用户名: 密码: 验证码:
甜瓜属人工异源四倍体Cucumis×hytivus早期世代表型与基因表达变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多倍体化是高等植物进化过程的重要阶段,是植物进化的主要动力之一。研究表明,异源多倍体在形成的早期可发生广泛的基因组构成和基因表达水平的变化,与此同时,异源多倍体形成早期也常表现出不同于其二倍体祖先、且不能用孟德尔定律解释的新表型,这些变化直接关系到物种的形成和稳定。分子标记及比较基因组学的发展为认识种间杂交和多倍体化进程提供了重要依据。前人研究天然异源多倍体进化过程中发生的种种变化主要是通过比较其与二倍体祖先的“候选”后代而进行的。但现有的天然异源多倍体大多数形成于成千上万年以前,基因组经历了长期的“多倍体二倍化”过程,其二倍体祖先也不断进化或已灭绝,因此很难确定它们在早期进化中发生的表型和基因表达变化的具体过程和机制。
     新合成的异源多倍体及一些“年轻”的异源多倍体,由于其亲缘关系明晰,为准确、深入研究多倍体基因组进化及相关机制提供了良好的模式系统。通过这种模式系统,可以精确比较亲本二倍体种与人工异源多倍体早期世代间的表型和基因表达变化特点,从而为丰富多倍体物种进化理论提供重要的例证。本研究基于实验室已合成的甜瓜属人工异源四倍体C.×hytivus(2n=4x=38),比较研究了其早期世代间的形态学和细胞学变化特征、基因表达变化的特点和黄瓜por基因在异源四倍早期世代的表达和序列变化特征,探讨了异源多倍化引发以上变化的相关机制。具体如下:
     1.甜瓜属人工异源四倍体C.×hytivus早期世代表型变化研究
     研究了甜瓜属人工异源四倍体C.×hytivus早期四个自交世代S1-S4的主要形态学性状、花粉母细胞减数分裂过程中的染色体行为、雄配子发育和花粉育性的变化特征。形态学研究表明,形态学性状在世代间表现出明显的不稳定性,其中以节间长、侧枝数、叶片厚度、雄花花梗长和子房纵径的变异系数较大。伴随自交代数的增加,该异源多倍体叶片逐渐变薄,子房逐渐变短,其它性状的变化表现为无明显规律性。
     减数分裂行为研究结果表明,花粉母细胞减数分裂中期Ⅰ的染色体构型以二价体为主,伴随着自交代数的增加,每个花粉细胞中平均所含二价体的比例逐渐增加,单价体、多价体等非二价体比例减少,含19个二价体的细胞数增加。四分体时期主要以四分孢子形态存在,并随着自交世代的增高,四分孢子所占比例逐渐增加,多分孢子比例逐渐减少。花粉活力分析表明花粉育性伴随着自交代数的增加而逐渐提高。以上结果表明,该异源四倍体在早期进化过程中,花粉母细胞减数分裂过程中的染色体配对行为和雄配子发育正向稳定性方向进化。
     2.甜瓜属人工异源四倍体C.×hytivus早期世代基因表达变化特点研究
     以甜瓜属人工异源四倍体C.×hytivus早期世代S1和S2及其二倍体亲本为试材,利用cDNA-AFLP和reverse-Northern blot技术比较分析了C.×hytivus中基因表达变化的特点,包括频率、时间和类型。结果发现,亲本基因在异源四倍体中大多能表达,部分基因表现为差异表达。本研究共检测到36个基因的表达发生变化,占检测总基因数的3.37%,其中29个表现为沉默,7个表现为激活。上述变化可发生于S1代或S2代。
     对15个差异表达的片段进行了回收和测序,BLAST分析表明这些基因主要是rRNA和蛋白质编码基因。进一步的reverse-Northern blot验证了上述结果。综合cDNA-AFLP和reverse-Northern blot的分析结果将C.×hytivus中基因表达变化分为四种类型:双亲基因共沉默、栽培种基因沉默、野生种基因沉默和和基因激活表达,其中单亲基因沉默为主要类型。以上结果表明该甜瓜属异源四倍体在形成早期发生着快速的基因沉默和激活。
     利用cDNA-SSCP技术分析了二倍体亲本中部分同源的rpl2基因在甜瓜属人工异源四倍体C.×hytivus早期四个自交世代S1-S4中表达水平的差异。结果发现,两个部分同源的rpl2基因在异源四倍体C.×hytivus中表达水平存在差异,黄瓜rpl2基因表达水平高于野生种rpl2基因,且在世代间有一定的变化。以上结果表明异源多倍化诱发了异源多倍体中部分同源基因表达水平的变化。
     3.黄瓜por基因在甜瓜属人工异源四倍体C.×hytivus早期世代的表达和序列变化特征
     为探明不同植物por基因的分子系统发生关系,本研究利用BLAST程序分析了不同物种间por基因cDNA序列和POR蛋白质的同源性,并利用MEGA 4.0软件构建了por基因树,分析了不同por基因间亲缘关系。结果发现,不同物种在por基因cDNA序列和POR氨基酸序列具有较高的保守性,表明不同物种的POR具有相同的功能。研究还发现,同一物种内不同的por基因的cDNA序列间存在较大的差异,并存在着物种间por基因的同源性高于物种内同源性的现象。
     以甜瓜属人工异源四倍体C.×hytivus早期4个自交世代S1-S4及其二倍体亲本为材料,利用RT-PCR和序列比较技术研究了异源多倍化对黄瓜por基因分子进化的影响。基因表达分析表明,黄瓜por基因在异源四倍体的S1代发生了快速的沉默,从S2代起又重新表达,但在S3代和S4代,表达产物大小发生了变化。进一步的序列分析表明,单碱基置换包括2个转换和1个颠换分别发生于S1代和S3代。在S3代的转录物中发生了内含子滞留现象。以上结果表明,异源多倍化诱发了黄瓜por基因的快速沉默和突变,基因突变包括碱基置换和内含子滞留也是新合成多倍体中重复基因的进化模式。
Polyploidization is a prominent process and has played an important role in the evolutionary history of higher plants. Recent studies indicated that extensive changes of genome composition and gene expression occurred in the early stage of genome formation of allopolyploid, also, novel, non-Mendelian phenotypes arised in synthesized allopolyploids. These changes have played a significant role in the stabilization of newly formed species'genome. The development of molecular markers and comparative genomics have provide important basis for understanding of allopolyploidization. Studies on such changes of nature allopolyploids were compared to their candidate diploid progenitors. While nature allopolyploids formed thousands upon thousands years ago, their genomes have evolved for a long time, and diploid progenitors also have evolved or not existed. So it is difficult to expore the concrete information during allopolyploid evolution.
