用户名: 密码: 验证码:
植物化学杂交剂的作用特征与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用化学杂交剂(CHA)诱导植物雄性不育是杂种优势利用的重要方式之一,还可用于辅助育种等多种用途,但关键限制因素是新型高效CHA及其作用机理。本文以油菜为主要研究对象,验证乙酰乳酸合成酶(ALS,EC4.1.3.18)抑制型除草剂能筛选新型化学杂交剂的推断,并从生理机制上探讨化学杂交剂的作用特征及毒性机理,为开发新型CHA提供理论基础。得到的主要结果如下:
     1.CHA的筛选及效果评价
     1.1对于敏感性较高的油菜,本文所用26种除草剂中,22种可不同程度地诱导油菜雄性不育。从中筛选出2种效果最好的油菜化学杂交剂苯磺隆和酰嘧磺隆(发明专利ZL200610042886.1)。以0.2 mg/L-0.4 mg/L剂量处理甘蓝型油菜,产生95%-100%雄性不育率,两次喷药实现整个花期不育,药害程度较轻。苯磺隆或酰嘧磺隆处理能使3个环境敏感不育系达到完全不育,无明显药害。网室模拟化学杀雄制种试验所得杂交种的杂交率为98.2%。用CHA处理细胞质雄性不育系后制种种子纯度达到99.9%,表明CHA在化学杀雄制种和辅助三系制种方面具有很大应用潜力。苯磺隆也可以诱导芸薹属以及其他十字花科植物雄性不育,杀雄率能达到85%-100%。
     1.2对于单子叶植物小麦,本文所用多数麦田除草剂不能诱导雄性不育,只有咪草烟(专利申请号:200810231884.6)和草甘膦诱导雄性不育率均超过95%,但是草甘膦副作用较大。咪草烟对18个参试品种(系)的诱导雄性不育率都大于95%,剂量与品种之间有一定互作效应。咪草烟也能诱导禾本科的大麦、玉米达到100%不育。以上3种CHA的发现说明从磺酰脲类、咪唑啉酮类除草剂中筛选超高效CHA是可行的。
     2.化学杂交剂的靶标研究
     2.1酰嘧磺隆剂量与油菜下胚轴生长、ALS活性呈现显著负相关。在酰嘧磺隆处理油菜之后,ALS酶离体活性首先有小幅度升高,然后开始下降。表明ALS基因表达水平应激性提高,但随后蛋白合成整体水平下降导致ALS酶蛋白减少。不敏感品种82089酶活性稍高于敏感品种Qinyou3,且酶活力恢复快于Qinyou3。花蕾和雄蕊的ALS活力高于成熟叶片,但受酰嘧磺隆处理后下降幅度更大,这可能是CHA具有部位选择性的原因。采用不同ALS抑制剂处理油菜、小麦,杀雄活性高的除草剂对ALS活性抑制持续性大于杀雄效果差的除草剂,而高剂量的抑制效应又大于低剂量。表明这些CHA的作用靶标就是ALS。由于ALS是植物三种支链氨基酸合成途径的关键酶,通过ALS抑制剂中筛选、合成新型超高效CHA是可行的。
     2.2根据油菜乙酰乳酸合成酶基因设计16条引物,对16个品种的DNA模板进行扩增,发现ALS基因有多态性,但聚类结果不能清楚反映品种之间的遗传距离,也没有找到决定酰嘧磺隆敏感性的ALS基因位点。
     2.3酰嘧磺隆、酰嘧磺隆+支链氨基酸、环丙二羧酸(酮醇酸还原异构酶的特异抑制剂)三种处理都使得油菜花蕾游离氨基酸总量比对照提高1倍以上。说明CHA处理导致生长抑制,蛋白质的转换引起游离氨基酸总量变大,氨基酸比例失衡。对经过CHA处理的油菜植株,从叶面、花蕾等不同部位持续补给支链氨基酸,不能使育性恢复。
     3.酰嘧磺隆诱导油菜雄性不育的细胞学特征
     3.1用整体透明技术观察,酰嘧磺隆处理油菜具有接近正常的胚珠数量和发达的乳突结构,败育花药内小孢子数目减少,而且大都破裂变形。
     3.2诱导不育油菜的显微结构特征为:败育花药在小孢子发育早期不同阶段都有异常;花粉母细胞变形,细胞质收缩,出现空腔;四分体残缺不全;单核期小孢子畸形,细胞内容物基本消失。也有绒毡层异常膨大、绒毡层液泡化、提前解体或异常增生等现象。
     3.3超微结构显示:诱导不育油菜的部分花粉母细胞核膜破裂,核仁散碎,细胞质分解,体积收缩。部分花粉母细胞可以通过减数分裂,但产生的小孢子内有明显的线粒体、质体降解、吞噬等现象。绒毡层结构混乱,内容物残缺不全,没有绒毡层小体,造油体中颗粒呈破裂或者空瘪状。而且叶片、花药表皮、内壁细胞的叶绿体和质体空瘪,基粒片层破坏。
     4酰嘧磺隆诱导雄性不育的生理生化特征
     4.1酰嘧磺隆对油菜保护酶POD、CAT活性、以及体内毒素过氧化氢、丙二醛含量产生影响,敏感品种秦油3号和非敏感品种82089的反应不同。除草剂解毒相关的谷胱甘肽转移酶在酰嘧磺隆处理之后活性下降,然后有所回升并超过初始水平。非敏感品种82089不论叶片还是花蕾,活性降低水平低于敏感性品种Qinyou3,后来提高幅度又大于Qinyou3。这些区别有可能是形成品种间敏感度差异的原因之一。
     4.2酰嘧磺隆处理花蕾的丙酮酸、可溶性糖、叶绿素含量、类胡萝卜素含量、可溶性蛋白、DNA含量下降,花药DNA呈现弥散状凝胶电泳图谱。处理过的油菜光合速率有下降趋势,但是非敏感品种82089和D89比敏感品种Qinyou3和656下降缓慢,基本保持在原水平,表明光合作用下降也是雄性不育发生的特征之一。
     4.3在酰嘧磺隆处理油菜后喷施抗坏血酸、亚硫酸氢钠、硫代硫酸钠、过氧化氢、水杨酸、硝酸银、尿囊素、赤霉素等,均没有改变育性。补加乙烯利有助于缩短花期。利用酰嘧磺隆+PV+CMCNa+助剂配制的缓释剂处理油菜,提高药物使用剂量,延长了杀雄效果。
     综合以上结果可以得出本文化学杂交剂的基本作用模式为:酰嘧磺隆、苯磺隆、咪草烟等化学杂交剂的作用靶标是乙酰乳酸合成酶,毒性作用体现在多个层面,包括破坏氨基酸平衡、抑制细胞分裂,干扰DNA和蛋白质代谢、破坏叶绿体和质体结构、抑制光合作用、产生自由基等,最终对小孢子发育过程产生抑制作用。
Although male sterility induced by chemical hybridizing agents provides a practicable approach for hybrid production, there are few good chemical hybridizing agents(CHAs)available for commercial utility. Attempt was made in the paper to select and evaluate chemical hybridizing agents from sulfonylurea and similar herbicides, which can inhibit acetolactate synthase (ALS), the key enzyme catalyzes the common reaction to synthesize leucine, valine, and isoleucine in plants. The characterization and mechanism of action of novel and effective CHAs founded in the paper were studied. The main results obtained are as following:
     1. Selection and evaluation of CHAs
     1.1 Among twenty-eight chemicals tested, twenty-two herbicides elicited male sterility in Brassica napus. The best CHAs for Brassica napus were Tribenuron-methyl and Amidosulfuron (China invention patent ZL200610042886.1). Double foliar application of them at the concentration of 0.2-0.4 mg/L and at 12days interval resulted in nearly 100% male sterility. They could also make three environment-sensitive male sterile lines Zhong 9A (Shaan 2A CMS), Y88A (Polima CMS), and Hy50S (recessive genic male sterility) to be completely sterile. The hybridity of seeds from two mimic hybrid production trails via CHAs and CHA-aided CMS were 98.4% and 99.9% respectively. Tribenuron-methyl and Amidosulfuron could also be applied on other Brassica and cruciferous species.
