用户名: 密码: 验证码:
钢筋混凝土框架结构静力非线性分析程序研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能的抗震设计理念逐渐被工程研究人员所接受。该理念的前提是,对结构的仿真计算在一定程度上可以准确评估结构的地震反应,量化结构在给定地震水平下的性能水平。因此,非线性有限元分析面临的挑战是:一方面需要针对结构类型建立先进的数值模型,准确而快速地描述结构局部细微的受力机制,追踪结构的薄弱部位及其发展、演变;另一方面需要针对模型特点建立先进的非线性算法,在结构整体的层次上综合考虑各个构件的非线性发展,并在工程可以接受的时间内获得准确有效的结构反应。相对于振动台试验和动力时程分析,非线性静力分析具有快速灵活且可重复使用的特点,对于一般的结构(非重大或复杂结构)的工程设计已经足够。因此,本文针对混凝土框架结构进行了下列研究:
     首先,对基于力形函数的梁柱单元和基于柔度法的计算流程进行了改进。由于基于力形函数的梁柱单元可以严格精确地描述结构实体间的内力关系,因此比传统的基于位移形函数的单元具有明显的精度优势。但缺点是每个荷载步下的计算过程复杂,结构位移要逐步协调才能收敛。因此本文分析总结了现有的基于力的形函数和基于位移形函数的梁柱单元理论,对结构、单元、截面、材料各个实体之间的流程控制、迭代方法等逐一进行论述,同时对基于柔度法的流程控制进行了改进。
     其次,针对非线性全过程分析中的负刚度问题提出了新的虚拟单元法。通过对结构整体进行pushover分析可以近似模拟结构破坏的全过程,然而,对混凝土结构的全过程分析研究仍然难以突破极限荷载而得到下降段,因此本文在虚拟弹簧法的基础上发展了一种可以保证同时多点加载的方法即新的虚拟单元法,描述了该方法的原理和施加步骤,进行了实例验证。
     另外,对基于力形函数的单元算法进行了参数敏感性分析。分析和设计人员可以通过对结构反应进行敏感性分析找出关键的控制参数,分清主要和次要的结构参数。这样,要对结构优化、可靠度分析和系统识别等,进行结构反应的参数敏感性分析就成为一项必需的重要手段。先后有学者提出了对基于力形函数单元进行敏感性分析的计算理论,缺乏明确显式的计算形式。因此,本文首先推导了统一的计算公式,与现有公式进行比较分析,并选取了悬臂钢梁和钢框架进行参数敏感性分析的实例,较好地验证了上述理论的正确性。
     最后,本文针对上述理论进行了非线性有限元程序的编制工作,分别选取了一定量的实例进行分析,其结果与试验结果和传统的有限元软件SAP2000进行了比较,验证了所编程序的有效性。
The idea of performance-based seismic design(PBSD) is accepted by more andmore people. The premise of the idea is that the simulation by FEA can provideaccurate result with quantities of the seismic performance level. So the challenges are:on one side, the numeric model should be proper to the structural style and shoulddescribe the local micro force mechanic and trace the development and evolution ofweak location; on the other hand, advanced algorithms should be provided proper tothe model characteristics, and all the nonlinear developments of the elements on thewhole structure level can be take in, which gives the effective result within acceptabletime. Different to the shaking table test and dynamic time history analysis, thenonlinear static analysis is faster and more flexible and it can be used repeatedly,which is adequate to the design of general structures (excluded from the large-scaleand complex structures). So this paper takes the research for the RC frame structuresas the follows:
     Firstly, the calculation flow is improved for force based beam-column elementand flexibility based method. As the force based beam-column element can describethe relationship of inner force in the structural entities, it has obvious advantage inaccuracy than traditional displacement based element. But its shortcoming exists inthe complex calculation process in every load step and the displacement should beadjusted step-by-step for convergence. So the theory of force based element anddisplacement based element are generalized in this paper. And program flow controland iterative methods in every entity from structure and element and section tomaterial is researched in this paper, in which the program flow for flexibility basedelement is improved.
