用户名: 密码: 验证码:
典型地物红外特性仿真关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外探测系统以其全天时的良好观测能力,越来越广泛地应用于城市安防、火灾监测、遥感探测以及交通安全等众多领域。为了测试红外探测系统对搜寻目标的识别能力,需要大量的不同条件下实拍的红外图像作为该系统的测试输入数据。然而,完全依赖实拍的方法来获取不同条件的红外图像数据,不但实施成本很高,而且受时间空域的限制等很难实现,因此需要通过仿真于段获取红外图像。为了获得高逼真度的红外仿真图像,本文对红外图像仿真的关键技术进行了研究,内容涉及到红外成像链路模型与红外图像仿真方法、基于实测数据的地物表面温度建模方法、基于红外图像的发射率提取方法以及数据自动采集实验平台。
     本文分析了红外成像过程,建立了地物的中红外波段的红外成像链路模型,研究了基于实拍的红外图像来仿真生成其他时段的红外图像的仿真方法。实验结果表明,运用该方法仿真生成的红外图像具有高逼真度的优点。
     研究了基于实测数据的地物表面温度的实用建模方法。该方法对感兴趣的地物进行分类,找出共性的特点;针对分类的地物结构、材质及其辐射换热特性,分别建立其表面温度模型;基于不同季节、不同时段的地物表面温度测量数据,对模型系数进行多变量拟合,确定不同条件下的模型系数,从而能够计算得到不同条件下的地物表面温度,为红外特性仿真提供了实用而有效的地物表面温度数据。
     研究了基于红外成像理论的典型地物发射率的提取方法。该方法基于实拍红外图像与建立的成像链路模型计算出该图像某区域的红外辐射;基于建立的地物表面温度模型计算出该区域的表面温度;基于普朗克辐射定律与红外辐射以及表面温度计算出该地物的发射率。然后基于成像链路、发射率与实拍图像进行其它时段的红外图像仿真,根据仿真图像与相对应时段的实拍图像的灰度值进行比较的结果,不断在适当范围内对发射率进行校正。该方法提取的发射率适用于不同季节、不同时段的中红外波段图像仿真。
     实现了红外图像仿真所需要的数据自动采集实验平台,能够对多个选定的地物场景及感兴趣的区域进行实时同步自动地获取数据,包括中红外图像、气象条件(气温、气压、风速和能见度等)、地物区域的表面温度以及位置距离等相关数据,对建模与验模提供了有效的数据支撑,并结合实测数据对本文所研究的地物红外特性进行仿真实验验证。
     基于本文的以上研究,实现了通过仿真手段获得典型地物的高逼真度的红外仿真图像,为测试红外探测系统对搜寻目标的识别能力提供了重要的技术支撑。
Infrared detection system has been more and more widely used in urban security, fire monitoring, remote sensing, traffic safety and many other fields for its good observing capabilities during day and night. To test the target recognition capability of infrared detection system, numerous infrared images under different conditions are needed as the test data. However, if the infrared images were completely obtained with the experimental method under different conditions, it will be high cost, time and space constraints and so on. Therefore, it is necessary to get infrared images by simulating. In order to improve the fidelity of infrared simulation image, some key techiques are studied, including:modeling of infrared imaging link and method of infrared imaging simulation, modeling method of surface temperature for typical ground objects based on measurement data, emissivity extracting method based on infrared images and automatic data acquisition experimental platform.
     In this thesis, the infrared imaging process has been analyzed, a mid-infrared imaging link model has been built and the method of generating infrared images in different time from the real infrared images has been researched. The result shows that the advantage of this method is that the generated infrared images are of high accuracy.
     The modeling method of surface temperature for the typical ground objects has been researched based on measured data. In this method, some typical ground objects have been classified and their shared features have been found out. Base on the structure, material and radiative heat transfer features of the classified ground objects, their surface temperature models have been built. The coefficients of the models under different conditions have been achieved with multivariate fitting method based on the measured surface temperatures data of ground objects in different time and seasons. So, the surface temperatures of ground objects under different conditions can be calculated, which provides practical and effective surface temperatures for infrared characteristics simulation.