     1.2 Most of herbicides used in this experiment had not or very weak gametocidal effect on wheat (Triticum aestivum). Only Imazethapyr and Glyphosate could induce high male sterility but phytotocxicity of the later was very serious. Imazethapyr resulted in over 95% male sterility in 18 different cultivars at 7g/ha and 10 g/ha rate. The effect of CHA×cultivar interaction was found in some cultivars. Application of Imazethapyr also resulted in 100% male sterility in Barley (Hordeum vulgare) and Zea mays. Glyphosate had good gametocidal effect on cotton (Gossypium hirsutum)and pepper (Capsicum annuum).
     2. Studies of the target of CHAs
     2.1 The dose of Amidosulfuron was negatively correlated with hypocotyls growth and ALS activity of B.napus. After Amidosulfuron treatment, the in vitro activity of ALS was raised little and then went down, this suggested the expression of ALS gene was promoted firstly by feedback regulation but then the protein synthesis was inhibited. The in vivo activity of ALS of non-sensitive cultivar 82089 was somewhat higher and recovered fast than sensitive cultivar Qinyou3. The in vivo activity of ALS of flora buds was higher than mature leaf but decrease more quickly. This was the first evidence to interpreter the selection of CHAs among different cultivars and different tissues. Brassica napus and Triticum aestivum were treated with different ALS-inhibitors. The one with good gametocidal efficiency had stronger inhibiting ability than those with lower efficiency. These indicated that ALS was the target of these novel CHAs.
     2.3 ALS genes fragments was amplified against 16 different cultivars with 16 primers designed based on ALS genes of B.napus. Some polymorphic bands were found but the cluster results based them could not reflex the relationships among these cultivars. The sites in ALS genes determining the sensitivity to amidosulfuron was not found.
     2.4 The contents of total and individual free amino acid in the buds of B.napus from three treatments, i.e. amidosulfuron, amidosulfuron+ branched-chain amino acids, and 1,1-cyclopropanedicarboxylate(specific inhibitors of ketol-acid reductoisomerase), increased by one fold. This was the results of the turn over of protein. Branched-chain amino acids were supplemented to the treated B.napus from leaf and bud, but this treatment could not restore the fertility.
     3. Cytological characters of male sterility in Brassica napus induced by Amidosulfuron
     3.1 The number and structure of ovum and the papilla cells in the stigma of Amidosulfuron treatment were similar to the contrast. However, the number of pollen grains in the CHA-treatment decreased and most pollen grains had abnormal shape observed via a whole flower clearing technique.
     3.2 Light microscopy studies revealed that pollen abortion in CHA treated plants was associated with abnormal behavior of tapetum, endothecium and microspore. CHA treatment made the cytoplasm of pollen mother cell shrunk. The tetrads were malformed and thus most microspores derived from them were destructured. Some tapetal cells elongated radially, however, sometimes they failed to degenerate.
     3.3 Ultrastructural studies revealed the number of vacuole and organelle in the tapetal cells in Amidosulfuron-treated rapeseed decreased. The pollen mother cell are destroyed with the karyotheca and nucleolus damaged, and the cytoplasm degenerated. It is observed that the presence of plastid and mitochondria degenerated and phagocytosis in the microspore and tapetal cell in the anthers of amidosulfuron treated plants. The tapetal cells were damaged with tapetosomes absent and elaioplasts malformed. One significant feature was the plastids and chloroplasts in leaf, epidermis and endothecium were destroyed.
     4 Physiological and biochemical characters of male sterility induced by amidosulfuron
     4.1 Application of amidosulfuron influenced the activity of peroxidase and catalase, and the content of endotoxin hydrogen peroxide and malondialdehyde. The trend of these influences was different between amidosulfuron-sensitive cultivar Qinyou3 and non-sensitive cultivar 82089. The activity of glutathione S-transferase, which is an important detoxifying enzyme, decreased abruptly but then rose to surpass the normal level. Its activity in cultivar 82089 was higher than in Qinyou3. These differences in defense systems might be the reason for manipulating of amidosulfuron-sensitivity.
     4.2 Application of amidosulfuron resulted in decrease of content of pyruvate acid, soluble sugar, chlorophyll carotene soluble protein and DNA. The genomic DNA from aborted anther showed smear band by agarose gel electrophoresis. The decrease of photosynthesis of rapeseed was induced, but cultivar 82089 can maintain higher photosynthesis than sensitive cultivar qingyou3 and 656. The decrease of photosynthesis was also an important reason for male sterility.
     4.3 Supplementary of ascorbic acid, NaHSO_3, Na_2S_2O_3, hydrogen peroxide, salicylic acid、AgNO_3, Allantoin, and GA3, could not aggravate or relieve the effect of amidosulfuron. However, addition of ethephon shorten the flowering period, this was useful to keep complete male sterility during the whole flowering period. A slow-release formulation (Amidosulfuron+PV+CMCNa+adjuvants) could enhance the endurance to doubled dose and prolonged the gametocidal effect of Amidosulfuron on B.napus.
     In conclusion, the primary model of CHAs used in this paper could be established. CHAs including Amidosulfuron, Tribenuron-methyl, and Imazethapyr, inhibited the activity of their target—acetolactate synthase. The toxicity embodied from various aspects: imbalance of amino acid, abnormal cell split, disturbance of DNA and protein biosynthesis, destruction of chloroplasts and plastid, restriction of the photosynthesis, production of free radical etc. The development of microspore was suppressed because it was most sensitive to these changes.
引文
[1]傅廷栋.中国油菜杂种优势利用研究概况[J].作物研究,1990,4(3):1-4
    [2] Yu C.Y. Utility of two-line heterosis of rapeseed in China: approaches and achievement[C]. Proc. of the 12th Intl. Rapeseed Cong., Wuhan, Mar.26-31, 2007,pp.I: 128-129
    [3]傅廷栋,杨光圣.油菜细胞质雄性不育系杂种[M].见:杂交油菜的育种和利用(傅廷栋主编),湖北科学技术出版社, 1995,武汉,pp46-51.
