用户名: 密码: 验证码:
射频功放数字预失真线性化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着宽带无线通信技术的迅速发展,频带资源变得越来越紧张。为了提高频谱利用率,人们提出了多种高频谱利用率的调制和传输技术,采用这类技术所传输的信号具有宽频带、高峰均比等特点。受功放非线性特性的影响,宽带信号经功放放大后将产生严重的带内和带外失真,增大通信系统误码率,并干扰邻近信道,所以,宽带无线通信系统对功率放大器线性度的要求较高。功率放大器线性化技术已成为宽带无线通信中的一个关键技术,其中,数字预失真线性化技术是当前的一个研究热点。
     本文应用非线性系统理论、自适应信号处理等方面的知识,对数字预失真系统中的若干问题进行了深入分析和研究,提出了针对数字预失真的优化方法,可提高数字预失真的线性化性能。本文的主要贡献和创新包括:
     1.提出一种基于直接型和间接型学习结构的预失真学习结构。本文首先证明了功放系统与预失真系统的可交换性,从而证明了间接学习结构的合理性。针对间接学习结构易受系统噪声影响的缺点,本文提出一种基于直接型和间接型学习结构的预失真学习结构,该结构可降低反馈电路噪声所带来的影响,提高预失真的线性化性能。
     2.提出一种基于查找表的单反馈非迭代预失真方法。针对现有非迭代预失真方法计算量较大的缺点,提出一种结构更简单、计算量更低、精度更高的单反馈非迭代预失真方法,可降低预失真系统的硬件成本并简化系统设计。
     3.提出一种基于记忆多项式的单路反馈预失真线性化方法。传统预失真系统中反馈并采集回的IQ两路信号对处理器速度的要求较高,硬件开销大。本文提出一种单路反馈预失真方法,不但可以降低系统硬件成本,还能消除下变频通道的增益和相位不平衡失真,从而提高预失真的线性化性能。
     4.提出一种针对正交调制解调器的IQ不平衡误差估计和补偿方法。正交调制解调器的IQ不平衡误差会影响预失真器的设计,从而降低预失真的线性化性能。传统的IQ不平衡误差估计与补偿方法需要附加反馈电路,本文提出一种可以同时估计并补偿正交调制解调器IQ不平衡误差的方法,该方法不需要附加反馈电路,在降低系统硬件复杂度和成本的同时还提高了误差估计的精度。
     5.提出一种高精度的正交调制器非线性失真模型,以及一种可以同时补偿有记忆功放和非线性正交调制器的联合补偿模型。为满足后级功放的增益要求,正交调制器有时需要工作在接近最大输出的状态,此时正交调制器存在着IQ不平衡失真以及非线性失真。本文提出一种高精度的正交调制器非线性失真模型及补偿器模型;由于正交调制器和功放都在发射通道上,故可以将二者看作一个整体进行联合补偿,基于联合补偿方法和本文提出的正交调制器非线性失真模型,本文提出一种针对非线性正交调制器和有记忆功放的联合补偿模型,可降低预失真系统的复杂度。
     为验证上述方法,设计了一个数字预失真物理实验平台,利用该平台验证了上述预失真线性化方法的正确性。
Along with the rapid development of broadband wireless communicationtechnology, the spectrum resources are increasingly scarce. In order to improve thespectrum efficiency, high spectrum efficiency modulation and transmission technologiesare proposed, which generate high peak-to-average power ratio (PAPR) broadbandsignals. Transmitting that kind of signals through nonlinear power amplifier results inin-band and out-of-band distortions, which will increase the bit error rate and causeadjacent channel interference (ACI), so broadband wireless communication systemsrequire high linearity power amplifiers. The power amplifier linearization technique hasbecome one of the key technologies of broadband wireless communication, andcurrently the digital predistortion technique has become a research hotspot.
     In this dissertation, the theories of nonlinear system and adaptive signal processingare applied to deeply analyze and study some problems about the digital predistortion,and a few optimization methods are proposed to improve the linearization performanceof digital predistortion. The main innovations and contributions of this dissertation aresummarized as follows:
     1. A new predistortion learning structure based on direct and indirect learningstructures is proposed. In this dissertation, the commutativity of power amplifier systemand predistortion system is proved at first, which also proves the rationality of indirectlearning structure. Because indirect learning structure is susceptible to the noise of thefeedback circuit, this dissertation proposes a new predistortion learning structure basedon direct and indirect learning structures, which can reduce the effect caused by noise ofthe feedback circuit, and improve the linearization performance of digital predistortion.