     Newly synthesized allopolyploids and'young'allopolyploids can be a very useful model system to study allopolyploidization for their clear genetic relationship, and the information at the early stage can be obtained exactly. With the newly formed allopolyploids, the changes of phenotype and gene expression can be studied accurately compared to their diploid parents, which might help enriching the evolutionary theory of allopolyploidization. In this work, the characterization of changes of morphological traits, cytology behavior and gene expression in early generations of C.×hytivus were studied, and expression and sequence variation of cucumber por gene in C.×hytivus were also investigated. Some mechanisms resolved in these changes were discussed. The detailed results are as follows:
     1. Changes of phenotype in early generations of the synthesized allotetraploid C.×hytivus
     The characterization of changes of morphological traits, meiotic chromosome behavior and pollen fertility in early generations (S1-S4) of the synthesized allotetraploid C.×hytivus were studied. The results from observation of morphological traits indicated that these traits showed instability, and some traits including internodes'length, lateral branches, leaf thickness, pedicle length of male flower and ovary length showed high coefficient of variation; From S1 generation to S4 generation, the leaf thickness got to thinner, the ovary tended to shorter and the appearance of first female flower became later, while other traits showed variation without regularity.
     Investigations on meiotic chromosome behavior showed that most meiotic chromosome configurations at metaphaseⅠphase were bivalents. The frequency of bivalent at metaphaseⅠincreased, from S1 generation to S4 generation, while which of univalent and multivalent decreased. The number of cells with nineteen bivalents also increased obviously; at metaphaseⅡ, the allotetraploid mainly produced tetrads, and the frequency of tetrads increased from S1 generation to S4 generation. Accordingly, pollen fertility was recovered generally. Above results indicated instability of morphological traits and diploidization of meiotic chromosome behavior in the evolution of early generations of the allotetraploid C.×hytivus.
     2. Changes of gene expression in early generations of the synthesized allotetraploid C.×hytivus
     Changes of gene expression played an important role in the evolution of plant allopolyploids. Characterization, including frequency, time and type of the changes of gene expression between the first two self-pollinated generations (S1 and S2) of the synthesized allotetraploid C.×hytivus and in its diploid parents was analyzed with cDNA-AFLP and reverse-Northern blot technique. Sequences similarity of genes involved in changed expression were also analyzed with BLAST package. The results from cDNA-AFLP analysis showed that 36 (3.37%) genes showed silencing (27) or activation (9) in allotetraploids. These changes initiated in S1 or S2 generation. The silenced/activated genes included rRNA and protein-coding genes. Further reverse-Northern blot analysis validated the above results. Thus four types of changes of gene expression were observed, including silencing of genes from both parents, maternal parent, paternal parent, and gene's novel expression. Above results indicated rapid gene silencing and activation in early generations of C.×hytivus, which contributed to the evolution of the allotetraploid.