    [4]杨光圣,傅廷栋, Brown G.G.甘蓝型油菜细胞质雄性不育的遗传分类研究[J].中国农业科学,1998, 31(1): 27-31
    [5]傅寿仲,浦惠明,戚存扣等.双低油菜胞质雄性不育系宁A6的遗传及利用研究[J].江苏农业学报, 1998, 14 (4) : 193-197
    [6]柯桂兰,赵稚雅,宋胭脂,张鲁刚,赵利民.大白菜异源胞雄性不育系CMS3411-7选育及应用[J].园艺学报,1992, (4):333-340
    [7] Hu B., Chen F. and Li Q. Sterility and variation resulting from the transfer of Polima cytoplasmic male sterility from Brassica napus into Brassica chinensis[J]. J. of Agric. Sci., 1997, 128, 299-301
    [8]杨光圣,傅廷栋,杨小牛等.甘蓝型油菜生态雄性不育两用系的研究Ⅰ雄性不育两用系的遗传[J].作物学报,1995,21(2):129-135
    [9]徐亮,彭小松,贺浩华,杜德志,刘尊文.甘蓝型油菜生态型细胞质雄性不育系育性的初步研究[J].西北农业学报,2006,15(1):20-23
    [10] Brown G. G., Formanova N., Jin H., Wargachuk R.et al. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats[J], Plant Journal, 2003, 35(2): 262-272
    [11] Koizuka N, Imai R, Fujimoto H, Hayakawa T, et al. Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish[J]. Plant Journal, 2003, 34(4): 407~415
    [12] Fan Z, Stefansson BR. Influence of temperature on sterility of two CMS systems in rape[J]. Can. J. Plant Sci. 1986, 66:221-227
    [13]程计华,李云昌,胡琼,梅德圣,李英德,徐育松,王巍敏.油菜野芥NSa细胞质雄性不育系的特异性分子鉴定[J].作物学报2008, 34(11) 1946-1952
    [14]危文亮.甘蓝型油菜细胞质雄性不育系NCa的研究[D].中国农业科学院,2005年.
    [15]万正杰,王显军,傅廷栋,涂金星。芥菜型油菜细胞质雄性不育系6-102A的细胞学观察[J].中国油料作物学报.2006, 28 (3) : 268—271
    [16] Riungu T.C. and McVetty P.B.E. Development and evaluation of Diplotaxis muralis (mur) cytoplasmic male sterility system in summer rape[J]. Can. J. Plant Sci. 2003,83: 261-269
    [17] Singh K.H. and Srivastava K.K. Characterization of different cytoplasmic male sterility systems in Indian mustard (Brassica juncea L. Czern & Coss)[J]. Plant Breeding,2006,125(1):72- 6
    [18]李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用[J].上海农业学报, 1985,1(2):1-12
    [19]宋来强,傅廷栋,杨光圣,涂金星,马朝芝. 1对复等位基因控制的油菜(Brassica napus L.)显性核不育系609AB的遗传验证[J].作物学报,2005, 31(7):869~875
    [20]侯国佐,王华,张瑞茂等.甘蓝型油菜细胞核雄性不育材料117A的遗传研究[J].中国油料, 1990(2):1-10.
    [21]陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核不育系遗传研究Ⅰ.隐性核不育系9012A的遗传[J].作物学报,1998,24(4):431~438
    [22] Virmani S S and Ilyas Ahmed M. 2001. Environment sensitive genic male sterility (EGMS) in crops[J]. Advances in Agronomy, 72: 139-195
    [23]席代汶,陈卫江,宁祖良.甘蓝型油菜温敏核不育系“湘91S”的选育[J].湖南农业科学,1994(4):17-18.
    [24] Mariani C , Gossele V ,Beuckeleer M D , et al . An chimaeric ribonuclease inhibitor gene restores fertility to male sterile plants [J]. Nature ,1992 ,357 :384-387.
    [25]胡廷章.植物的化学诱导表达系统[J].分子植物育种, 2003 ,1(5/6):731 -736
    [26]杨光圣,傅廷栋,马朝芝,杨小牛等.甘蓝型油菜细胞核+细胞质雄性不育三系的研究与利用Ⅳ.隐性细胞核+波里马细胞质雄性不育三系的创建[J].作物学报,1997,23(2):144-149
    [27] Shen J.X, Wang H.Z, Fu T.D., and Tian B.M. Cytoplasmic male sterility with self-incompatibility, a novel approach to utilizing heterosis in rapeseed (Brassica napus L.)[J]. Euphytica, 2008, 162(1):109-115
    [28]邬贤梦,席代汶,宁祖良等.甘蓝型油菜无微量花粉细胞质雄性不育系湘油66A的选育[J].湖南农业大学学报,2006,32(4):347-351
    [29]于澄宇,胡胜武.环境敏感核不育+Nap细胞质不育双重不育系的选育及应用[P].国家发明专利,申请号:200828861024.0
    [30]赵利民,柯桂兰.大白菜萝卜细胞质雄性不育系RC7的选育及其特性研究[J].西北植物学报,27(12): 2404-2410
    [31]张书芳,宋兆华,赵雪云.大白菜细胞核基因互作雄性不育系的选育及其应用模式[J].园艺学报,1990, 17(2):117-125
    [32]康俊根,张国裕,张延国.四种甘蓝雄性不育类型差异基因表达分析[J].农业生物技术学报.2006, 14(4):551-554
    [33]刘宏伟.化学杂交剂—GENESIS诱导小麦雄性不育机理研究[D].西北农林科技大学博士学位论文.2002.
    [34]何蓓如,董普辉,马翎健,宋喜悦,胡银刚,康海岐.光敏小麦雄性不育系A31雄性育性对光周期的反应[J].作物学报, 2004, 30 (11): 1176-1179
    [35] Sandhu A.P.S., Dhawan R., Gill M.S, Bains. N.S. Wheat×maize crosses using chemical hybridizing agent[J]. Crop Improvement, 2002, 29(2):154-159
    [36] Picard, E., Hours C., Gregoire S., Phan T.H. and Meunier J.P. Significant improvement of androgenetic haploid and doubled haploid induction from wheat plants treated with a chemical hybridization agent[J]. Theor. Appl. Genet. 1987, 74: 289-297
    [37] Pickett A.A. Hybrid wheat - results and problems. Advances in Plant Breeding No. 15.Paul Parey Scientific Publishers,. Berlin Hamburg, 1993. pp 259
    [38] Yu C.Y., Dong J.G., Hu S.W. and He P.R. Efficiency of a novel gametocide amidosulfuron on rapeseed (Brassica napus). Plant Breeding, 2009, DOI: 10.1111 /j.1439-0523.2008.01594.x
    [39] Banga S.S. Towards commercial hybrids in mustard (Brassica juncea (L.) Coss) [C].Inter. Symp. on Rapeseed Sci., Apr 19-23, 2001. Wuhan, China pp.35-40
    [40] Singh V. and Chauhan, S. V. S. Evaluation of three chemical hybridizing agents in Brassica juncea L[J]. Brassica, 2004,6(3/4): 71-73
    [41]官春云,王国槐,李栒,陈社元,田森林.油菜化学杀雄药物、机理和杂种研究[J].作物研究,1990,4(3):13-19.