     2. A single-feedback non-iterative predistortion method based on look-up table(LUT) is proposed. Considering the computational complexity of the previousnon-iterative method, this dissertation proposes a single-feedback non-iterativepredistortion method, which has simpler structure, less computation complexity andhigher precision than the previous method, and it can reduce the hardware costs and simplify the design of the predistortion system.
     3. The single-feedback predistortion method based on memory polynomial isproposed. In the digital predistortion system, the feedback and sampled high speeddigital signals need the powerful processors, which increases the costs. Thesingle-feedback predistortion method is proposed in this dissertation, which can avoidthe IQ imbalance errors caused by the down-conversion circuit, reduce the costs andimprove the linearization performance of digital predistortion.
     4. A novel IQ imbalance errors estimation and compensation method for bothquadrature modulator and demodulator is proposed. The errors of both quadraturemodulator and demodulator will affect the design of the predistorter, and then degradethe linearization performance of digital predistortion. The conventional estimation andcompensation methods need additional feedback circuit. This dissertation proposes anovel method to simultaneously estimate and compensate the IQ imbalance errors causeby quadrature modulator and demodulator without additional feedback circuit, whichcan reduce the complexity and costs, and the precision also can be improved.
     5. A high precision nonlinear model for quadrature modulator and a jointcompensation model for memory power amplifier and nonlinear quadrature modulatorare proposed. Sometimes in order to fit the gain requirement of the following poweramplifier, the quadrature modulator needs to work near the maximal output level, in thissituation both the linear and nonlinear distortions of the quadrature modulator arepresent. High precision nonlinear model and compensation model for quadraturemodulator are proposed in this dissertation. Because both the quadrature modulator andpower amplifier are in the transmission channel, so the quadrature modulator and poweramplifier can be compensated jointly. Based on the joint compensation method and thenonlinear model of quadrature modulator proposed in this dissertation, a jointcompensation model for nonlinear quadrature modulator and memory power amplifieris proposed, which can reduce the complexity of the predistortion system.
     Experimental platform has been designed for validation, and the correctness of themethods proposed in this dissertation is validated by using that platform.
引文
[1] Y. Youngoo, W. Young Yun, K. Bumman. Optimization for error-canceling loop of thefeedforward amplifier using a new system-level mathematical model. IEEE Transactions onMicrowave Theory and Techniques,2003,51(2):475-482
    [2] M. Johansson, T. Mattsson. Linearised high-efficiency power amplifier for PCN. ElectronicsLetters,1991,27(9):762-764
    [3] Y. Zhou, M. Y. W. Chia. A novel alternating and outphasing modulator for wirelesstransmitter. IEEE Transactions on Microwave Theory and Techniques,2010,58(2):324-330
    [4] A. Birafane, M. El-Asmar, A. B. Kouki, et al. Analyzing LINC systems. IEEE MicrowaveMagazine,2010,11(5):59-71
    [5] A. Huttunen, R. Kaunisto. A20-W chireix outphasing transmitter for WCDMA base stations.IEEE Transactions on Microwave Theory and Techniques,2007,55(12):2709-2718
    [6] W. Gerhard, R. H. Knoechel. LINC digital component separator for single and multicarrierWCDMA signals. IEEE Transactions on Microwave Theory and Techniques,2005,53(1):274-282