     Changes of expression level of homoeologous rpl2 gene from diploid parents were analyzed in early generations of allotetraploid C. x hytivus with cDNA-SSCP technique. The results indicated that homoeologous rpl2 genes showed different expression level in C. X hytivus. The expression level of gene from C. sativus was high than that from wide species C. hystrix, and it also showed instability in early generations. Above results indicated that allopolyploidy induced changes of expression level of homoeologous gene in allotetraploid C. x hytivus.
     3. Expression and sequence variation of cucumber por gene in the newly synthesized allotetraploid C.×hytivus
     The phylogeny of the plant por gene was investigated. Identities of cDNA sequence of Por gene and amino acid sequence of POR in some plant species were analyzed by BLAST, and gene tree was also constructed with MEGA software version 4.0. The results showed that cDNA and protein sequences were conservative in plant species, which indicating the common function of these genes. However, there also existed sequence difference of various por genes, and sometimes, identities of cDNA sequence of por genes from various species were higher than that from one species.
     The molecular evolution of the cucumber por gene in early generations of the synthesized allotetraploid C. x hytivus was investigated. The results from gene expression analysis by RT-PCR showed that the cucumber por gene was silenced in the S1 generation, and re-activated in the S2 generation. In the S3 and S4 generations, the transcripts remained activated but sequence changes were observed. Further analysis indicated that base substitutions, including two transitions and one transversion, occurred in the S1 and S3 generation respectively, and in the S3 generation, an intron was found to be retained in the transcript. This indicates allopolyploidy induced rapid silencing and mutation of the cucumber por gene. Further, gene mutations such as base substitution and intron retention are also modes of evolution for duplicated genes in newly formed polyploid.
引文
1.蔡得田,袁隆平,卢兴桂.二十一世纪水稻育种新战略Ⅰ:利用远缘杂交和多倍体双重优势进行超级稻育种[J].作物学报,2001,27(1):110-116
    2.曹清河,陈劲枫,钱春桃.黄瓜抗霜霉病异源易位系CT-01的筛选与鉴定[J].园艺学报,2005,32(6):1098-1101
    3.常金华,罗耀武.同源四倍体高梁与约翰逊草杂交及其后代表现[J].草业学报,2002,11(1):56-58
    4.陈劲枫,林茂松,钱春桃,等.甜瓜属野生种及其与黄瓜种间杂交后代抗根结线虫初步研究[J].南京农业大学学报,2001,24(1):21-24
    5.陈劲枫,钱春桃,林茂松,等.甜瓜属植物种间杂交研究进展[J].植物学通报,2004,21(1):1-8
    6.陈劲枫,庄飞云,娄群峰,等.Cucucmis植物种间正反交差异的研究[J].园艺学报,2002,29(5):483-485
    7.陈龙正.甜瓜属人工异源双二倍体Cucumis hytivus早期世代遗传与表观遗传变化[D].南京:南京农业大学,2008
    8.陈龙正,陈劲枫,Staub JE,等.通过种间杂交选育加工黄瓜新品种宁佳1号[J].中国蔬菜,2005,(3):4-6
    9.陈龙正,娄群峰,Joseph Walncan,等.甜瓜属人工异源四倍体早期基因组变化的初步研究[J].园艺学报,2005,32(6):1105-1107
    10.程玉瑾,吴定华,汪国平.类番茄茄与番茄属间杂种异源多倍体的诱导与鉴定[J].华南农业大学学报,2004,25(3):123-124
    11.程治军,秦瑞珍,张欣,等.多倍体化引起植物表型突变的分子机理研究[J].作物学报,2005,31(7):940-943
    12.董永琴,程治军,英敏,等.异源八倍体小黑麦黔中7号新品种的选育[J].贵州农业科学,2005,33(5):7-9
    13.冯蕾,刘智广,武丽华,等.PCR-SSCP银染方法的改进[J].细胞与分子免疫学杂志,2000,16(6):545-546
    14.傅杰,陈漱阳,张安静.普通小麦与簇毛麦双二倍体的合成、育性及细胞遗传学研究[J].遗传学报,1989,16(5):348-356
    15.傅汀,王丽辉,林伟强,等.核基因突变引起的拟南芥菜叶片花斑及其机制[J].细胞生物学杂志,2005,27:505-508
    16.高东迎,黄雪清,孙立华.水稻体细胞杂交研究进展[J].生物工程进展,2001,21(3):37,38-51
    17.顾爱侠,申书兴,陈雪平,等.大白菜与结球甘蓝杂交获得异源三倍体及其生殖特性的研究[J]. 园艺学报,2006,33(1):73-77
    18.郭军洋,陈劲枫.Cucumis hytivus染色体组间交换重组及其对雄配子育性的影响[J].武汉植物学研究,2005,23(2):107-110
    19.郭军洋,陈劲枫,罗向东,等.Cucumis属双二倍体小孢子发生和雄配子发育的细胞学研究[J].西北植物学报,2005,25(1):0022-0026
    20.韩彬,陈孝,徐惠君,‘等.硬粒小麦-簇毛麦双单倍体愈伤组织染色体加倍技术的研究[J].植物学报,1990,32(3):191-197
    21.黄群策.同源四倍体水稻与狼尾草杂交的效果[J].中国水稻科学,2000,14(1):48-50
    22.黄群策,梁芳.同源四倍体水稻与非洲栽培稻杂交的效果[J].杂交水稻,2003,18(4):66-68