     According to the infrared imaging theory, the algorithm for extracting the emissivity of typical ground objects has been studied. In the method, the infrared radiance of one area has been calculated based on real infrared image and the imaging link model, the temperature of this area has been calculated based on the surface temperature model, the corresponding emissivity has been calculated based on Planck's radiation law and the surface temperature. According to the imaging link model, emissivity and real infrared image, the infrared image in the other time can be simulated. Then, to correct the emissivity, the image gray values of simulation and real in the same time have been compared. The extracted emissivity, with this method, can be used for mid-infrared image simulation in different time and seasons.
     An automatic data acquisition experimental platform for infrared imaging simulation has been set up to get the data of selected ground objects in the interesting area synchronously, automatically and in real time. This platform can provide comprehensive and effective data to support the modeling and validating of infrared simulation in this thesis, which includes infrared images, meteorological conditions (e.g. air temperature, atmospheric pressure, wind speed, visibility, etc.), sureface temperatures of ground objects, location and distance information, etc. And the testing work of infrared characteristics simulation of ground objects has been done based on the measured data.
     By the above research work, high-accuracy infrared simulation images of typical ground objects have been achieved by simulation method, which provides an important technical support for testing the ability of target recognition for infrared detection system.
引文
[1]张建奇,王晓蕊.光电成像系统建模及性能评估理论.西安:西安电子科技大学出版社,2010.
    [2]G. Della Ventura, F. Bellatreccia, A. Marcelli, et al. Application of micro-FTIR imaging in the Earth sciences. Analytical And Bioanalytical Chemistry,2010,397(6):2039-2049.
    [3]沈满德.高分辨率中红外温度自适应夜视成像系统.强激光与粒子束,2013,5:1144-1146.
    [4]Pieter A. Jacobs. Thermal infrared characterization of ground targets and backgrounds. Bellingham: SPIE Publications,2006.
    [5]L. M. Shao, C. W. Roske, P. R. Griffiths. Detection of chemical agents in the atmosphere by open-path FT-IR spectroscopy under conditions of background interference Ⅱ:fog and rain. Analytical And Bioanalytical Chemistry,2010,397(4):1521-1528.
    [6]张晓华.系统建模与仿真.北京:清华大学出版社,2006.
    [7]G. Cuccurullo, P. G. Berardi. Radiative field and radiometric temperature measurements in semi-transparent films. International Journal of Thermal Sciences,2002,41(5):412-421.
    [8]马清阳.航空热红外遥感图象集.北京:地质出版社,1988.
    [9]http://zh.wikipedia.org/wiki/%E7%BA%A2%E5%A4%96%E7%BA%BF#cite_note-Byrnes-2
    [10]Paul W. Kruse. Elements of Infrared Technology:Generation, Transmission and Detection. New York: John Wiley & Sons, Inc.,1962.
    [11]J. M. Cathcart, Jr. A. D. Sheffer. Generation and application of high-resolution infrared computer imagery. Optical Engineering,1991,30(11):1745-1755.
    [12]John R. Schott, Rnlando Raqueno, Carl Salvaggio. Incorporation of a time-dependent thermodynamic model into infrared three-dimensional synthetic image generation. Optical Engineering,1992,31(7): 1505-1516.
    [13]L. S. Balfour, Y. Bushlin. Semi-empirical model based approach for IR scene simulation. Proceedings of the SPIE-The International Society for Optical Engineering,1997,3061 (277):616-623.
    [14]Alain Hache, Phuong Anh Do, Stefano Bonora. Surface heating by optical beams and application to mid-infrared imaging. Applied Optics,2012,51(27):6578-6585.
    [15]J. M. Cathcart, A. D. Sheffer. Target and background infrared signature modeling for complex synthetic scenes. Proceedings of the SPIE-The International Society for Optical Engineering,1988, 890:103095-103103.
    [16]J. P. Gambotto. Combining image analysis and thermal models for infrared scene simulations. Austin, TX:1994.
    [17]D. Tiirler. Laboratory Procedures for Using Infrared Thermography to Validate Heat Transfer Models. Insulation Materials:Testing and Applications,1997,3(1320):1-23.
    [18]Joseph Ramsey, Paul Gazis, Ted Roush, et al. Automated remote sensing with near infrared reflectance spectra:carbonate recognition. Data Mining and Knowledge Discovery,2002,6(3):277-293.
    [19]John P. Kerekes, Kristin-Elke Strackerjan, Carl Salvaggio. Spectral reflectance and emissivity of man-made surfaces contaminated with environmental effects. Optical Engineering,2008,47(10):1-10.
    [20]Miguel O. Roman, Crystal B. Schaaf, Philip Lewis, et al. Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes. Remote Sensing Of Environment,2010,114(2010):738-760.