    [7] D. J. Jennings, A. Bateman, J. P. McGeehan. Adjacent channel power and error-vectormagnitude performance of reduced complexity CALLUM systems. IEE Proceedings-Communications,1999,146(5):297-302
    [8] A. Bateman. The combined analogue locked loop universal modulator (CALLUM). IEEE42nd Vehicular Technology Conference (VETEC'1992), vol.2:759-763
    [9] R. Strandberg, P. Andreani, L. Sundstrom. Spectrum emission considerations forbaseband-modeled CALLUM architectures. IEEE Transactions on Microwave Theory andTechniques,2005,53(2):660-669
    [10] K. Y. Chan, A. Bateman. Analytical and measured performance of the combined analoguelocked loop universal modulator (CALLUM). IEE Proceedings-Communications,1995,142(5):297-306
    [11] G. Hanington, C. Pin-Fan, P. M. Asbeck, et al. High-efficiency power amplifier usingdynamic power-supply voltage for CDMA applications. IEEE Transactions on MicrowaveTheory and Techniques,1999,47(8):1471-1476
    [12] J. J. Yan, C. D. Presti, D. F. Kimball, et al. Efficiency enhancement of mm-wave poweramplifiers using envelope tracking. IEEE Microwave and Wireless Components Letters,2011,21(3):157-159
    [13] J. Lopez, Y. Li, J. D. Popp, et al. Design of highly efficient wideband RF polar transmittersusing the envelope-tracking technique. IEEE Journal of Solid-State Circuits,2009,44(9):2276-2294
    [14] J. Jeong, D. F. Kimball, M. Kwak, et al. Wideband envelope tracking power amplifiers withreduced bandwidth power supply waveforms and adaptive digital predistortion Techniques.IEEE Transactions on Microwave Theory and Techniques,2009,57(12):3307-3314
    [15] L. R. Kahn. Single-sideband transmission by envelope elimination and restoration.proceedings of the IRE,1952,40(7):803-806
    [16] J.-H. Chen, H.-S. Yang, Y.-J. E. Chen. A technique for implementing wide dynamic-rangepolar transmitters. IEEE Transactions on Microwave Theory and Techniques,2010,58(9):2368-2374
    [17] Y. Y. Woo, J. Kim, J. Yi, et al. Adaptive digital feedback predistortion technique forlinearizing power amplifiers. IEEE Transactions on Microwave Theory and Techniques,2007,55(5):932-940
    [18] J. Kim, C. Park, J. Moon, et al. Analysis of adaptive digital feedback linearization techniques.IEEE Transactions on Circuits and Systems I: Regular Papers,2010,57(2):345-354
    [19] D. C. Cox. Linear amplification with nonlinear components. IEEE Transactions onCommunications,1974,22(12):1942-1945
    [20] X. Zhang, L. E. Larson, P. M. Asbeck, et al. Gain/phase imbalance-minimization techniquesfor LINC transmitters. IEEE Transactions on Microwave Theory and Techniques,2001,49(12):2507-2516
    [21] K.-Y. Jheng, Y.-J. Chen, A.-Y. Wu. Multilevel LINC system designs for power efficiencyenhancement of transmitters. IEEE Journal on Selected Topics in Signal Processing,2009,3(3):523-532
    [22] M. Helaoui, S. Boumaiza, F. M. Ghannouchi, et al. A new mode-multiplexing LINCarchitecture to boost the efficiency of WiMAX up-link transmitters. IEEE Transactions onMicrowave Theory and Techniques,2007,55(2):248-253
    [23] M. Helaoui, F. M. Ghannouchi. Linearization of power amplifiers using the reverseMM-LINC technique. IEEE Transactions on Circuits and Systems II: Express Briefs,2010,57(1):6-10
    [24] X. L. Sun, S. W. Cheung, T. I. Yuk. Predistortion of a100-W base station high-poweramplifiers. Microwave and Optical Technology Letters,2011,53(4):861-867
    [25] X. Hu, G. Wang, Z. C. Wang, et al. Predistortion linearization of an X-Band TWTA forcommunications applications. IEEE Transactions on Electron Devices,2011,58(6):1768-1774
    [26] S. Yiming, B. Hraimel, Z. Xiupu, et al. A novel analog broadband RF predistortion circuit tolinearize electro-absorption modulators in multiband OFDM radio-over-fiber systems. IEEETransactions on Microwave Theory and Techniques,2010,58(11):3327-3335