    23.黄群策,孙敬三.植物多倍性在作物育种中的展望[J].科技导报,1997,(7):53-55,50
    24.康向阳,朱之悌,张志毅.毛白杨花粉母细胞减数分裂及其进程的研究[J].北京林业大学学报,2000,22(6):5-7
    25.李映,蔡兴奎,李林章,等.马铃薯体细胞杂种的青枯病抗性鉴定[J].中国马铃薯,2005,19(4):198-203
    26.李再云,华玉伟,葛贤宏,等.植物远缘杂交中的染色体行为及其遗传与进化意义[J].遗传,2005,27:315-324
    27.连勇,刘富中,冯东听,等.应用原生质体融台技术获得茄子种间体细胞杂种[J].园艺学报,2004,31(1):39-42
    28.连勇,刘富中,陈钰辉,等.茄子体细胞杂种游离小孢子培养获得再生植株[J].园艺学报,2004,31(2):233-235
    29.刘爱华,王建波.序列消除与异源多倍体植物基因组的进化[J].武汉植物学研究,2004,22(2):158-162
    30.刘宝,胡波,董玉柱,等.多倍体小麦物种形成可诱发稳定遗传的胞嘧啶甲基化变异[J].自然科学进展,2000,8:710-715
    31.娄群峰,陈劲枫,Molly Jahn,等.黄瓜全雌性基因的AFLP和SCAR分子标记[J].园艺学报,2005,32(2):256-261
    32.卢圣栋.现代分子生物学技术[M].北京:高等教育出版社.1993
    33.罗向东,戴亮芳,钱春桃,等.Cucumis属3种不同倍性种间杂交后代的同工酶分析[J].西北植物学报,2006,26(2):0295-029
    34.钱春桃,陈劲枫,罗向东.黄瓜抗枯萎病异源易位植株AT-04的鉴定筛选[J].南京农业大学学报,2006,29(2):20-24
    35.钱春桃.黄瓜异源易位系的细胞遗传学形成机制及其对枯萎病的抗性遗传特点[D].南京:南 京农业大学,2007
    36.钱春桃,陈劲枫,罗向东.黄瓜抗枯萎病异源易位系植株AT-04的鉴定筛选[J].南京农业大学学报,2006,29(2):20-24
    37.钱春桃,陈劲枫,庄飞云,等.弱光条件下甜瓜属种间杂交新种的某些光合特性[J].植物生理学通讯,2002,38(4):336-338
    38.任刚.甜瓜属种间杂交新种(Cucumis hytivus Chen & Kikbride)的遗传特性、同工酶标记极其分类地位研究[D].南京:南京农业大学,2003
    39.宋健坤,郭文武,伊华林,等.以异源四倍体体细胞杂种为父本与二倍体杂交创造柑橘三倍体的研究[J].园艺学报,2005,32(4):594-598
    40.王爱云,陈冬玲,蔡得田.远缘杂交和异源多倍体化技术在水稻育种中的应用[J].武汉植物学研究,2005,23(5):491-495
    41.许树军,董玉琛.波斯小麦×节节麦杂种F1直接形成双二倍体的细胞遗传学研究[J].作物学报,1989,15(3):251-260
    42.颜辉煌,熊振民,闵绍楷,等.栽培稻—紧穗野生稻双二倍体的产生及其细胞遗传学研究[J].遗传学报,1997,24(1):30-35
    43.闫静,张明方,陈利萍.体细胞杂交技术在蔬菜育种中的研究与应用[J].细胞生物学杂志,2004,26(1):51-56
    44.晏春耕.植物多倍体及其应用[J].生物学通报,2007,42(4):14-18
    45.姚海军,曹虹,郭辉玉.PCR-SSCP分析法及其研究进展[J].生物技术,1996,6(4):1-4
    46.张伯静,李炳林,祝水金,等.亚洲棉,比克氏棉和陆地棉异源四倍体的合成[J].棉花学报,1993,5(1):15-20
    47.张桂芳,刘建文,黄远樟,等.普通小麦与东方旱麦草异附加系和异代换系的选育与原位杂交检测[J].遗传学报,2000,27(1):50-55
    48.张玉静.分子遗传学[M].北京:科学出版社,2000
    49.赵云云,周小梅,杨才.四倍体大燕麦×六倍体裸燕麦的杂种F1的产生及鉴定[J].植物学通报,2003,20(3):302-306
    50.朱之悌,林惠斌,康向阳.毛白杨异源三倍体R301等无性系选育的研究[J].林业科学,1995,31(6):499-505
    51.庄飞云,陈劲枫,钱春桃,等.甜瓜属人工异源双二倍体(Cucumis hytivus)染色体组间重组的细胞学及分子标记研究[J].中国农业科学,2005,38(30:582-588
    52.庄飞云,陈劲枫,钱春桃,等.甜瓜属种间杂交新种及其后代对低温的适应性反应[J].南京农业大学学报,2002,25(2):27-30
    53.庄丽芳,亓增军,英加,等.普通小麦-百萨偃麦草(Thinopyrum bessarabicum)二体异附加系 的选育与鉴定[J].遗传学报,2003,30(10):919-925
    54. Adams K L, Cronn R, Percifield R, et al. Genes duplicated by Polyploid show unequal contributions to the transcriptome and organ-specific reciprocal silencing [J]. Proc Natl Acad Sci USA,2003,100:4649-4654
    55. Adams K L, Percifield R, Wendel J F. Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid [J]. Genetics,2004,168:2217-2226
    56. Adams K L, Wendel J F. Exploring the genomic mysteries of polyploidy in cotton [J]. Biol J Linn Soc,2004,82:573-581
    57. Bachem C W B, van der Hoeven R S, de Bruijn S M, et al. Visualisation of differential gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development [J]. Plant Journal,1996,9:745-753
    58. Baumel A, Ainouche M, Kalendar R, et al. Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C. E. Hubbard (Poaceae) [J]. Mol Biol Evol, 2002,19:218-1227
    59. Blanc G, Barakat A, Guyot R, et al. Extensive duplication and reshuffling in the Arabidopsis genome [J]. Plant Cell,2000,12:1093-1101
    60. Blanc G, Wolfe K H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes [J]. Plant Cell,2004,16:1667-1678
    61. Blanc G, Wolfe K H. Function divergence of duplicated genes formed by polyploidy during Arabidopsis evolution [J]. Plant Cell,2004,16:1679-1691
    62. Bouche Z D. Functional genomics in plants [J]. Plant Physiology,1998,118:725-732
    63. Btown A H D. Use of isozyme-marked segments from wild barley (Hordeum spontaneum) in barley breeding [J]. Plant Breeding,1988,100:280-288