    [42]官春云.关于油菜化学杀雄杂种的几点说明[J].作物研究,1995,9(增刊):10-11.
    [43]官春云,王国槐,李栒等.几种化学药物对油菜杀雄效果的研究[J].作物研究,1993,7(3):13-16.
    [44] Guan C. Y. and G. R. Stringam. The effect of ZMA on inducing male sterility on spring canola[J]. Cruciferae Newsletter 1998, 20, 55-56.
    [45]官春云,李栒,王国槐等.化学杂交剂诱导油菜雄性不育机理的研究.I.杀雄剂1号对甘蓝型油菜花药毡绒层和花粉粒形成的影响[J].作物学报, 1997, 23(5): 513-521
    [46]官春云,李栒,王国槐,陈社员,袁晏松.化学杂交剂诱导油菜雄性不育机理的研究II.KMS-1对甘蓝型油菜育性的影响[J].中国油料作物学报,1998, 20(3): 1-4
    [47]田正科,丁秀琦,侯玉兰.小油菜化学杀雄技术初探[J].青海农林科技,1992(4):3-6
    [48]陈新军,戚存扣,张洁夫,浦惠明,高建芹,傅寿仲.化学杀雄剂2号在甘蓝型油菜上的应用[J].江苏农业科学, 2002(6):19 - 21.
    [49]陈社员,官春云,王国槐,李栒,刘忠松.双低杂交油菜新品种湘杂油6号的选育[J].中国油料作物学报, 2005,27(2):37-39
    [50]刘绚霞,董振生,刘创社,等.新型油菜化学杀雄剂EN的杀雄效果与应用研究初报[J].西北农业学报,1999,8(4):60~62.
    [51]刘绚霞,董军刚,刘创社,董振生,严自斌,高晓岚,高崇玉.新型化学杀雄剂EN对甘蓝型油菜的杀雄效果及其应用研究[J].西北农林科技大学学报(自然科学版), 2007,(4) 81-85.
    [52]何振才,李建昌,李永红.新型杀雄剂SX-1在油菜上的应用初报[J].陕西农业科学2000,20(3):1~4.
    [53]张耀文,尚毅,李永红等.新型化学杂交剂SX-1对甘蓝型油菜CMS的作用效果研究[J].西北农业学报,2003,12(3):57~61.
    [54]付云龙,戚永明,赵汉红.化学杀雄剂对油菜三系杂交制种母本微粉控制试验简报[J].种子,2003(1):73.
    [55]戚永明,刘建军,付云龙,胡小杰,汤勇.新型化学杀雄剂“定军1号”在甘蓝型油菜MS制种上控制微粉的作用效果[J].种子, 2006, 25(10)::93-95
    [56] Singh V. Benzotriazole - A new chemical hybridizing agent for Brassica Juncea L[J]. J. of Cytol. and Genet., 2001(2):81-83.
    [57]于澄宇,胡胜武,何蓓如等.化学杂交剂EXP对油菜的杀雄效果[J].作物学报, 2005, 31(11):1455-1459
    [58] Yu C, Hu SW , He P, Sun G, Zhang C and Yu Y. Inducing male sterility in Brassica napus L. by a sulphonylurea herbicide,tribenuron-methyl[J].Plant Breeding, 2006,125:61-64
    [59] Singh V. and Chauhan SVS. Bud pollination and hybrid seed production in detergent-induced male sterile plants of Brassica juncea[J]. Plant Breeding,2003,122(5):421-425
    [60]杨交礼,王国槐.两种新杀雄药在油菜上的应用简报[J].作物研究2006,.20(3):.227-230
    [61]尚毅,李殿荣,李永红等.我国油菜化学杀雄+细胞质雄性不育的应用研究[J].西北农业学报,2005,14(1):26-29.
    [62]张学昆,李加纳,唐章林.化学杂交剂对油菜胞质不育系波利马育性的影响[J].西南农业大学学报,1999,21(2):140-143
    [63] Moore RH. Several effects of maleic hydrazide on plants. Science. 1950,14,112:52–53
    [64]陈万义.化学杂交剂的进展[J].农药.1999,38(I):1-6.
    [65] Colhoun, C.W. and M.W. Steer, The cytological effects of the gametocides, ethrel and RH-531 on microsprogenesis in barley (Hordeum vulgare L)[J]. Plant Cell Environ 1983. 6: 21–29.
    [66] Miller, J.F. and K.A. Lucken, Gametocidal properties of RH-531, RH-532, RH-2959 and RH-4667 on spring wheat (Triticum aestivum L)[J]. Euphytica1977. 26: 103–112.
    [67] Mizelle, M.B., R. Sethi, M.E. Ashton and W.A. Jensen. Development of the pollen grain and tapetum of wheat (Triticum aestivum) in untreated plants and plants treated with chemical hybridizing agent RH 0007[J]. Sex. Plant Reprod. 1989,2: 231–252.
    [68] Mogensen, H.L. and J.A.R. Ladyman. A structural study on the mode of action of CHATM chemical hybridizing agent in wheat. Sex. Plant Reprod. 1989,2: 173–183.
    [69] Chakraborty K. and Devakumar C. Ethyloxanilates as specific male gametocides for wheat (Triticum aestivum L.)[J]. Plant Breeding, 2006, 125 (5): 441–447
    [70] Adugna A., Nanda G.S., Singh K. &Bains N.S. A comparison of cytoplasmic and chemically-induced male sterility systems for hybrid seed production in wheat (Triticum aestivum L.)[J]. Euphytica 2004,135: 297–304.
    [71]张爱民鄂立柱武跃廷.化学杂交剂Sc2053诱导小麦雄性不育的研究[C].全国作物育种学术讨论会论文集,1998年4月P.163-169
    [72]陈万义,花冬梅.化学杂交剂哒嗪酮酸钾的合成[J].农药1997,36(6)13-15
    [73]程春生,陆英飞,张改生等.杀雄嗪酸的合成及其生物活性的研究[J]. 2004,43(3):315-317
    [74]吕德彬,闫滋福,程西永,许海霞,徐巧玲.不同基因型小麦雄性不育的化学诱导研究[J].河南农业大学学报, 2000,34(1):1-3,12
    [75]高庆荣,于金凤,刘保申,孙兰珍.化学杂交剂GENESIS对小麦的杀雄效果[J].山东农业大学学报:自然科学版. 2001,32(1):17-22
    [76]高庆荣,于金凤,孙兰珍.新型CHA-9403诱导小麦雄性不育的初步研究[J].西北农业学报.2000,9(4):5-9
    [77]张爱民,王道全,陈万义,等.新型化学杂交型BAU9403的应用技术研究[J].麦类作物学报,2001,21(2):20-24
    [78]刘宏伟,张改生,王军卫等.化学杂交剂SQ-1诱导小麦雄性不育及与不同小麦品种互作效应的研究[J].西北农林科技大学学报(自然科学版),2003,31(4):15-18
    [79]李则轩.化学杂交剂(CHA)诱导小麦雄性不育的可能机理[D].河北师范大学,2003
    [80] Zoltan Barabas. Utilization of auxotrophy in hybrid seed production for elimination of the disadvantages of gametocides[J]. Euphytica, 1993, 70: 75-76
    [81] Loussaert D. Trihalogenated methylsulfonamides as specific male gametocides[J]. Sex. Plant Reprod.. 2004,16(6):299-307
    [82]黄雪清,高东迎,杨安南,孙立华,张金渝.吡喃酮类衍生物对水稻的杀雄作用与活性代谢的关系[J].植物生理学报, 2001,27(2): 161-166
    [83]陶龙兴,王熹等. CM268诱导水稻雄性不育的效果及作用机理研[J].作物学报, 2001,27(2):178-184
    [84]谢九皋,蒋明亮,张传忍.调节膦诱导雄性不育棉花细胞形态初步观察[J].华中农业大学学报,1996,15(1):15-17
    [85]崔秀辉.化学杂交剂SQ-1诱导糜子雄性不育效果研究[J].作物学报, 2008,34(1): 106-110.