    [27] L. Yong-Sub, L. Mun-Woo, J. Yoon-Ha. A wideband analog predistortion power amplifierwith multi-branch nonlinear path for memory-effect compensation. IEEE Microwave andWireless Components Letters,2009,19(7):476-478
    [28] A. Katz, R. Gray, R. Dorval. Wide/multiband linearization of TWTAs using predistortion.IEEE Transactions on Electron Devices,2009,56(5):959-964
    [29] S. C. Bera, R. V. Singh, V. K. Garg. Diode-based predistortion lineariser for power amplifiers.Electronics Letters,2008,44(2):125-126
    [30] O. Hammi, F. M. Ghannouchi. Power alignment of digital predistorters for power amplifierslinearity optimization. IEEE Transactions on Broadcasting,2009,55(1):109-114
    [31] K. Rawat, M. Rawat, F. M. Ghannouchi. Compensating I-Q imperfections in hybridRF/digital predistortion with an adapted lookup table implemented in an FPGA. IEEETransactions on Circuits and Systems II: Express Briefs,2010,57(5):389-393
    [32] J. Moon, B. Kim. Enhanced hammerstein behavioral model for broadband wirelesstransmitters. IEEE Transactions on Microwave Theory and Techniques,2011,59(4):924-933
    [33] W. H. Doherty. A new high efficiency power amplifier for modulated waves. Proceedings ofthe Institute of Radio Engineers,1936,24(9):1163-1182
    [34] L. Yong-Sub, L. Mun-Woo, J. Yoon-Ha. High-power amplifier linearization using theDoherty amplifier as a predistortion circuit. IEEE Microwave and Wireless ComponentsLetters,2008,18(9):611-613
    [35] J. Hyeong Tae, C. Ik Soo, K. Chul Dong. Compensation method for a nonlinear amplifierusing the gain expansion phenomenon in a Doherty amplifier. IEEE Transactions onMicrowave Theory and Techniques,2006,54(4):1425-1430
    [36] P. L. Gilabert, M. E. Gadringer, G. Montoro, et al. An efficient combination of digitalpredistortion and OFDM clipping for power amplifiers. International Journal of RF andMicrowave Computer-Aided Engineering,2009,19(5):583-591
    [37] N. Chen, G. T. Zhou, H. Qian. Power efficiency improvements through peak-to-averagepower ratio reduction and power amplifier linearization. Eurasip Journal on Advances inSignal Processing,2007(1):1-7
    [38] S. Sezginer, H. Sari. OFDM peak power reduction with simple amplitude predistortion. IEEECommunications Letters,2006,10(2):65-67
    [39] F. Nadal, S. Sezginer, H. Sari. Peak-to-average power ratio reduction in CDMA systemsusing metric-based symbol predistortion. IEEE Communications Letters,2006,10(8):577-579
    [40] M. Helaoui, S. Boumaiza, A. Ghazel, et al. Power and efficiency enhancement of3Gmulticarrier amplifiers using digital signal processing with experimental validation. IEEETransactions on Microwave Theory and Techniques,2006,54(4):1396-1404
    [41] D. F. Kimball, J. Jinho, H. Chin, et al. High-efficiency envelope-tracking W-CDMAbase-station amplifier using GaN HFETs. IEEE Transactions on Microwave Theory andTechniques,2006,54(11):3848-3856
    [42] O. Hammi, S. Carichner, B. Vassilakis, et al. Synergetic crest factor reduction and basebanddigital predistortion for adaptive3G Doherty power amplifier linearizer design. IEEETransactions on Microwave Theory and Techniques,2008,56(11):2602-2608
    [43] K. Chen, K. A. Morris, M. A. Beach. Combining envelope elimination and restoration andpredistortion techniques for use in IEEE802.11g systems. IET Microwaves, Antennas andPropagation,2007,1(4):832-838
    [44] J. Choi, D. Kang, D. Kim, et al. Optimized envelope tracking operation of doherty poweramplifier for high efficiency over an extended dynamic range. IEEE Transactions onMicrowave Theory and Techniques,2009,57(6):1508-1515
    [45] S. D. Muruganathan, A. B. Sesay. A QRD-RLS-based predistortion scheme for high-poweramplifier linearization. IEEE Transactions on Circuits and Systems II: Express Briefs,2006,53(10):1108-1112