    64. Buchner P. Differential cloning. In:Molecular analysis of plant adaptation to the environment, Hawkesford M J and Buchner P (eds), Kluwer Academic Publishers, Netherlands,2001,43-60
    65. Causier B, Castillo R, Zhou J L, et al. Evolution in action:following function in duplicated floral homeotic genes [J]. Curr Biol,2005,15:1508-1512
    66. Chen J F, Isshiki S, Tashiro Y, et al. Studies on a wild cucumber from China(Cucumis hystrix Chakr.). I. Genetic distances C. hystrix and two cultivated Cucumis species (C. sativus L. and C. melo L.) based on isozyme analysis [J]. J. Jpn. Soc. Hort. Sci,1995,64(2):264-265
    67. Chen J F, Isshiki S, Tashiro Y, et al. Biochemical affinities between Cucumis hystrix Charkr. and two cultivated Cucumis species(C.sativus L. and C. melo. L.) based on isozyme analysis [J]. Euphytica, 1997a,97:139-141
    68. Chen J F, Kirkbride J H Jr. A new synthetic species Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome doubling [J]. Brittonia,2000,52:315-319
    69. Chen J F, Moriarty G, Jahn M. Some disease resistance tests in Cucumis hystrix and its progenies from interspecific hybridization with cucumber. A. Lebeda and H.S. (Eds.):Progress in Cucurbit Genetics and Breeding Research. Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding. Palacky University in Olomouc, Olomouc (Czech).2004a
    70. Chen J F, Staub J E, Adelberg J, et al. Synthesis and preliminary characterization of a new species (Amphidiploid) in Cucumis [J]. Euphytica,2002,123:315-322
    71. Chen J F, Staub J E, Qian C H, et al. Reproduction and cytogenetic characterization of interspecifichybrids from Cucumis hystix chakr.×C. sativus L [J]. Theor Appl Genet,2003a,106: 688-695
    72. Chen J F, Staub J E, Tashiro Y, et al. Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr [J]. Euphytica,1997b,96:413-419
    73. Chen J F, Luo X D, Qian C T, et al. Cucumis monosomic alien addition lines:morphological, cytological, and genotypic analyses [J]. Theor Appl Genet,2004b,108:1343-1348
    74. Chen J F, Luo X D, Staub J E, et al. An allotriploid derived from an amphidiploid x diploid mating in Cucumis I:production, micropropagation and verification [J]. Euphytica,2003b,131:235-241
    75. Chen L Z, Lou Q F, Zhuang Y, et al. Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis x hytivus [J]. Planta,2007,225:603-614
    76. Chen Z J, Comai L, Pikaard C S. Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing in Arabidopsis allotetraploids [J]. Proc Natl Acad Sci USA,1998,95 (25):14891-14896
    77. Chen Z J, Pikaard C S. Epigenetic silencing of RNA polymerase I transcription:a role for DNA methylation and histon modification in nucleolar domince [J]. Genes Dev,1997,11:2124-2132
    78. Chung S M, Staub J E, Chen J F. Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation [J]. Genome,2006,49:219-229
    79. Clark M S. Plant Molecular Biology:A Laboratory Manual [M]. Heidelberg, Springer:1997:163
    80. Comai L, Tyagi A P, Winter K, et al. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids [J]. Plant Cell,2000,12:1551-1567
    81. Comai L. Genetic and epigenetic interactions in allopolyploid plants [J]. Plant Mol Biol,2000,43: 387-399
    82. Czarnecka E, Nagao R T, Key J L. Characterization of Gmhsp26-a, a stress gene encoding a divergent heat shock protein of soybean:Heavy-metal-induced inhibition of intron processing [J]. Mol Cell Biol,1988,8:1113-1122
    83. Daunay C, Chaput M H, Sihachakr D, et al. Production and characterization of fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum [J]. Theor Appl Genet,1993, 85(6-7):841-850
    84. Dias AP, Braun EL, McMullen MD, et al. Recently duplicated maize R2R3 Myb genes provide evidence for distinct mechanisms of evolutionary divergence after duplication [J]. Plant Physiol, 2003,131:610-620