    [21]张伟清,宣益民,韩玉阁.地球红外辐射背景成像方法研究.红外与激光工程,2006,35(1):39-44.
    [22]黎建军.基于测量数据的目标红外图像仿真:(硕十学位论文).西安:西安电子科技大学,2007.
    [23]罗晓春,孙继银,刘婧等.利用反演可见光图像的方法实现红外图像的获取.红外与激光工程,2008,37(5):773-776.
    [24]娄树理,周晓东.基于直方图分析的红外仿真图像验证方法研究.激光与红外,2011,41(11):1273-1277.
    [25]刘晓,易维宁,乔延利等.基于艇载遥感成像数据的高空间分辨率全色遥感图像仿真.红外与毫米波学报,2013,05:468473.
    [26]崔文煜.基于高分辨率光学图像的三维热红外场景仿真研究:(博上学位论文).安徽:中国科学院大学,2013.
    [27]张建奇,方小平等.自然环境下地表红外辐射特性对比研究.红外与毫米波学报,1994,13(6):418-424.
    [28]陈良富,柳钦火.用Monte Carlo方法模拟连续植被热辐射方向性.遥感学报,2000,4(4):261-265.
    [29]杨德贵,黎湘,庄钊文.基于统一模型的典型地表红外辐射特性对比研究.红外与毫米波学报,2001,04:263-266.
    [30]杨尧,吴振森,姚连兴.从红外辐照热平衡方程求解海面温度.红外与亳米波学报,2003,22(5):357-360.
    [31]高懋芳,覃志豪,刘三超MODIS数据反演地表温度的参数敏感性分析.遥感信息,2005,3(6):3-6.
    [32]Caixia Gao, Xiaoguang Jiang, Hua Wu, et al. Comparison of land surface temperatures from MSG-2/SEVIRI and Terra/MODIS. Journal of Applied Remote Sensing,2012,6(1):1-16.
    [33]张延冬,吴振森.二维粗糙海面的光散射及其红外成像.光学学报,2002,9:1039-1043.
    [34]Hongyuan Wang, Wei Zhang. Infrared characteristics of on-orbit targets based on space-based optical observation.Optics Communications,2013,290(2013):69-75.
    [35]万玉柱,卢春莲,徐英会等.材料发射率与温度数学模型.红外与激光工程,2008,2:799.
    [36]肖瑶,王艳慧,赵文慧等.地表发射率不同的估算方法对地表温度的影响.地理空间信息,2012,1:48-51.
    [37]孙晓刚,戴景民,丛大成等.多光谱辐射测温的理论研究——发射率模型的自动判别.红外与毫米波学报,1998,3:63-67.
    [38]http://www.fluke, com. cn/
    [39]程街亮,史舟,李洪义.不同类型土壤的二向反射光谱特性及模拟.光谱学与光谱分析,2008,5:1007-1011.
    [40]谢鸣,黄勇,王晓春等.建筑材料表面红外双向反射分布函数实验分析.哈尔滨工业大学学报,2011,3:49-53.
    [41]程洁,柳钦火,李小文等.土壤中红外发射率提取算法研究.红外与毫米波学报,2008,1:21-30.
    [42]史玉民.人格的魅力:《正直者的困境》札记——纪念M.普朗克量子论诞生100周年.自然辩证法研究,2000,4:68-70.
    [43]Palph Balerlein. Thermal Physics. England:Cambridge University Press,1999.
    [44]R. N. Mahalati, J. M. Kahn. Effect of fog on free-space optical links employing imaging receivers. Opt Express,2012,20(2):1649-1661.
    [45]C. Purslow, J. S. Wolffsohn. Ocular surface temperature:a review. Eye Contact Lens,2005,31(3): 117-123.
    [46]王章野.地面目标的红外成像仿真及多光谱成像真实感融合研究:(博士学位论文).杭州:浙江大学,2002.
    [47]K. Themistocleous, D. G. Hadjimitsis, A. Retals, et al. Development of a new image based atmospheric correction algorithm for aerosol optical thickness retrieval using the darkest pixel method. Journal Of Applied Remote Sensing,2012,6:635-638.
    [48]Kyriacos Themistocleous, Hadjimitsis G. Diofantos. Air pollution monitoring through the application of atmospheric correction for ASTER imagery.2009,4:774-780.
