., Shi Y., Liu J., etc. Type HRPM-Ⅱmachine for selective laser melting process. Virtual And Rapid Manufacturing -Advanced Research In Virtual And Rapid Prototyping, 2007, 541-544
    [106]Karlsen W. L., Kotila J., and Lind J.E. Fabrication of biomedical implants by combined direct metal laser sintering and hot isostatic pressing. International Journal of Powder Metallurgy, 2004,40(2):29-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700