    85. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize [J]. Nature,1997,386: 485-488
    86. Feldman M, Liu B, Segal G, et al. Rapid elimination of low-copy DNA sequences in polyploid wheat:A possible mechanism for differentiation of homoeolegous chromosomes [J]. Genetics,1997, 147:1381-1387
    87. Finnegan E J, Kovac K A. Plant DNA methylthransferases [J]. Plant Mol Biol,2000,43:189-201
    88. Frary A, Nesbitt TC, Grandillo S, et al. fw2.2:A quantitative trait locus key to the evolution of tomato fruit size [J]. Science,2000,289:85-88
    89. Fu X, Kohli A, Twyman RM, et al. Alternative silencing effect involve distinct types of non-spreading cytosine methylation at a three-gene, single copy transgenic locus in rice [J]. Mol Gen Genet,2000,263:106-118
    90. Fusada N, Masuda T, Kuroda H, et al. NADPH-protochlorophyllide oxidoreductase in cucumber is encoded by a single gene and its expression is transcriptionally enhanced by illumination [J]. Photo Res,2000,64:147-154
    91. Galitski T, Saldanha A J, Styles C A, et al. Ploidy regulation of gene expression [J]. Science,1999, 285:251-254
    92. Gaut B S, Doebley J F. DNA sequence evidence for the segmental allopolyploid origin of maize [J]. Proc Natl Acad Sci USA,1997,94:6808-6814
    93. Golvkin M, Reddy A S N. Structure and expression of a plant Ul snRNP 70 K pre-mRNAs produces two different transcripts [J]. Plant Cell,1996,8:1421-1435
    94. Grotewold E, Athrma P, Peterson T. Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors [J]. Proc. Natl Acad Sci USA,1991,88:4587-4591
    95. Guril A, Sinkl K C. Interspecific somatic hybrid plants between eggplant (Solanum melongena) and Solanum torvum [J]. Theor Appl Genet,1988,76 (4):490-496
    96. Hanson R E, Zhao X P, Islam-Faridi M N, et al. Evolution of interspersed repetitive elements in Gossypium (Malvaceae) [J]. Am J Bot,1998,85:1364-1368
    97. He P, Friebe B R, Gill B S, et al. Allopolyploidy alters gene expression in the highly stable hexaploid wheat [J]. Plant Mol Bio,2003,52:401-414
    98. Henikoff S, Matzke M A. Exploring and explaining epigenetic effects [J]. Trends in Genetics,1997, 13 (8):293-295
    99. Houchins K, O'Dell M, Flavell R B, et al. Cytosine methylation and nucleolar dominance in cereal hybrids [J]. Mol Gen Genet,1997,255:294-301
    100. Isshiki S, Okubo H, Fujieda k. Segregation of isozymes in selfed progenies of a synthetic amphidiploid between Solanum integrifolium and S. melongena [J]. Euphytica,2000,112(1):9-14
    101. Isshiki S, Taural T. Fertility restoration of hybrids between Solanum melongena L. and S. aethiopicum L. Gilo Group by chromosome doubling and cytoplasmic effect on pollen fertility [J]. Euphytica,2003,134(2):195-201
    102. Jarl C I, Rietveld E M, Haas J M. Transfer of fungal tolerance through interspecific somatic hybridization between Solanum melongena and S. torvum [J]. Plant Cell Rep,1999,18:791-796
    103. Jenuwein T, Allis C D. Translating the histon code [J]. Science,2001,293:1074-1080
    104. Jiang J, Gill B S. Different species-specific chromosome translocation in Triticum timopheevii and T. turgidum support the diphylatic origin of polyploid wheats [J]. Chromosome Res,1994,2:59-64
    105. Kakutani T, Jeddeloh J A, Flowers S K, et al. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations [J]. Proc Natl Acad Sci USA,1996,93: 12406-12411
    106. Kamstra S A, KuipersAG J, De JeuM J, et al. The extent and position of homoeologous recombination in a distant hybrid of Alstroemerica:A molecular cytogenetic assessment of first generation backcross progenies [J]. Chromosoma,1999,108:52-63