    [86]孙兆法,翟晓灵,王瑞英,丁世民,陈莉.化学杀雄剂SC2053对瓜叶菊杀雄效果的初步研究[J].园艺学报,2005,(2):330
    [87] Baydar H; Gokmen OY. Hybrid seed production in safflower (Carthamus tinctorius) following theinduction of male sterility by gibberellic acid[J]. Plant Breeding, 2003, 122(5):459-461
    [88]刘庆龙,卢向阳,彭丽莎,罗泽民,周庭波,林芳仕,吴松青.两系杂交水稻应用化学杂交剂保纯的研究Ⅰ.“保纯灵”诱导光温敏核不育水稻雄性不育的效果[J].湖南农业大学学报.1998,24(4):15-21
    [89] Praba M. L., and Thangaraj M. Effect of growth regulators and chemicals on pollen sterility in TGMS lines of rice[J]. Plant Growth Regulation, 2005,46:117–124
    [90]刘志勇.新型化学杀雄剂化杀灵WP诱导油菜雄性不育研究[D].华中农业大学.武汉硕士论文.2006.
    [91] Ma Jiong, Skibbe D. S, Fernandes J. and Walbot V. Male reproductive development: gene expression profiling of maize anther and pollen ontogeny[J]. Genome Biology 2008, 9: R181. DOI: 10.1186/gb-2008-9-12-r181
    [92] Borg M, Brownfield L. and Twell D. Male gametophyte development: a molecular perspective[J]. J. of Exp. Bot., 2009, 60, 1465-1478
    [93]杨涛.化学杂交剂诱导的小麦雄性不育育性相关基因片段的分离与克隆[D].中国农业大学; 2004年
    [94] Sanders PM, Anhthu QB, Weterings K, Mclntire KN, Hsu Y, Lee PY, Trong MT, Beals TP, Goldberg RB. Anther developmental defects in Arabidopsis thaliana male-sterile mutants[J]. Sex Plant Reprod 1999,11: 297–322.
    [95]刘忠松.植物雄性不育机理的研究及应用[M].北京:中国农业出版社.2001:58.
    [96]余凤群,傅廷栋.甘蓝型油菜几个雄性不育系的细胞形态学研究[J].武汉植物学研究,1990, (3) :119-126
    [97]龙欢,姚家玲,涂金星. 3种甘蓝型油菜雄性不育系花药发育的细胞学研究[J].华中农业大学学报, 2005,24(6):570-575
    [98]董军刚,董振生,刘绚霞,刘创社,李红兵.甘蓝型油菜生态雄性不育系533S花药发育的细胞学研究[J].西北农林科技大学学报,. 2004, 32(7): 61-66
    [99]杨光圣,瞿波,傅廷栋.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学研究[J].华中农业大学学报, 1999,(6) :520-523
    [100]闫先喜,梁作勤,田纪春. Sc2053诱导小麦雄性不育形态学和细胞学观察[J].华北农学报,1996,11(1):19-2l
    [101]裴阿卫.化学杂交剂WL84811诱导普通小麦雄性不育时花粉的细胞形态学观察[J].西北农业学报, 1996,(3):93-95
    [102]徐如强,黄铁城. "BAU-2"诱导普通小麦雄性不育的研究:Ⅲ.化学杀雄机制[J].北京农业大学学报.1993,19(增刊):19-24
    [103]许海霞,吕德彬,程西永,詹克慧,陈军营,姜鸿勋. GENESIS诱导小麦雄性不育的形态学和细胞学观察[J].河南农业大学学报.2003,37(3):205-208
    [104]刘宏伟,张改生,刘秉华.化学杂交剂GENESIS诱导小麦雄性不育的细胞形态学观察[J].西北植物学报, 2004, 24(12): 2282-2285.
    [105]杨交礼.两种新型药物对油菜的杀雄效果及机制研究[D].湖南农业大学, 2006年
    [106]井苗.化学药物诱导油菜雄性不育效果的研究[D].西北农林科技大学, 2008
    [107]井苗,董振生,严自斌,董军刚,钟瑜. BHL等4种药物对油菜杀雄效果的研究[J].西北农业学报, 2008, (03) :165-170
    [108]田长恩,梁承邺,黄毓文,刘鸿先.乙烯与水稻细胞质雄性不育的关系[J].作物学报, 1999, 25(1):116-119
    [109]田长恩,张明永,段俊,黄毓文,刘鸿先,梁承邺油菜细胞质雄性不育系及其保持系不同发育阶段内源激素动态变化初探[J].中国农业科学,1998,31(4):20-25
    [110]张爱民,李英贤,黄铁城.化学杂交剂诱导的雄性不育花药组织内源激素的变化[J].农业生物技术学报,1997,5(1): 64-71
    [111]李英贤,张爱民.小麦雄性不育与叶片中内源激素含量的关系[J].农业生物技术学报1998,6(2):185-190
    [112]刘宏伟,张改生,王军卫等. GENESIS诱导小麦雄性不育与幼穗中乙烯含量的关系[J].西北农林科技大学学报, 2003,6(31) :39-42.