    [49]J. C. Thelen, S. Havemann, J. P. Taylor. Atmospheric correction of short-wave hyperspectral imagery using a fast, full-scattering 1DVar retrieval scheme. Bellingham:SPEI-Int Soc Optical Engineering,2012.
    [50]K. N. LIOU.大气辐射导论.北京:气象出版社,2004.
    [51]S. Ahmed, A. Gilerson, T. Harmel,S. Hlaing, A. Tonizzo,A. Weidemann, R. Arnone.Evaluation of atmospheric correction procedures for ocean color data processing using hyper-and multi-spectral radiometric measurements from the Long Island Sound Coastal Observatory.Bellingham:SPIE-Int Soc Optical Engineering,2012.
    [52]陆子凤.红外热像仪的辐射定标和测温误差分析:(博士学位论文).长春:中国科学院研究生院 (长春光学精密机械与物理研究所),2010.
    [53]张罗莎,白廷柱,裴一飞等.一种红外热像仪低温测温的辐射定标方法.中国,发明专利申请公开说明书,CN102818636A.2012.
    [54]邢素霞.红外热成像与信号处理.北京:国防工业出版社,2011.
    [55]耿众.中红外热像仪系统补偿和定标的研究:(硕士学位论文).大连:大连海事大学,2012.
    [56]Mostafa H. Sharqawy, Hassan M. Badr, Esmail M. Mokheimer. Natural convection from a vertical ground heat exchanger embeded in a semi-infinite porous medium. Computational Thermal Sciences,2010, 2:231-248.
    [57]J. P. Holman. Heat Transfer. Beijing:China Machine Press,2011.
    [58]Christine, Hole StePhane Boue. Infrared thermography protocol for simple measurements of thermal diffusivity and conductivity. Infrared Physics and Technology,2012,55(4):376.
    [59]John A. Jamieson, Raymond H. Mcfee. Infrared Physics and Engineering. New York:Mcgraw-Hill Book Company,1973.
    [60]张建奇,方小平,张海兴等.自然地表红外辐射特性统计分析.红外与毫米波学报,1997,16(4):27-33.
    [61]B. A. Khnal. A simple model of the earth's surface for geologic mapping by remote sensing. Journal of Geophysical Research,1977,82(11):1673-1680.
    [62]王长胜.典型地物表面温度特性研究:(硕十学位论文).大连:大连海事大学,2013.
    [63]张建奇,方小平.红外物理.西安:西安电子科技大学出版社,2004.
    [64]EI-Nashar Ali M. Mathematical Simulation of A Solar Desalination Plant. UK:EOLSS Pubishers, 2001.
    [65]石新民,翁智.数学物理方程及其MATLAB解算.北京:清华大学出版社,2011.
    [66]贾渝,张全庚.沥青路面结构层厚度与沥青混合料类型选择.公路,2000,3:10-13.
    [67]Jen Hong Tan, E. Y. K. Ng, U. Rajendra Acharya. Evaluation of topographical variation in ocular surface temperature by functional infrared thermography. Infrared Physics and Technology,2011,54(6): 469-477.
    [68]C. Gong, Y. J. Zhao, L. Q. Dong, et al. The tolerable target temperature for bimaterial microcantilever array infrared imaging. Optics And Laser Technology,2013,45:545-550.
    [69]CeSar San Martin, Carlos Torres, Daniela Esparza, et al. Thermal diffusivity measurements of spherical samples using active infrared thermography. Infrared Physics and Technology,2012,55(6): 469-477.
    [70]山仑.节水农业.广州:暨南大学出版社,2011.
    [71]Pualy. Thermal Conductivity of Soils from the Analysis of Boring Logs:(Master Dissertation). Tempa: University of South Florida,2010.
    [72]车升国,郭胜利,张芳等.黄土区夏闲期土壤呼吸变化特征及其影响因素.土壤学报,2010,6:1159-1169.
    [73]周虎,吕贻忠,李保国.土壤结构定量化研究进展.土壤学报,2009,3:501-506.
    [74]李争光.基于地面实测热红外光谱的地表参数反演:(硕士学位论文).乌鲁木齐:新疆大学,2012.
    [75]贾孝红,罗继红.基于地震测井的声速曲线校正.测井技术,1995,6:453-459.
    [76]韩丽媛,王宏伟,刘秀芝.正确使用二点校正法校正校准曲线.黑龙江环境通报,2001,2:66-67.