     Secondly, a new virtual element method is provided to resolve the negativestiffness problem in the full-range nonlinear analysis. The pushover analysis canapproximately simulate the whole process of the damage process under intenseearthquake motion. But for concrete structures it is difficult to break through the limit load to get the descending stage of the load-displacement curve. So a new methodnamed virtual element is developed which can keep the multiple-point style. Theprinciple and operation steps of virtual element method are described. The theory isverified by the example.
     Thirdly, the sensitivity analysis for the force based element is analyzed. Theresearcher and designer can find the key control parameter from the sensitivityanalysis, and recognize the chief and minor parameters. So the sensitivity analysis forthe structural response is an essential means to optimization and/or reliability and/oridentification for the structures. Some scholars have presented the theory for forcebased element in the sensitivity analysis, but the calculation flow uses the implicitexpression for calculations. So in this paper the general and explicit formulations arepresented and comparisons with the current algorithm are given which verified by theexamples of a cantilever steel beam and a five-story steel frame structure.
     Lastly, the nonlinear FEA program is compiles using the above theory. Someexamples are provided and the effectiveness of the program is verified by the resultsof the tests or that calculated by the merchant software SAP2000.
引文
[1] 胡聿贤.地震工程学.北京:地震出版社,2005年9月(1-7)
    [2] 李杰,李国强.地震工程学导论,北京:地震出版社,1992年
    [3] 陈颙,李丽.地震科学的几个发展趋势.中国地震信息网.专家谈地震,2006-03-01
    [4] SEAOC Vision 2000. Performance-based seismic engineering of buildings. Structural Engineers Association of California, Vols. Ⅰ and Ⅱ: Conceptual Framework, 1995.
    [5] ATC. A critical review of current approaches to earthquake-resistance design. ATC-34, Applied Technology Council, 1995.
    [6] ATC. Seismic evaluation and retrofit of concrete buildings. ATC-40, Applied Technology Council, 1996.
    [7] FEMA273/274. Guidelines and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, 1997.
    [8] Chopra, A.K., Goel, R.K., Direct displacement-based design: Use of inelastic vs. Elastic design spectra, Earthquake Spectra, v 17, n 1, February, 2001, p 47-64
    [9] Chopra, A. K.; Goel, R. K., Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures: SDF Systems, Report: PEER- 1999/02, Apr 1999, 80p
    [10] Dolsek, Matjaz and Fajfar, Peter, Inelastic spectra for infilled reinforced concrete frames, Earthquake Engineering and Structural Dynamics, v 33, n 15, December, 2004, p 1395-1416
    [11] Fajfar, Peter, Capacity spectrum method based on inelastic demand spectra, Earthquake Engineering and Structural Dynamics, v 28, n 9, Sep, 1999, p 979-993
    [12] Aschheim, Mark; Black, Edgar F., Yield point spectra for seismic design and rehabilitation, Earthquake Spectra, v 16, n 2, May, 2000, p 317-335
    [13] Aschheim, Mark; Montes, Enrique Hernandez, The representation of P-A effects using Yield Point Spectra, Engineering Structures, v 25, n 11, September, 2003, p 1387-1396
    [14] Chatpan Chintanapakdee and Anil K. Chopra, Evaluation of modal pushover analysis using generic frames, EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, 2003; 32:417-442
    [15] Kalkan, Erol; Kunnath, Sashi K. Adaptive modal combination procedure for nonlinear static analysis of building structures, Journal of Structural Engineering, v 132, n 11, 2006, p1721-1731
    [16] Chandrasekaran, S.; Roy, Anubhab ,Seismic evaluation of multi-storey RC frame using modal pushover analysis, Nonlinear Dynamics, v 43, n 4, March, 2006, p 329-342
    [17] Goel, Rakesh K.; Chopra, Anil K. Role of higher-"mode" pushover analyses in seismic analysis of buildings, Earthquake Spectra, v 21, n 4, November, 2005, p1027-1041
    [18] Thomas Louis Attard, Modeling of higher mode effects in various frame structures using a pushover analysis, Dissertation presented for the degree of doctor of philosophy of Arizona state university, August 2003.