    [113]刘志勇,沈春章,傅廷栋,董元彦.化杀灵诱导油菜雄性不育与乙烯释放量的关系[J]..华中农业大学学报.2006 ,25(2):120-122
    [114]范宝磊,岳霞丽,张黎娜.化学杀雄剂诱导植物雄性不育的生理生化研究进展[J].铜仁学院学报2008,10(5):130-134
    [115]范宝磊.新型化学杀雄剂WP和YB诱导油菜雄性不育机理初探[D].华中农业大学硕士学位论文. 2007
    [116] Sawhney, V. K. and Shukla, A. Male sterility in flowering plants: Are plant growth substances involved? [J]. Am. J. Bot., 1994, 81. 1640–1647
    [117]田长恩,梁承邺,黄毓文,刘鸿先.油菜细胞质雄性不育系及其保持系花蕾发育过程中的多胺代谢[J].作物学报,1999,25(5):602-607
    [118]苏俊英,吕德彬,程西永等.化学杂交剂Genesis及Sc2053对小麦穗部过氧化物酶活性的影响[J].河南农业大学学报.2000,34(4):309-311,328
    [119]沈银柱,刘植义,黄占景等.不同化学杂交剂(CHA)对小麦花药同工酶影响的研究[J].遗传.1999, 21(5): 41-46
    [120]陈时洪,李学刚,王强,王邦俊,叶小利.棉花化学杀雄剂1号对棉花吸收矿质营养元素的影响[J].棉花学报, 2001, 13(1):7-10
    [121]黄雪清,高东迎,杨安南,孙立华,张金渝.化学杀雄剂Ⅲ号诱导水稻雄性不育过程中幼穗、颖花、花药中核酸和蛋白质代谢研究[J].作物学报2001, 27(6) 827-831
    [122]刘庆龙,彭丽莎.两系杂交水稻应用化学杂交剂保纯的研究:Ⅱ.保纯灵处理对光温敏核不育水稻生理生化的影响[J].湖南农业大学学报.1998, 24(5):345-350
    [123]张金渝,陈以峰,梅传生,汤日圣.水稻化学杂交剂的筛选和杀雄的生理基础[J].江苏农业学报,1996,12(1):12-16
    [124]刘卫,陈蕊红,张改生,牛娜.小麦遗传型与生理型雄性不育花药蛋白质双向电泳分析[J].遗传, 2008, 30(8): 1063-1068
    [125]王熹,俞美玉,陶龙兴.雄性配子诱杀剂CRMS对水稻花药蛋白质与游离氨基酸的影响[J].中国水稻科学. l995, 9(2):123-126
    [126]肖建国,蒋爱湘,冯桂苓.化学杂交剂“津奥啉”诱导小麦雄性不育机理研究[J].华北农学报1996,11(4):7-11
    [127]方正武,姚亚琴,张改生,刘宏伟,王军卫. GENESIS诱导小麦雄性不育性与花药组织呼吸关系的初步研究[J].西北植物学报, 2004, 24(6): 982-985
    [128]陈时洪,李学刚,蒲涛,王强,王邦俊.新型棉花化学杀雄剂对棉叶中叶绿素含量的影响[J]西南农业大学学报, 2000,(5):435-437
    [129]焦健,高庆荣,王大伟,郝媛媛,邱新民,姜辉,郭凤芝.不同小麦雄性不育类型光合速率的影响因子分析[J].中国农业科学2008, 41(6):1622-1629
    [130]乔晓琳,高庆荣,张爱民,赵桂清,刘正斌,邱新民.小麦K、V、T、CHA细胞质雄性不育类型的光合特性分析[J].作物学报, 2006, 32(9): 1323-1328.
    [131]严锐,赵华,胡永琪.农药控释技术研究进展[J].农药, 2006(3):237-239,244
    [132]孟锦宏,张慧, Evans D G.新型层状农药缓控释材料-草甘膦插层双金属氢氧化物的超分子结构与缓释性能[J].科学通报,2005, 50(3): 208-214.
    [133] Lym R. G. Absorption and translocation of foliar-applied sulfometuron in leafy spurg[J]. Weed Science, 1992. 40:477-481.
    [134]叶非,徐伟钧.除草剂安全剂的生理生化作用机制研究进展[J].植物保护学报, 2008,(4):367-371
    [135]余柳青,周洪杰,叶贵标,黄世文.苄嘧磺隆与尿素混用对陌上菜吸收除草剂的影响[J].核农学报,1998,12(3): 161-164
    [136]叶发兵,董元彦,胡记童,莫小曼,胡先文.尿素对磺酰脲除草剂与过氧化氢酶相互作用的影响[J].化学与生物工程,2007 ,24(2):25-28
    [137]张耀文,尚毅,李永红,李建厂,李殿荣.新型化学杂交剂SX-1对甘蓝型油菜CMS的作用效果研究[J].西北农业学报, 2003, 12(3):9-13
    [138]张召铎,刘植义,沈银柱等.赤霉素增效剂对小麦化学杂交剂ES杀雄效果的影响[J].河北师范大学学报.1999,23(2): 267-270,273.
    [139]王大伟,高庆荣,张爱民,郝媛媛,王霖,邱新民.茉莉酸甲酯(MeJA)对小麦开颖的诱导效应[J].麦类作物学报. 2007, 27(2): 293-297.
    [140] Chaleff RS, and Mauvais CJ. Herbicide-resistant mutants from tobacco cell cultures[J]. Science 1984, 223:1148-1151.
    [141] Ray T. Site of action of chlorsulfuron[J]. Plant Physiol. 1984, 75:827-831.
    [142] LaRossa R A, and Schloss J V. The sulfonyurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmoppella typhimurium[J]. J. of Biol. Chem., 1984, 295: 8753-8757
    [143] Shaner, D., Anderson P.C., and Stidham M.A. Imidazolinones-potent inhibitors of acetohydroxyacid synthase[J]. Plant Physiol,1984, 76:545-546
    [144] Duggleby R.G., and Pang S.S. Acetohydroxyacid Synthase[J]. J. of Biochemi. and Mol. Bio., 2000, 33(1): 1-36
    [145] Binder S., Knill T., and Schuster J. Branched-chain amino acid metabolism in higher plants[J]. Physiologia Plantarum 2007,129(1):68-78
    [146] Muhitch M.J., Shaner D.L., Stidham M.A. Imidazolinone and acetohydroxyacid synthase from higher plants[J]. Plant Physiol. 1987(83) 451–456
    [147] Zhou Q., Liu W, Zhang Y, Liu K. K. Action mechanisms of acetolactate synthase-inhibiting herbicides[J]. Pest. Biochemi. and Physio., 2007(89): 89–96
    [148] McCourt J.A., Pang S.S., King-Scott J., Guddat L.W., Duggleby R.G. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase[J]. Proc. Natl. Acad. Sci. USA, 2006,103: 569–573.
    [149] McCourt J.A. and Duggleby R.G. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids[J]. Amino Acids, 2006,31: 173–210
    [150] Pang S.S, Guddat L.W., Duggleby R.G. Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase [J]. J. Biol. Chem., 2003, 278: 7639-7644.
    [151]姜玲,王相晶,向文胜.除草剂与乙酰乳酸合成酶相互作用的分子机理研究进展[J].农药学学报,2007,9(1):06-13
    [152] Sweetser, P.B., Schow, G.S., Hutchison, J.M. Metabolism of chlorsulfuron by plants-biological basis for selectivity of a new herbicide for cereals[J]. Pestic. Bioche. and Physio., 1982,18-23
    [153] Wittenbach V.A. Koeppe M.K. Basis of selectivity of triflusulfuron methyl in sugar beets[J]. Pestic Biochem. Physiol,1994, 49:72-81
    [154] Veldhuis, L.J.,Hall L.M., O'Donovan J. T., Dyer W., and Hall J.C. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl[J]. J. Agric. Food Chem. 2000, 48:2986–2990.