    [46] J. Mehta, V. Zoicas, O. Eliezer, et al. An efficient linearization scheme for a digital polarEDGE transmitter. IEEE Transactions on Circuits and Systems II: Express Briefs,2010,57(3):193-197
    [47] J. K. Cavers. Amplifier linearization using a digital predistorter with fast adaptation and lowmemory requirements. IEEE Transactions on Vehicular Technology,1990,39(4):374-382
    [48] A. S. Wright, W. G. Durtler. Experimental performance of an adaptive digital linearizedpower amplifier. IEEE Transactions on Vehicular Technology,1992,41(4):395-400
    [49] K. J. Muhonen, M. Kavehrad, R. Krishnamoorthy. Look-up table techniques for adaptivedigital predistortion: a development and comparison. IEEE Transactions on VehicularTechnology,2000,49(5):1995-2002
    [50] J. K. Cavers. Optimum table spacing in predistorting amplifier linearizers. IEEE Transactionson Vehicular Technology,1999,48(5):1699-1705
    [51]艾渤,杨知行,潘长勇等.基于LUT的HPA数字基带预失真方法研究.电子与信息学报,2007,29(7):1580-1583
    [52]王勇,向新,易克初.基于非迭代算法和非直接学习结构的查询表TWTA预失真器.通信学报,2006,27(9):106-109
    [53] H. Zhi-yong, G. Jian-hua, G. Shu-jian, et al. An improved look-up table predistortiontechnique for HPA with memory effects in OFDM systems. IEEE Transactions onBroadcasting,2006,52(1):87-91
    [54] B. Ai, Z.-X. Yang, C.-Y. Pan, et al. Analysis on LUT based predistortion method for HPAwith memory. IEEE Transactions on Broadcasting,2007,53(1):127-131
    [55]张钦,吴嗣亮,李海.一种新的用于有记忆功放的查找表预失真器.电子学报,2008,36(9):1728-1732
    [56] P. Jardin, G. Baudoin. Filter lookup table method for power amplifier linearization. IEEETransactions on Vehicular Technology,2007,56(3):1076-1087
    [57] H.-H. Chen, C.-S. Maa, Y.-C. Wang, et al. Joint polynomial and look-up-table poweramplifier linearization scheme.57th IEEE Semiannual Vehicular Technology Conference(VTC'2003), vol.2:1345-1349
    [58] L. Ding, Z. Ma, D. R. Morgan, et al. A least-squares/newton method for digital predistortionof wideband signals. IEEE Transactions on Communications,2006,54(5):833-840
    [59] L. Ding, G. T. Zhou, D. R. Morgan, et al. A robust digital baseband predistorter constructedusing memory polynomials. IEEE Transactions on Communications,2004,52(1):159-165
    [60] G. Montoro, P. L. Gilabert, E. Bertran, et al. A new digital predictive predistorter forbehavioral power amplifier linearization. IEEE Microwave and Wireless Components Letters,2007,17(6):448-450
    [61] S. Choi, E.-R. Jeong, Y. H. Lee. Adaptive predistortion with direct learning based onpiecewise linear approximation of amplifier nonlinearity. IEEE Journal on Selected Topics inSignal Processing,2009,3(3):397-404
    [62] Y. H. Lim, Y. S. Cho, I. W. Cha, et al. Adaptive nonlinear prefilter for compensation ofdistortion in nonlinear systems. IEEE Transactions on Signal Processing,1998,46(6):1726-1730
    [63] D. Zhou, V. E. DeBrunner. Novel adaptive nonlinear predistorters based on the directlearning algorithm. IEEE Transactions on Signal Processing,2007,55(1):120-133
    [64] Y. Qian, T. Yao. Structure for adaptive predistortion suitable for efficient adaptive algorithmapplication. Electronics Letters,2002,38(21):1282-1283
    [65] Y.-M. Zhu. Generalized sampling theorem. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing,1992,39(8):587-588
    [66]艾渤,钟章队,朱刚等.放大器预失真系统中的环路延迟估计.系统仿真学报,2007,19(19):4487-4489
    [67] L. Taijun, S. Boumaiza, F. M. Ghannouchi. Deembedding static nonlinearities and accuratelyidentifying and modeling memory effects in wide-band RF transmitters. IEEE Transactionson Microwave Theory and Techniques,2005,53(11):3578-3587
    [68] H. Li, D. H. Kwon, D. Chen, et al. A fast digital predistortion algorithm for radio-frequencypower amplifier linearization with loop delay compensation. IEEE Journal on SelectedTopics in Signal Processing,2009,3(3):374-383