    [19] Goel, Rakesh K.; Chopra, Anil K. Modal pushover analysis for unsymmetric buildings Proceedings of the Structures Congress and Exposition, Metropolis and Beyond-Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium, 2005, p 1847-1855
    [20] Chopra, Anil K.; Goel, Rakesh K., A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings, Earthquake Engineering and Structural Dynamics, v 33, n 8, Jul 10, 2004, p 903-927
    [21] Llera, J.C., Chopra, A.K., Inelastic behavior of asymmetric multistory buildings, Journal of Structural Engineering, v 122, n 6, Jun, 1996, p 597-606
    [22] Kilar, Vojko, Fajfar, Peter. Simple push-over analysis of asymmetric buildings, Earthquake Engineering & Structural Dynamics, v 26, n 2, Feb, 1997, p 233-249
    [23] 吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法.地震工程与工程振动,第25卷第6期,2005年12月(53-61)
    [24] 吕西林,朱杰江.高层建筑结构推覆分析及对设计的启示.建筑结构学报,第26卷第6期,2005年12月(100-107)
    [25] 吕西林,章红梅.对《建筑工程抗震性态设计通则(试用)》的评述.地震工程与工程振动,第25卷第4期,2005年8月(180-186)
    [26] 马宏旺,吕西林,陈晓宝.建筑结构“中震可修”性能指标的确定方法.工程抗震与加固改造,第27卷第5期,2005年10月(26-32)
    [27] 卢文生,吕西林.模态静力非线性分析中模态选择的研究.地震工程与工程振动,第24卷第6期,2004年12月(32-38)
    [28] 卢文生,吕西林.框架剪力墙结构模态静力非线性抗震分析方法研究.地震工程与工程振动,第25卷第1期,2005年2月(58-66)
    [29] 周定松,吕西林.弹塑性位移谱法的振动台模型试验验证.地震工程与工程振动,第24卷第5期,2004年10月(110-117)
    [30] 吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震工程与工程振动,第24卷第1期,2004年2月(39-48)
    [31] 周定松,吕西林.延性需求谱在基于性能的抗震设计中的应用.地震工程与工程振动,第24卷第1期,2004年2月(30-38)
    [32] 朱杰江,吕西林,容柏生.复杂体型高层结构的推覆分析方法和应用.地震工程与工程振动,第23卷第2期,2003年4月(26-36)
    [33] 马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题.同济大学学报(自然科学版),第30卷第12期,2002年12月(1429-1434)
    [34] 叶献国,周锡元.建筑结构地震反应简化分析方法的进一步改进.合肥工业大学学报(自然科学版)第23卷第2期,2000年4月(149-153)
    [35] 叶献国,种迅,李康宁,周锡元.Pusho Ver方法与循环往复加载分析的研究,合肥工业大学学报(自然科学版)第24卷第6期,2001年12月(1019-1024)
    [36] 罗文斌,钱稼茹.RC框架弹塑性位移的解构规则与构件的目标侧移角.工程力学,第20卷第5期,2003年10月(32-36)
    [37] 罗文斌,钱稼茹.钢筋混凝土框架基于位移的抗震设计.土木工程学报,第36卷第5期,2003年5月36(5):22-29
    [38] 白羽,赵晖,叶燎原.IMS体系抗震性能研究的Push-over方法.世界地震工程,第20卷第4期,2004年12月,76-80
    [39] 汪梦甫,周锡元.关于结构静力弹塑性分析(Push-over)方法中的几个问题.结构工程师,2002年第4期,(17-22)
    [40] 何浩祥,闫维明,周锡元.基于性能的钢混框架结构多元模糊地震损伤评估.工程抗震与加固改造,第28卷第1期,2006年2月(100-105)
    [41] 汪梦甫,周锡元,黄立忠.钢筋混凝土开洞剪力墙结构抗震非线性有限元分析.地震工程与工程振动,第25卷第3期,2005年6月(47-54)
    [42] 种迅,孟少平.钢筋混凝土框架结构全过程pushover分析.地震工程与工程振动,第25卷1期,2005年2月(38-42)
    [43] 汪大绥,贺军利,张凤新.静力弹塑性分析(Pushover Analysis)的基本原理和计算实例.世界地震工程,20卷1期,2004年3月,(45-53)