    107. Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in newly synthesized wheat allopolyploid [J]. Genetics,2002,160:1651-1659
    108. Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat [J]. Nature genetics,2003,33:102-106
    109. Kaul M L H, Murthy T G K. Mutant genes affecting higher plant meiosis [J]. Theor Appl Genet, 1985,70:449-466
    110. Kirkbride J H. Biosytematic monograph of the genus Cucumis (Cucurbitaceae). Parkaway Publ., Boone,N.C.1993
    111.Kuroda H, Masuda T, Ohta H, et al. Light-enhanced gene expression of NADPH-protochlorophyllide oxidoreductase in cucumber [J]. Biophys Biochem Res Commun, 1995,210:310-306
    112. Lagererantz U, Lydiate D J. Comparative genome mapping in Brassica [J]. Genetics,1996,144: 1903-1910
    113. Lee H S, Chen Z J. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids [J]. Proc Natl Acad Sci USA,2001,98:6753-6758
    114. Leitch I J, Bennett M D. Polyploidy in angiosperms [J]. Trends Plant Sci,1997,2:470-476
    115. Levy A A, Feldman M. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidy [J]. Biol J Linn Soc,2004,82:607-613
    116. Liu B, Brubaker C L, Mergeai G, et al. Polyploid formation in cotton is not accompanied by rapid genomic changes [J]. Genome,2001,44:321-330
    117. Liu B, Vega M J, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy non-coding DNA sequences [J]. Genome,1998,41: 272-277
    118. Liu B, Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids [J]. Mol Phylogenet and Evol,2003,29:365-379
    119. Liu B, Wendel J F. Non-mendelian phenomena in allopolyploid genome evolution [J]. Curr Genomics,2002,3:489-505
    120. Ma X F, Gustafson J P. Genome evolution of allopolyploids:a process of cytological and genetic diploidization [J]. Cytogenet Genome Res,2005,109:236-249
    121. Madlung A, Masuelli R W, Watson B, et al. Remolding of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids [J]. Plant Physiol,2002,129: 733-746
    122. Martienssen R A, Colot V. DNA methlation and epigenetic inheritance in plants and filamentous fungi [J]. Science,2001,293:1070-1074
    123. Masterson J. Stomata size in fossil plants:Evidence for polyploidy in majority of angiosperms [J]. Science,1994,264:421-424
    124. Matzke M A, Matzke A J. Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses [J]. Cell Mol Life Sci,1998,54:94-103
    125. Matzke M A, Mette M F, Matzke A J M. Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates [J]. Plant Mol Biol,2000,43:401-415
    126. McClintock B. The significance of responses of the genome to challenge [J]. Science,1984,266: 792-801
    127. Messer W, Nover-Weidner M. Timing and targeting:the biological function of dam methylation in E. coli [J]. Cell.1988,54:735-737
    128. Meyer P, Saedler H. Homology-dependent gene silencing in plants [J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:23-28
    129. Michaels S D, Amasino R M. Flowering locus C encodes a novel MADS-domain protein that acts as a repressor of flowering [J]. Plant Cell,1999,11:949-956
    130. Mochida K, Yamazaki Y, Ogihara Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysisof contigs grouped from a large number of expressed sequence tags [J]. Mol Gen Genomics,2003,270:371-377
    131. Murray H G, Thompson W F. Rapid isolation of higher weights DNA [J]. Nucleic Acids Res,1980, 8:4321
    132. Nakagawal A, Nakashima T, Taniguchil M, et al.The three-dimensional structure of the RNA-binding domain of ribosomal protein L2; a protein at the peptidyl transferase center of the ribosome [J]. The EMBO Journal,1999,18:1459-1467.