    [69] T. Shigang, G. Ke, W. Jun, et al. Loop delay correction for adaptive digital linearization ofpower amplifiers. IEEE Wireless Communications and Networking Conference(WCNC'2007), vol.1:1987-1990
    [70] D. Kim, S. Lee. Analysis and design of an adaptive polynomial predistorter with the loopdelay estimator. Microwave and Optical Technology Letters,2002,34(2):117-121
    [71] A. Lohtia, P. Goud, C. Englefield. An adaptive digital technique for compensating for analogquadrature modulator/demodulator impairments. IEEE Pacific Rim Conference onCommunications, Computers and Signal Processing(PACRIM'1993), vol.2:447-450
    [72] X. Huang, M. Caron. Efficient transmitter self-calibration and amplifier linearizationtechniques. IEEE International Symposium on Circuits and Systems(ISCAS'2007), vol.1:265-268
    [73] K. Young-Doo, J. Eui-Rim, Y. H. Lee. Adaptive compensation for power amplifiernonlinearity in the presence of quadrature modulation/demodulation Errors. IEEETransactions on Signal Processing,2007,55(9):4717-4721
    [74] L. Anttila, P. Handel, M. Valkama. Joint mitigation of power amplifier and I/Q modulatorimpairments in broadband direct-conversion transmitters. IEEE Transactions on MicrowaveTheory and Techniques,2010,58(4):730-739
    [75] A. Yamaoka, K. Yamaguchi. A novel error separation technique for quadrature modulatorsand demodulators.2007IEEE Radio and Wireless Symposium(RWS'2007), vol.1:563-566
    [76] A. Yamaoka, K. Yamaguchi, I. Seto. Experimental performance evaluation of errorestimation and compensation technique for quadrature modulators and demodulators.2008IEEE Radio and Wireless Symposium(RWS'2008), vol.1:143-146
    [77] M. Faulkner, M. Johansson. Correction of mixer nonlinearity in quadrature modulators.Electronics Letters,1992,28(3):293-295
    [78] I. Teikari, J. Vankka, K. Halonen. Baseband digital predistorter with quadrature errorcorrection. Analog Integrated Circuits and Signal Processing,2006,46(1SPEC. ISS.):73-85
    [79] L. Minsheng, L. Hoover, K. G. Gard, et al. Behavioral modeling of quadrature modulators forcharacterization of nonlinear distortion.2006IEEE MTT-S International MicrowaveSymposium Digest(MWSYM'2006), vol.1:1117-1120
    [80] H. Cao, A. Soltani Tehrani, C. Fager, et al. I/Q imbalance compensation using a nonlinearmodeling approach. IEEE Transactions on Microwave Theory and Techniques,2009,57(3):513-518
    [81] T. Liu, S. Boumaiza, A. B. Sesay, et al. Quantitative measurements of memory effects inwideband RF power amplifiers driven by modulated signals. IEEE Microwave and WirelessComponents Letters,2007,17(1):79-81
    [82] A. A. M. Saleh. Frequency-independent and frequency-dependent nonlinear models of TWTamplifiers. IEEE Transactions on Communications,1981,29(11):1715-1720
    [83]宋家乾,周东方,张翔.用于行波管放大器的预失真线性化技术研究.真空科学与技术学报,2008,28(5):471-475
    [84]张翔,赵立坤,孙昱等.行波管线性器预失真电路的研究与实现.信息工程大学学报,2008,9(4):415-418
    [85] B. M. Lee, R. J. P. de Figueiredo. Adaptive predistorters for linearization of high-poweramplifiers in OFDM wireless communications. Circuits, Systems, and Signal Processing,2006,25(1):59-80
    [86]沈英杰,刘郁林,胡中豫.自适应数字预失真方法在功放线性化中的应用.重庆邮电学院学报:自然科学版,2005,17(6):687-690
    [87] T. H. Vo, T. Le-Ngoc, H. Besbes. Adaptive polynomial predistorters for M-QAMtransmission using non-linear power amplifiers. Wireless Communications and MobileComputing,2007,7(3):267-283
    [88] A. N. D'Andrea, V. Lottici, R. Reggiannini. RF power amplifier linearization throughamplitude and phase predistortion. IEEE Transactions on Communications,1996,44(11):1477-1484
    [89] A. Zhu, P. J. Draxler, C. Hsia, et al. Digital predistortion for envelope-tracking poweramplifiers using decomposed piecewise volterra series. IEEE Transactions on MicrowaveTheory and Techniques,2008,56(10):2237-2247