    [44] 熊学玉,李春祥,耿耀明,黄鼎业.大跨预应力混凝土框架结构的静力弹塑性(pushover)分析.地震工程与工程振动,第24卷第1期,2004年2月(68-75)
    [45] Krawinkler, Helmut; Zareian, Farzin; Medina, Ricardo A.; Ibarra, Luis F. Decision support for conceptual performance-based design, Earthquake Engineering and Structural Dynamics, v 35, n 1, January, 2006, p 115-133
    [46] Fajfar, Peter; Krawinkler, Helmut, Expanded papers from an international workshop on performance-based design-Concepts and implementation, Earthquake Engineering and Structural Dynamics, v 35, n 1, January, 2006, p 1-2
    [47] 丁丽娜,林皋,李博宁.结构高度对静力弹塑性分析结果的影响.世界地震工程,21卷1期,2005年3月:(146-149)
    [48] 侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动,第24卷第3期,2004年6月(89-97)
    [49] 龚胡广,沈蒲生.一种基于位移的改进静力弹塑性分析方法.地震工程与工程振动,第25卷第3期,2005年6月(18-23)
    [50] 孙景江,Tetsuro Ono,赵衍刚,王威.Lateral load pattern in pushover analysis, EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION, Vol. 2, No. 1, June, 2003: (99-107)
    [51] Hasan, R.; Xu, L.; Grierson, D.E. Push-over analysis for performance-based seismic design, Computers & Structures, v 80, n 31, Dec. 2002, p 2483-2493
    [52] 钟万勰,程耿东.跨世纪的中国计算力学.科技进步与学科发展,北京:中国科学技术出版社.1998年
    [53] 龙驭球.有限元法概论.人民教育出版社,1978年
    [54] 龙驭球.新型有限元引论.清华大学出版社,1992年
    [55] 王勖成,邵敏.有限单元法基本原理和数值方法.清华大学出版社,1997年
    [56] 朱慈勉等.计算结构力学.上海科学技术出版社,1992年
    [57] Alex C. Scordelis. Past, Present and Future Developments. Finite Element Analysis of Reinforced Concrete Structures. New York, 1985, 657-666
    [58] J.L. Meek and H.S. Tan. Geometrically Nonlinear Analysis of Space Frames by an Incremental Iterative Technique. Com. Meth. In Ap. Mech. and Eng. 1984, 47: 261-282
    [59] C. Bagci. Elastic Stability and Buchling Loads of Three Dimensional Nonlinear Framed Systems by Finite Element Method Using Spatial Line Elements, Comp.& Str., 1979, 10: 731-743
    [60] D.L. Karabalis and D.E. Beskos. Static. Dynamic and Stability Analysis of Structures Composed of Tapered Beams, Computer & Structures, 1983, 16: 731-748
    [61] Lutz Sparowitz. ARealistic Numercal Computation of the time dependent Couvature of Reinforced Concrete Column, T.U. Graz, 1982
    [62] Guenther Jaritz. Ein Beitrag zum Nichtlinearen Biegertrag-verhalten von Stahlbetonstabweken, Dissertation, T.U. Graz, 1988
    [63] Herbert Zillich. Ein Beitrag zum Nichtlinearen Schubtragverhalten von Stahlbetonstabwerken, Dissertation, T.U. Graz, Austria, 1990