    133. Nash J, Walbot V. Bronze-2 gene expression and intron splicing patterns in cells and tissues of Zea mays L [J]. Plant Physiol,1992,100:464-471
    134. Noyer-Weidner M, Trautner T A. Methylation of DNA in prokaryotes. In:J P Jost and H P Saluz (Eds) DNA methylation:Molecular biology and biological significance. Birkhouser Verlag, Basel. 1993, pp.39-108
    135. Osborn T C, Pires J C, Birchler J A, et al. Understanding mechanisms of novel gene expression in polyploids [J]. Trends Genet,2003,19 (3):141-147
    136. Osborn T C. The contribution of polyploid to variation in Brassica species [J]. Physiol Plantarum, 2004,121:531-536
    137. Ozkan H, Levy A A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group [J]. Plant Cell,2001,13:1735-1747
    138. Panaud O, Chen X, McCouch S D. Development of microsatellite markers and characterization of sample sequence lengthen polymorphism (SSLP) in rice (Oryza sativa L.) [J]. Mol Gen Genet, 1996,252:597-607
    139. Phillips R L, Kaeppler S M, Peschke V M. In Proceedings of the Seventh International Congress on Plant Tissue and Cell Culture, eds. Nijkamp, H. J. J., Van Der Plas, L. H.W.& Van Aartrijk, J. (Kluwer, Dordrecht, The Netherlands),1990 pp.131-141
    140. Pikaard C S. The epigenetics of nucleolar dominance [J]. Trends Genet,2000,16:495-500
    141.Pikaard C S. Genomic change and gene silencing in polyploids [J]. Trends Genet,2002,17: 657-677
    142. Pires J C, Gaeta R T, Leon E J, et al. Flowering time divergence and genomic rearrangements in resynthesized. Brassica polyploids (Brassicaceae) [J]. Biol J Linn Soc,2004,82:675-688
    143. Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis [J]. Eur J Biochem,1996a,237:323-343
    144. Reinbothe S, Reinbothe C. Regulation of chlorophyll biosynthesis in angiosperms [J]. Plant Physiol, 1996b,111:1-7
    145. Rizza F, Mennella G, Collonnier C, et al. Androgenic dihaploids from somatic hybrids between Solanum melongena and S. aethiopicum group gilo as a source of resistance to Fusarium oxysporum f. sp. Melongenae [J]. Plant Cell Rep,2002,20:1022-1032
    146. Sambrook J, Russell D W. Molecular cloning:A laboratory manual (third edition). New York:cold spring harbor laboratory press,2001:11.38-11.48
    147. Scheid O M, Jakovleva L, Afsar K, et al. Changes in ploidy can modify epigenetic silencing [J]. Proc Natl Acad Sci USA,1996,93:7114-7119
    148. Shoemaker R C, Polzin K, Labate J, et al. Gemome duplication in soybean (Glycine subgenus soja) [J]. Genetics,1996,144:329-338
    149. Soltis D E, Soltis P S, Tate J A. Advances in the study of polyploid since plant speciation. New Phytologist [J],2003,161:173-191
    150. Song K, Lu B, Tang K, et al. Rapid genome changes in synthetic polyploids of Brassica and its implications for polyploid evolution [J]. Proc Natl Acad Sci USA,1995,92:7719-7723
    151. Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Molecular Biology and Evolution,2007,24:1596-1599
    152. Tamura Y, Murata T, Mukaihara A. Somatic hybrid between Solanum integrifolium and Solanum violaceum that is resistant to bacterial wilt caused by Ralstonia solanacearum [J]. Plant Cell Rep, 2002,21(4):353-358
    153. Tanksley S D, Orton T J. Isozymes in plant genetics and breeding [M]. Part A. New York:Elsevier Science Publishing Company,1983
    154. Tian C G, Xiong Y Q, Liu T Y, et al. Evidence for an ancient whole-genome duplication event in rice and other cereals [J]. Acta Genetica Sinica,2005,32:519-527
    155.VonWettstein D, Gough S, Kannangara CG. Chlorophyll biosynthesis [J]. Plant Cell,1995,7: 1039-1057
    156. Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting [J]. Nucleic Acids Res,1995,23:4407-4414
    157. Wang Y P, Luo P. Intergeneric hybridization between Brassica species and Crambe abyssinica [J]. Euphytica,1998,101:1-7
    158. Wendel J F. Genome evolution in polyploids [J]. Plant Mol Biol,2000,42:225-249
    159. Wendel J F, Schnabel A, Seelanan T. Bi-directional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium) [J]. Proc Natl Acad Sci USA,1995,92:280-284
    160. Wolffe A P, Matzke M A. Epigenetics:regulation through repression [J]. Science,1999,286: 481-486
    161. Wu R L, Gallo-Meagher M, Littell R C, et al. A general polyploid model for analyzing gene segregation in outcrossing tetraploid species [J]. Genetics,2001,159:869-882
    162. Yang H J, Wang Z Y, Zhang J L, et al. First intron retention in part transcripts of OsEBP-89 gene in tissues of rice [J]. Chinese Sci Bull,2002,47(5):394-397
    163. Zhuang F Y, Chen J F, Staub J E, et al. Assessment of genetic relationships among Cucumis spp. by SSR and RAPD marker analysis [J]. Plant Breeding,2004,123(2):167-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700