    [90] A. Zhu, T. J. Brazil. Behavioral modeling of RF power amplifiers based on pruned volterraseries. IEEE Microwave and Wireless Components Letters,2004,14(12):563-565
    [91] N. Safari, T. Roste, P. Fedorenko, et al. An approximation of volterra series using delayenvelopes, applied to digital predistortion of RF power amplifiers with memory effects. IEEEMicrowave and Wireless Components Letters,2008,18(2):115-117
    [92] C. Crespo-Cadenas, J. Reina-Tosina, M. J. Madero-Ayora. Volterra behavioral model forwideband RF amplifiers. IEEE Transactions on Microwave Theory and Techniques,2007,55(3):449-457
    [93] Z. Anding, P. J. Draxler, J. J. Yan, et al. Open-loop digital predistorter for RF poweramplifiers using dynamic deviation reduction-based volterra series. IEEE Transactions onMicrowave Theory and Techniques,2008,56(7):1524-1534
    [94] C. Crespo-Cadenas, J. Reina-Tosina, M. J. Madero-Ayora, et al. A new approach to pruningvolterra models for power amplifiers. IEEE Transactions on Signal Processing,2010,58(4):2113-2120
    [95]曹新容,黄联芬,赵毅蜂.一种最小二乘/奇异值分解算法.计算机工程,2009,35(16):278-279
    [96] J. Goodman, M. Herman, B. Bond, et al. A log-frequency approach to the identification ofthe Wiener-Hammerstein model. IEEE Signal Processing Letters,2009,16(10):889-892
    [97] H. Ku, M. D. McKinley, J. S. Kenney. Quantifying memory effects in RF power amplifiers.IEEE Transactions on Microwave Theory and Techniques,2002,50(12):2843-2849
    [98] O. Hammi, F. M. Ghannouchi. Twin nonlinear two-box models for power amplifiers andtransmitters exhibiting memory effects with application to digital predistortion. IEEEMicrowave and Wireless Components Letters,2009,19(8):530-532
    [99] T. Liu, S. Boumaiza, F. M. Ghannouchi. Augmented hammerstein predistorter forlinearization of broad-band wireless transmitters. IEEE Transactions on Microwave Theoryand Techniques,2006,54(4):1340-1348
    [100] M. Younes, O. Hammi, A. Kwan, et al. An accurate complexity-reduced "PLUME" model forbehavioral modeling and digital predistortion of RF power amplifiers. IEEE Transactions onIndustrial Electronics,2010,58(4):1397-1405
    [101] L. Ding, G. T. Zhou, D. R. Morgan, et al. Memory polynomial predistorter based on theindirect learning architecture.2002IEEE Global Telecommunications Conference(GLOCOM'2002), vol.1:967-971
    [102] D. R. Morgan, Z. Ma, J. Kim, et al. A generalized memory polynomial model for digitalpredistortion of RF power amplifiers. IEEE Transactions on Signal Processing,2006,54(10):3852-3860
    [103] H. Ku, J. S. Kenney. Behavioral modeling of nonlinear RF power amplifiers consideringmemory effects. IEEE Transactions on Microwave Theory and Techniques,2003,51(12):2495-2504
    [104]王华东,何松柏,鲍景富.一种基于互相关序列的功放行为模型建立方法.电子与信息学报,2009,31(5):1201-1204
    [105] W. Huadong, B. Jingfu, W. Zhengdu. Comparison of the behavioral modelings for RF poweramplifier with memory effects. IEEE Microwave and Wireless Components Letters,2009,19(3):179-181
    [106] P. L. Gilabert, D. D. Silveira, G. Montoro, et al. Heuristic algorithms for power amplifierbehavioral modeling. IEEE Microwave and Wireless Components Letters,2007,17(10):715-717
    [107]李波,葛建华,王勇.一种新的分数阶记忆多项式预失真器.电子与信息学报,2009,31(8):1961-1964
    [108] R. Raich, H. Qian, T. Zhou. Digital baseband predistortion of nonlinear power amplifiersusing orthogonal polynomials.2003IEEE International Conference on Accoustics, Speech,and Signal Processing(ICASSP'2003), vol.6:689-692
    [109] N. Naskas, Y. Papananos. Neural-network-based adaptive baseband predistortion method forRF power amplifiers. IEEE Transactions on Circuits and Systems II: Express Briefs,2004,51(11):619-623
    [110] R. Zayani, R. Bouallegue, D. Roviras. Adaptive predistortions based on neural networksassociated with Levenberg-Marquardt algorithm for satellite down links. Eurasip Journal onWireless Communications and Networking,2008(1):1-15