    [64] K. Muto, T. Sugano. 3-Dimensional Nonlinear Analysis of Reinforced Concrete Column, DELFT REPORT, 1981. 361-376
    [65] K.S. Virdi. Biaxially Loaded Slender Reinforced Concrete Columns, DELFT REPORT. 1981. 429-422
    [66] Ted Belytschko, Wing Kam Liu, Brian Moran著,庄茁(译).连续体和结构的非线有限元.清华大学出版社,2002年12月
    [67] 朱伯龙.钢筋混凝土非线性分析.同济大学出版社,1984年10月
    [68] 赵国藩.钢筋混凝土结构发展现状及展望.中国土木工程学会第八届年会论文集,1998年3月
    [69] 吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.同济大学出版社,1996年12月
    [70] 李刚,程耿东.基于性能的结构抗震设计-理论.方法与应用,北京:中国科学出版社,2004年
    [71] 江见鲸.钢筋混凝土结构非线性有限元分析.陕西科学技术出版社,1994年
    [72] 匡文起,张玉良,辛克贵.结构矩阵分析和程序设计.高等教育出版社,1991年5月
    [73] 沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析.清华大学出版社,1993年
    [74] 孙飞飞.高层钢筋混凝土空间框架结构地震反应的仿真分析.同济大学博士学位论文,1999年
    [75] 叶献国.基于非线性分析的钢筋混凝土结构地震反映与破损的数值模拟.土木工程学报,1998年8月,第31卷第4期(3-13)
    [76] F.F. Taucer, E. Spacone and F. C. Filippou. A Fiber Beam-Column Element for Seismic Response Analysis of Reinforced Concrete Structures, EERC-91/17, p 142
    [77] Clough, R.W., Benuska, K.L. and Wilson, E.L., Inelastic Earthquake Response of Tall Buildings, Proceedings, Third World Conference on Earthquake Engineering, New Zealand, Vol. 11, New Zealand National Committee on Earthquake Engineering, 1965.
    [78] H. Aoyoma, Inelastic Analysis of R/C Structures, Transaction of the Architectural Institute of Japan, 1967.
    [79] H.Takizawa. Notes on some Basic Problems in Inelastic Analysis of Plane R/C Structures, Part Ⅰ and Part Ⅱ, Transaction of the Architectural Institute of Japan, 1976.
    [80] Otani, S., Inelastic Analysis of R/C Frame Structures, Journal of the Structural Division, ASCE, Vol. 100, No.ST7, July 1974.
    [81] Giberson, M.F., Two Nonlinear Beams with Definition of Ductility, Journal of the Structural Division, ASCE, Vol.95, No.ST7, July 1974.
    [82] Takeda, T., Sozen, M.A. and Nielsen, N.N., Reinforced Concrete Response to Simulated Earthquakes, Journal of the Structural Division, ASCE, Vol.96, ST12, Dec. 1970.
    [83] S.S.Lai, G.T. Will and S. Otani, Model for Inelastic Biaxial Bending of Concrete Members, Journal of Structural Division, ASCE, Vol. 110, ST11, Nov. 1984, pp.2563-84.
    [84] K.N. Li and S. Otani, Multi-Spring Model for 3-Dimensional Analysis of RC Members, Intl. Journal of structural Eng. and Mechanics, Vol. 1, No. 1, 1993, pp. 17-30.