    [155] Dixon D. P., Hawkins T., Hussey P. J. and Edwards R. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily[J]. J. of Exp. Bot., 2009, 60(4):1207–1218
    [156]高宗军,蒋家珍,李学锋,邱立红,王成菊,张文吉,程玉臣.吡唑解草酯对小麦细胞色素P450的诱导作用及其光谱特征[J].植物保护,2005, 31(4):40-45
    [157]郭玉莲,陶波,郑铁军,李宝英,翟喜海,潘亚清.植物谷胱甘肽S-转移酶(GSTs)及除草剂解毒剂的诱导作用[J].东北农业大学学报,2008, 39(7): 136~139.
    [158]隋标峰,王金信,彭学岗,丁君,刘迎.麦田不同杂草对苯磺隆敏感性差异的分子机制[J].植物保护学报, 2007,34(2):204-207.
    [159] Ott KH, Kwagh JG, Stockton GW, Sidorov V, Kakefuda G. Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase[J]. J Mol Biol 1996, 263: 359-368.
    [160] Shimizu M., Goto M., Hanai M., Shimizu T., et al. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco[J]. Plant Physiol. 2008,147(4): 1976–1983
    [161] Degrande D, Dewaele E. and Rambour S. The AHAS gene of Cichorium intybus is expressed in fast growing and inflorescential organs[J]. Physiologia Plantarum, 2000, 110(2): 224–231
    [162] Chang A.K, Duggleby R.G. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants [J]. Biochem J, 1998, 333: 765-777.
    [163] Boutsalis P, Karotam J., and Powles S.B. Molecular basis of resistance to acetolactatesynthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii[J]. Pestic. Sci 1999, 55:507–516.
    [164] Tan M. K. and Medd R. W. Characterisation of the acetolactate synthase (ALS) gene of Raphanus raphanistrum L. and the molecular assay of mutations associated with herbicide resistance[J]. Plant Sci 2002,163:195–200
    [165] Michael J.C., Vijay K.N. ,Kirk A.H., Todd R.W. Target-site resistance to acetolactate synthase in wild mustard (Sinapis arvensis)[J]. Weed Sci. 2006,54 :191–197.
    [166] Swanson EB, Herrgesell MJ, Arnoldo M, Sippell DW. Microspore mutagenesis and selection: Canola plants with field tolerance to the imidazolinones[J]. Theor. and Appl. Genet., 1989,78(4):525-530.
    [167]王秀君,郎志宏,单安山,黄大昉.氨基酸生物合成抑制剂类除草剂作用机理及耐除草剂转基因植物研究进展[J].中国生物工程杂志. 2008,20(2):110-116
    [168] Wiersma PA, Schmiemann MG, Condie JA, Crosby WL, Moloney MM. Isolation, expression and phylogenetic inheritance of an acetolactate synthase gene from Brassica napus[J]. Mol Gen Genet, 1989, 219:413–420
    [169] Rutledge R.G., Quellet T., Hattori J. and Miki B.L. Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family[J]. Mol. Gen. Genet.1991, 229 (1), 31-40.
    [170]李汝刚, McFerson J. R, Kresoich S.乙酰乳酸合成酶基因在芸苔属栽培种内的遗传变异[J].生物多样性1998, 6 (1): 6-12
    [171] Westerfeld, W.W. A colorimetric determination of blood acetoin[J]. J. Biol. Chem 1945, 161:495–502.
    [172] Gerwick, B.C., Mireles L.C., and Eilers R. J. Rapid diagnosis of ALS/AHAS-resistant weeds[J]. Weed Technol 1993,7:519–524.
    [173] Simpson, DM., Stoller EW., and Wax LM.. An in vivo acetolactate synthase assay[J]. Weed Technol.1995,9:17-22
    [174] Kuk YI, Jung HI, Kwon OD, Lee DJ, et al. Rapid diagnosis of resistance to sulfonylurea herbicides in monochoria (Monochoria vaginalis)[J]. Weed Science 2003,51(3):305-311.
    [175] Rost, T. L. and Renolds T. Reversal of chlorsulfuron induced inhibition of mitotic entry by isoleucine and valine[J]. Plant Physiol.,1985, 77:481-482.
    [176] Scheel D, and Casida JE. Sulfonylurea herbicides: growth inhibition in soybean cell suspension cultures and in bacteria correlated with the block in the biosynthesis of valine, leucine and isoleucine[J]. Pestic Biochem Physiol 1985, 23: 398–412
    [177] Robbins J. and Rost T.L. chlorsulfuron inhibition of cell cycle progression and the recovery of G1 arrested cells by Ile and Val[J]. J. Plant Growth Regul. 1987, 6:67–74.
    [178] Giardina M.C., De Agazioand M., Grego S. Lack of prevention of chlorsulfuron-induced inhibition by amino acids[J]. Weed Research, 1987, 27(3):215-219
    [179] Royuela M, González A, González EM, et al. Physiological consequences of continuous, sublethal imazethapyr supply to pea plants[J]. J Plant Physiol 2000, 157: 345–354
    [180] Wallsgrow RM, Risiott R, King J, Bright SW. Biochemical characterization of an auxotroph of Datura innoxia requiring isoleucine and valine. Plant Sci ,1986,43: 109–114
    [181] Rhodes D, Hogan AL, Deal L, et al. Amino acid metabolism of Lemna minor L. II. Responses to chlorsulfuron[J]. Plant Physiol 1987, 84: 775–780
    [182] Wittenbach VA, Abell LM. Inhibition of valine, leucine and isoleucine biosynthesis. In: Singh BK (ed) Plant Amino Acids: Biochemistry and Biotechnology[M]. Marcel Dekker Inc., New York, 1999. pp: 385–416
    [183] LaRossa, RA. TK. Van Dyk, and DR. Smulski. Toxic accumulation of a-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium[J]. Journal of Bacteriology, 1987, 169, 4: 1372-1378
    [184] Shaner D.L and Singh B.K. Phytotoxicity of Acetohydroxyacid Synthase lnhibitors is not due to accumulation of 2-ketobutyrate and/or 2-amino butyrate[J]. Plant Physiology, 1993,103: 1221-1226
    [185] H?fgen R, Laber B, Schüttke I. et al. Repression of acetolactate synthase activity through antisense inhibition. Molecular and biochemical analysis of transgenic potato (Solanum tuberosum L. cv Désirée) plants[J]. Plant Physiol. 1995, 107: 469–477
    [186] Gaston S, Zabalza A, González E M., et al. Imazethapyr, an inhibitor of the branched-chain amino acid biosynthesis, induces aerobic fermentation in pea plants[J]. Physiologia Plantarum 2002, 114 (4), 524-532
    [187] Gaston S., Ribas-Carbo M., Busquets S., Berry J.A., Zabalza A., Royuela M. Changes in mitochondrial electron partitioning in response to herbicides inhibiting branched-chain amino acid biosynthesis in soybean[J]. Plant Physiol. 2003, 133: 1351–1359.