    [111] J. Wood, M. LeFevre, D. Runton, et al. Envelope-domain time series (ET) behavioral modelof a Doherty RF power amplifier for system design. IEEE Transactions on MicrowaveTheory and Techniques,2006,54(8):3163-3172
    [112] M. Isaksson, D. Wisell, D. Ronnow. Wide-band dynamic modeling of power amplifiers usingradial-basis function neural networks. IEEE Transactions on Microwave Theory andTechniques,2005,53(11):3422-3428
    [113] M. Rawat, K. Rawat, F. M. Ghannouchi. Adaptive digital predistortion of wireless poweramplifiers/transmitters using dynamic real-valued focused time-delay line neural networks.IEEE Transactions on Microwave Theory and Techniques,2010,58(1):95-104
    [114] L. Taijun, S. Boumaiza, F. M. Ghannouchi. Dynamic behavioral modeling of3G poweramplifiers using real-valued time-delay neural networks. IEEE Transactions on MicrowaveTheory and Techniques,2004,52(3):1025-1033
    [115] O. Hammi, S. Boumaiza, M. Jaidane-Saidane, et al. Digital subband filtering predistorterarchitecture for wireless transmitters. IEEE Transactions on Microwave Theory andTechniques,2005,53(5):1643-1652
    [116]陈凯亚,王敏锡.基于支持向量机的记忆功率放大器预失真.计算机工程与应用,2007,43(16):210-212
    [117] L. Kok Chew, P. Gardner. Adaptive neuro-fuzzy inference system (ANFIS) digitalpredistorter for RF power amplifier linearization. IEEE Transactions on VehicularTechnology,2006,55(1):43-51
    [118] Z. Jianfeng, Z. Jianyi, Z. Lei, et al. The dynamic behavioral model of RF power amplifierswith the modified ANFIS. IEEE Transactions on Microwave Theory and Techniques,2009,57(1):27-35
    [119] B.Winrow, S.D.Steans.自适应信号处理(王永德等译).北京:机械工业出版社,2008
    [120] M. Schetzen. Theory of pth-order inverses of nonlinear systems. IEEE Transactions onCircuits and Systems,1976,23(5):285-291
    [121]王勇,向新,易克初.宽带正交频分复用系统的记忆型预失真器.系统工程与电子技术,2006,28(9):1456-1459
    [122] S.Haykin.自适应滤波器原理(郑宝玉等译).北京:电子工业出版社,2006
    [123]何子述,夏威等.现代数字信号处理及其应用.北京:清华大学出版社,2009
    [124] Y. Ma, S. He, Y. Akaiwa, et al. An open-loop digital predistorter based on memorypolynomial inverses for linearization of RF power amplifier. International Journal of RF andMicrowave Computer-Aided Engineering,2011,21(5):589-595
    [125] D. S. Hilborn, S. P. Stapleton, J. K. Cavers. An adaptive direct conversion transmitter. IEEETransactions on Vehicular Technology,1994,43(2):223-233
    [126] J. K. Cavers. New methods for adaptation of quadrature modulators and demodulators inamplifier linearization circuits. IEEE Transactions on Vehicular Technology,1997,46(3):707-716
    [127] H. Zareian, V. T. Vakili. New adaptive method for IQ imbalance compensation of quadraturemodulators in predistortion systems. Eurasip Journal on Advances in Signal Processing,2009(1):1-10
    [128] D. Lei, M. Zhengxiang, D. R. Morgan, et al. Compensation of frequency-dependentgain/phase imbalance in predistortion linearization systems. IEEE Transactions on Circuitsand Systems I: Regular Papers,2008,55(1):390-397
    [129] L. Anttila, M. Valkama, M. Renfors. Frequency-selective I/Q mismatch calibration ofwideband direct-conversion transmitters. IEEE Transactions on Circuits and Systems II:Express Briefs,2008,55(4):359-363
    [130] H. Xinping. On transmitter gain/phase imbalance compensation at receiver. IEEECommunications Letters,2000,4(11):363-365
    [131] A. Tarighat, A. H. Sayed. Joint compensation of transmitter and receiver impairments inOFDM systems. IEEE Transactions on Wireless Communications,2007,6(1):240-247
    [132] J. Tsimbinos, K. V. Lever. Input nyquist sampling suffices to identify and compensatenonlinear systems. IEEE Transactions on Signal Processing,1998,46(10):2833-2837

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700