    [85] D. Soleimani, Reinforced Concrete Ductile Frame Under Earthquake Loading With Stiffness Degradation, Ph.D.Thesis, University of California, Berkeley, 1978
    [86] 汪梦甫,高层建筑非线性地震反应计算方法,第二届全国青年力学会议论文集,合肥:1990
    [87] Miramontes D., Merabet O., and ReynOUARD j.m. Beam global model for the seismic analysis of RC Frames[J]. Earthquake Engineering and Structural Dynamics, 1996, 25: 671-688
    [88] 薛伟辰,张志铁.钢筋混凝土结构非线性全过程分析方法及应用.计算力学学报,1999年8月,第16卷第3期:(334-342)
    [89] 薛伟辰,吕志涛.混凝土杆系结构滞回全过科分析.工程力学,1996年8月,第13卷第3期(8-16)
    [90] Izzuddin B.A., Karayannis C.G., and Elnashai, A.S. Advanced nonlinear formulation for reinforced concrete beam-columns.[J]. Journal of Structural Engineering, ASCE, 1994, 120(10): 2913-2934
    [91] Karayannis C.G., Izzuddin B.A., and Elnashai A.S. Application of adaptive analysis to reinforced concrete frames[J]. Journal of Structural Engineering, ASCE, 1994, 120(10): 2935-2957.
    [92] Neuenhofer A., and Filippou F.C. Evaluation of nonlinear frame finite-element models.[J]. Journal of Structural Engineering, ASCE, 1997, 123(7): 958-966
    [93] Zeris C.A, and Mahin S.A. Analysis of reinforced concrete beam-columns under uniaxial excitation[J]. Journal of Structural Engineering, ASCE, 1988, 114(4): 804-820.
    [94] Zeris C.A., and Mahin S.A. Behavior of reinforced concrete structures subjected to biaxial excitation. [J]. Journal of Structural Engineering, ASCE, 1991, 117(9): 2657-2673
    [95] Taucer F.F., Spacone E., and Filippou F.C. A fiber beam-column element for seismic response Analysis of reinforced concrete structures[R]. EERC Report 91/17, Earthquake Engineering Research Center, University of California, Berkeley, CA(1991).
    [96] Spacone E., Ciampi V., Filippou F.C. Mixed formulation of nonlinear beam finite element[J]. Computer& Structure, 1996, 58(1): 71-83
    [97] Spacone E., Filippou F.C., and Taucer F. F. Fiber beam-column model for non-linear analysis of R/C frames: part Ⅰ. Formulation [J]. Earthquake Engineering and Structural Dynamics, 1996, 25: 711-725.
    [98] Spacone E., Filippou F.C., and Taucer F. F. Fiber beam-column model for non-linear analysis of R/C frames: part Ⅱ. Application [J]. Earthquake Engineering and Structural Dynamics, 1996, 25: 727-742.
    [99] Filippou, F. C. and Issa, A, Nonlinear Analysis of Reinforced Concrete Frames Under Cyclic Load Reversals, UCB/EERC-88/12, 1988.9, p110
    [100] 黄宗明等.基于有限元柔度法和刚度法的非线性梁柱单元比较研究.工程力学,2003年10月,24-31.
    [101] 朱杰江.混凝土结构非线性分析研究以及实例工程应用.同济大学博士后研究工作报告,2005年10月
    [102] 邹翾.复杂截面钢筋混凝土框架结构的非线性分析研究.同济大学博士学位论文,2004年5月:(47-98)
    [103] 姬守中,江欢成.考虑轴向变形双轴弯曲耦合效应的钢筋混凝土柱的弹塑性分析.地震工程与工程振动,2002年8月,第22卷第4期(74-80)
    [104] 何政,欧进萍.钢筋混凝土双向压弯构件非线性静力分析及参数影响.哈尔滨建筑大学学报,2000年8月,第33卷第4期:(1-7)
    [105] M. Barbato, J. P. Conte, Finite element response sensitivity analysis: a comparison between force-based and displacement-based frame element models [J]. Comput. Methods Appl. Mech. Engrg. 2005, 194: 1479-1512.
    [106] K. Maekawa, A. Pimanmas and H. Okamura, Nonlinear Mechanics of Reinforced Concrete, First published 2003 by Spon Press (248-299).