    [77]S. Chudzik. Measurement of thermal parameters of a heat insulating material using infrared thermography. Infrared Physics and Technology,2012,55(1):73-81.
    [78]http://www.ontar.com/Software/ProductDetails.aspx?item=PcModWin
    [79]Hongyuan Wang, Wei Zhang, Fugang Wang. Infrared imaging characteristics of space-based targets based on bidirectional reflection distribution function. Infrared Physics and Technology,2012,55(4): 368-376.
    [80]徐实学.材质表面散射光偏振特性分析用于空间目标探测的研究:(博士学位论文).南京:南京理工大学,2011.
    [81]邹南智,朱又迈,赵广福.关于红外半球全发射率与温度关系的讨论.红外技术,1997,3:2-5.
    [82]雷鸣.土壤冬、夏季热响应特性研究:(硕士学位论文).上海:东华大学,2008.
    [83]李艳花,赵景波.西安南郊丰水年秋季土壤水分研究.中国沙漠,2006,1:113-116.
    [84]方晓青.热辐射型沥青路面面层温度场数值分析和试验研究:(硕士学位论文).南京:南京航空航天大学,2011.
    [85]冯德成,胡伟超,于飞等.沥青路面材料热物性参数对温度场的影响及敏感性分析.公路交通科技,2011,28(11):12-19.
    [86]王彦喆.粗集料细观结构特征对沥青混合料性能的影响研究:(硕士学位论文).西安:长安大学,2012.
    [87]www.ontar.com
    [88]毕春波,黄海涛.人造大理石研究进展.石材,2008,5:17-22.
    [89]卓建英.岩石矿物热红外光谱特性与光谱解混实验研究:(硕士学位论文).沈阳:东北大学,2011.
    [90]Laurel Kirkland, Kenneth Herr, Eric Keim, et al. First use of an airborne thermal infrared hyperspectral scanner for compositional mapping. Remote Sensing of Environment,2002,80(3):447-459.
    [91]Y. Jannot, A. Degiovanni, G. Payet. Thermal conductivity measurement of insulating materials with a three layers device. International Journal of Heat and Mass Transfer,2009,52(5):1105-1111.
    [92]冯驰,孟庆林,李宁等.佛甲草辐射特性的研究.建筑科学,2010,4:65-68.
    [93]A. Hache, P. A. Do, S. Bonora. Surface heating by optical beams and application to mid-infrared imaging. Appl Opt,2012,51(27):78-85.
    [94]Yuan Yuan Ji, Wen Hai Xu, De Bin Ma, et al. Altering integral time method in temperature measurement using mid-wavelength infrared imaging system. ICFMM 2013, Lijiang,2013.
    [95]A. M. Gonzalez, D. M. Hernandez, J. A. G. Viramontes. Measurement of temperature and velocity fields in a convective fluid flow in air using schlieren images. Appl Opt,2013,52(22):5562-5573.
    [96]R. D. Rajavel, D. M. Jamba, J. E. Jensen, et al. Molecular beam epitaxial growth and performance of integrated multispectral HgCdTe photodiodes for the detection of mid-wave infrared radiation. Journal Of Crystal Growth,1998,184:1272-1278.
    [97]M. A. Sumesh, S. Karanth, S. Prakash, et al. Ion beam sputtered Ge-Si-O amorphous thin films for microbolometer infrared detectors and their application in earth sensors. Sensors and Actuators A-Physical, 2013,192:81-91.
    [98]Teng Wu, Lingli Wu. High-resolution scheme based on the undetermined coefficient method and its application. Journal of Engineering Science and Technology Reivew,2013,6(1):119-123.
    [99]Zhiqiang Lin, Xiaobin Zheng, Lei Zhang, et al. Calibration of Spectral Responsivity of Infrared Detector. Opto-Electronic Engineering,2008,35(2):118-122.
    [100]Philippe Herve, Julie Cedelle, Ionut Negreanu. Infrared technique for simultaneous determination of temperature and emissivity. Infrared Physics & Technology,2010,55(1):101-109.
    [101]R.H.金斯顿.光学和红外辐射探测.北京:科学出版社.1984.
    [102]张尧禹,李岷.基于目标红外辐射特性标定方法研究.吉林省第八届科学技术学术年会,中国吉林长春,2010.
    [103]M. Fraczek, A. Behrendt, N. Schmitt. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient. Apply Optics,2012,51(2):148-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700