    [188] Zabalza A, González EM, Arrese-Igor C et al. Fermentative metabolism is induced by inhibiting different enzymes of the branched-chain amino acid biosynthesis pathway in pea plants[J]. J. of Agri. and Food Chem., 2005, 53: 7486-7493.
    [189] Kapchina-Toteva V, Slavov S., Batchvarova R., et al. Stress markers in chlorsulphuron tolerant transgenic tobacco plants[J]. Bulg. J. Plant Physiol, 2004, 30(1-2), 103-111
    [190] Zabalza A, Gaston S, Sandalio LM, et al. Oxidative stress is not related to the mode of action of herbicides that inhibit acetolactate synthase[J]. Environmental and Experimental Botany, 2006, 59 (2): 150-159
    [191] Rothstein EC and Lucchesi PA. Redox control of the cell cycle: a radical encounter[J]. Antioxid Redox Signal. 2005,7(5-6):701-3.
    [192] Bestman H.D., Devine M.D., Born W.H.V. Herbicide chlorsulfuron decreases assimilate transport out of treated leaves of field pennycress (Thiaspi arvense L.) seedlings[J]. Plant Physiol. 1990,93:1441–1448.
    [193] Ray T.B. The mode of action of chlorsulfuron: A new herbicide for cereals[J]. Pesticide Biochemistry and Physiology, 1982,17: 10-17.
    [194]刘支前.除草剂普杀特对玉米根尖蛋白质和DNA合成的影响[J].植物生理学报,1994, 20(23):303-307
    [195] Rost T.L., D. Gladish, J. Steffen et al. Is there a relationship between branched amino acid pool size and cell cycle inhibition in roots treated with imidazolinone herbicides?[J] J. Plant Growth Regul. 1990,9, 227–232.
    [196] Céline B, H. B. Lee, P. E. Thomas et al. Effects of the sulfonylurea herbicide metsulfuron methyl on growth and reproduction of five wetland and terrestrial plant species[J]. Environ. Tox. and Chemi.2000, 19 (10): 2532-2541
    [197] Fletcher J.S,, Pfleeger T.G., and Ratsch H.C. chlorsulfuron influence on garden pea reproduction[J]. Physioloigia plantarum,1995,94:261-267
    [198] Roider C. A., J. L. Griffin, S. A. Harrison, and C. A. Jones. Wheat response to simulated glyphosate drift[J]. Weed Technology, 2007, 21:1010–1015
    [199] Wall D.A., Derksen D.A. Friesen L. Canola (Brassica napus) response to simulated sprayer contamination with thifensulfuron and thifensulfuron:tribenuron (2:1)[J]. Weed Technology, 1995,9(3):468-476
    [200] Vancetovic J, Vidakovic M, Stefanovic L, Simic M. Imazethapyr resistance found in the material of the MRI, Zemun Polje, gene bank. Maydica, 2007,52: 235-238
    [201]范志金.新磺酰脲类除草剂单嘧磺隆创制的基础研究[D].中国农业大学博士学位论文. 2003.
    [202] Rozen S. and Skaletsky H. J. Primer3 on the WWW for general users and for biologist programmers[S]. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, 2000, pp 365-386
    [203] Rohlf F J. NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Version 2.1. Exeter Software, Applied Biostatistics Inc., New York, USA, 2000
    [204] Liu F, Zhang F , Jin Z, He Y, Fang H, Ye Q and Zhou W. Determination of acetolactate synthase activity and protein content of oilseed rape (Brassica napus L.) leaves using visible/near-infrared spectroscopy[J]. Analytica Chimica Acta. 2008, 629, 23(1-2):56-65
    [205] Shim S.I., Lee B.M., Ryu, E.I., and Kang B.H. Response of leaf acetolactate synthase from different leaf positions and seedling ages to sulfonylurea herbicide[J]. Pesticide biochemistry and physiology, 2003,75:39-46
    [206]内野彰.水田雑草におけるスルホニルウレア系除草剤抵抗性の迅速検定法. http://jhrwg.ac.affrc.go.jp/diagnosis/diagnosis.pdf
    [207]谭小平.水稻品种对甲黄隆的耐药性差异及机制研究[D].湖南农业大学硕士学位论文. 2001
    [208] Singh, V. Molecular evaluation of chemically induced male sterility in Brassica juncea (L.) Czern & Coss [C]. Proceedings the 12th international rapeseed congress. II. Science Press. Wuhan, China March 26-30, 2007
    [209] Singh B.K. and Shaner D.L. Changes in free amino acid pools can predict the mode of action of herbicide[J]. Pesticeide Science, 1995, 43,221-225.
    [210]刘忠松,官春云.甘蓝型油菜玻里玛细胞质雄性不育系与保持系的生化比较[J].中国油料, 1990,12(3):1-5
    [211]龚莉.油菜蕾长与花粉发育时期的关系研究[J].安徽农学通报,2008, 14 (17):61-63
    [212] Hsieh K. and Huang A.H.C. Tapetosomes in brassica tapetum accumulate endoplasmic reticulum–derived flavonoids and alkanes for delivery to the pollen surface [J]. The Plant Cell, 2007,19: 582–596
    [213]张虹,梁婉琪,张大兵.花药绒毡层细胞程序性死亡研究进展[J].上海交通大学学报(农业科学版),2008,26(1):86-90
    [214]谢潮添魏冬梅田惠桥.高等植物雄性不育的细胞生物学研究进展[J].植物生理与分子生物学学报, 2006, 32 (1): 17-23.
    [215] Hernandez Pinzon I., Ross J. H., Barnes K. A., Damant A. P., Murphy D. J. Composition and role oftapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus [J]. Planta. 1999, 208(4): 588-98
    [216]罗鑫娟,刘旭昊,王新宇.绒毡层小体,一种在花药绒毡层细胞中新发现的含油细胞器[J].细胞生物学杂志,2006, 28: 61-65
    [217] Wu S.S.H., Platt K.A., Ratnayake C., et al. Isolation and characterization of novel neutrallipid-containing organelles and globuli-filled plastids from Brassica napus tapetum [J]. Proc. Natl. Acad. Sci. USA 1997, 94: 12711–12716.
    [218] Zhu J., Chen H., Li H., Gao J.F. et al. Defective in Tapetal Development and Function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis [J]. The Plant Journal, 2008, 55(2):266–277
    [219] Hsieh K., and Huang, A.H.C. Lipid-rich tapetosomes in Brassica tapetum are composed of oleosin-coated oil droplets and vesicles, both assembled in and then detached from the endoplasmic reticulum [J]. Plant J. 2005, 43: 889–899.
    [220] Huang M.D., Wei F.J , Wu C.C. , Hsing Y.I.C., and Huang A.H.C. Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation [J]. Plant Physiol. 2009,149 694-707
    [221]王学奎主编.植物生理生化实验原理和技术[M] .高等教育出版社,北京, 2000
    [222]陈毓荃主编.生物化学实验方法与技术[M].科学出版社,北京,2002
    [223] Wang M., and Zhou Q. Effects of herbicide chlorimuron-ethyl on physiological mechanisms in wheat (Triticum aestivum)[J]. Ecotoxicology and Environmental Safety, 2006,64:190–197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700