    [107] 过镇海.钢筋混凝土原理.清华大学出版社,1998年1月
    [108] 郑建军,李庆勇,曾洪波等.混凝土微平面模型的参数研究与应用.四川建筑科学研究,第30卷第2期,2004年6月,(92-94)
    [109] 冯世平,沈聚敏.钢筋混凝土杆系结构的非线性全过程分析.建筑结构学报,1989,10(4):(1~11).
    [110] 梁书亭,丁大钧.新型钢筋混凝土延性框架的非线性全过程分析.土木工程学报,1995年6月,28(3),42-50
    [111] 刘南科,周基岳等.钢筋混凝土框架的非线性全过程分析.土木工程学报,1990年11月,23(4):2-14
    [112] 王志军,刘南科.混凝土结构非线性全过程分析中的迭代控制法研究.重庆建筑大学学报,1998年8月,第20卷第4期:(14-20)
    [113] 邹积麟,钱稼茹,病态方程的复合结构解法,清华大学学报(自然科学版),2001年Z1期,41卷,4/5期,231-234
    [114] Michael H. Scott, Paolo Franchin, Gregory L. Fenves, et al. Response sensitivity for nonlinear beam-column elements [J]. Journal of structural engineering, 2004, 130(9): 1281-1288.
    [115] Terje Haukaas, Armen Der Kiureghian, Parameter sensitivity and importance measures in nonlinear finite element reliability analysis [J]. Journal of engineering mechanics, ASCE, 2005, 131(10): 1013-1026.
    [116] Ansgar Neuenhofer, Filip C. Filippou. Evaluation of nonlinear frame finite-element Model [J]. Journal of structural engineering, 1997, 123(7): 958-966.
    [117] J.P. Conte, M. Barbato, E. Spacone, Finite element response sensitivity analysis using force-based models [J]. Int. J. Numer. Meth. Engng 2004, 59: 1781-1820.
    [118] Barbato, M., Zona, Alessandro, Conte, J.P., Finite element response sensitivity analysis using three-field mixed formulation: General theory and application to frame structures, International Journal for Numerical Methods in Engineering, v 69, n 1, Jan 1, 2007, p 114-161
    [119] 北京金土木软件技术有限公司等.SAP2000中文版使用指南.人民交通出版社,2006年9月:(460-474)
    [120] 朱桂东,多单元铰点分析的虚拟单元法,振动工程学报,1998年9月,第11卷第3期,(361-365).
    [121] [英]J.H.威尔金森.代数特征值问题[M].石钟慈泽.北京:科学出版社,2001.
    [122] [美]G.H.格罗布,C.F.万罗安.矩阵计算[M].廉庆荣泽.大连:大连理工大学出版社,1988.
    [123] 伍永飞,周德源.纤维模型住平面框架非线性静力分析中的应用.东南大学学报自然科学版,2005,35(A01):129~132.
    [124] 夏志皋.塑性力学.上海:同济大学出版社,1991.
    [125] 吴晓涵.面向对象结构分析程序设计.科学出版社,2002年4月
    [126] 顾祥林,孙飞飞.混凝土结构的计算机仿真.同济大学出版社,2002年5月
    [127] 周廷藩,杨国贤.杆系结构程序设计.1990年7月
    [128] 李世国.AutoCAD高级开发技术ARX编程及应用.机械工业出版社,1999年9月
    [129] Charles McAuley著,李世国,潘建忠等译.AutoCAD 2000 Object ARX编程指南.机械工业出版社,2000年7月
    [130] 王福军,张志民等.AutoCAD2000环境下C/Visual C++应用程序开发教程,北京希望电子出版社,2000年6月
    [131] Richard C. Leinecker, Tom Archer. Visual C++宝典.电子工业出版社,2001年8月 (551-561)
    [132] 张鹏.再生混凝土框架结构抗震性能非线性分析.山东科技大学硕士学位论文,2005年5月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700