用户名: 密码: 验证码:
水电开发中的生态风险评价与管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类活动影响对生态系统的影响日益显著,大型水电工程在建设和运行过程中,改变了河道水资源的时空分布特征,同时也对流域范围内的生态环境产生了直接和间接影响,这种影响在工程建设期和运行期有不同的影响方式和影响程度,并且在长期的运行过程中,水电工程对环境的影响具有持久和累积效应。另一方面,水电工程在不同的运行方式下,水库的防洪、发电、供水、航运等效益和风险也随之改变。
     本文基于国际上先进的生态风险评价与管理理念及方法,通过对梯级水电工程与流域生态环境的关系研究,同时应用不确定性分析理论,以我国澜沧江流域水电为研究背景,深入探讨了大型水电工程在建设期和运行过程中生态风险的评价及风险决策等问题,在水电工程对陆生生态系统风险、水电工程对鱼类生态影响的预测、水电开发对生态系统的累积影响、水电工程运行期的风险分析与决策的理论方法及应用方面取得了如下主要成果:
     (1)水电开发对陆生生态系统影响的风险评价。基于相对风险理论和模糊隶属度概念,提出了定量计算和定性评价相结合的水电工程开发对陆生生态系统影响的风险评价模型。构建了针对水电工程建设期和运行期的陆生生态系统风险评价指标体系,建立了基于相对风险理论和模糊隶属度的水电工程陆生生态系统风险评价模型,有效地解决了流域生态系统评价所具有的指标多重性、随机性、模糊性、不完全性、不可比性等不确定性特征问题,为水电站建设及运行中的生态系统风险评价提供了值得借鉴的方法,为流域生态系统保护和生态管理提供了决策依据。
     (2)水电开发对鱼类生态的影响预测研究。建立了基于改进遗传规划法的鱼类影响预测模型,针对遗传规划算法很难收敛于全局最优的缺点,采用等梯度增加法对个体的生成方式进行改进以使生成的算法树分布更均匀,采用分组生成法产生初始群体以提高初始种群的生成质量,采用动态限制树深度以提高算法的效率。通过在澜沧江梯级水电开发对湄公河鱼类影响研究中的应用,表明改进遗传规划算法在预测精度、结果直观性和可解释性方面均优于常规遗传规划算法,为水电开发对河流鱼类的影响预测提供了一条有效的途径。
     (3)水电开发对生态系统影响的累积效应研究。鉴于梯级水电开发对生态系统的影响具有累积性,建立了梯级水电开发环境累积影响的评价体系;针对生态环境系统诸多因素的不确定性,从水环境、陆生生态环境和水生生态环境三方面出发,建立了定量分析和定性分析相结合的二级综合模糊评价模型,运用层次分析法求解各影响因子的权重,运用主成分分析法对模糊评价模型进行求解,降低了模型的维度和求解复杂性。以澜沧江干流为例,分别进行了梯级水电开发对水环境和生态环境累积效应的影响分析,并提出了针对性的生态保护建议,为研究水电开发对生态系统累积效应的影响提供了一种新的思路,为深入研究水电开发与流域生态的关系提供了理论与方法储备。
     (4)水电运行期水库调度风险的研究。针对水库调度涉及多个目标的特点,深入分析了水库多目标之间的关系,在水库多目标调度决策和分析评价理论方法研究的基础上,将水库多目标优化调度、多目标决策和多目标风险评价有机的结合起来,为水库调度方案的合理制定提供了充分、全面和系统的决策依据。针对梯级水库联合防洪调度中所面临的风险,构建了以主要目标和约束的破坏概率为要素的风险评价指标体系,建立了联合防洪调度风险估计模型,有效的考虑了预报误差对水库群联合防洪调度的影响风险,对防洪调度决策具有重要的指导意义,对梯级水库群防洪调度风险分析理论与方法进步提供了有用的参考价值。
The impact of humanactivities onecosystemsis becoming increasingly significant.In theconstruction and operation processesof large-scalehydropower projects,spatial and temporaldistribution ofriverwater has been changed; meanwhile the ecological environment of river basin is affected directly and indirectly. The influence manner and degree is different in construction period and operation period, and the environmental influence of hydropower project can be cumulative. On the other hand, the reservoir risk in flood control, power generation, water supply and navigation is changing due to different operation methods.
     Based on international advancedecological risk assessmentandmanagement conce ptsand methods, through researchonthe relationshipof cascadehydropower projectsand watershedecological environment, the Lancangriver hydropower system is taken as background with application of uncertainty analysistheory. The ecological risk evalu ation and decision during construction and operation period is discussed. Progresses is made in the riskofterrestrial ecosystems, fish ecological impact prediction of hy dropower projects, cumulative impact of ecological system and risk analysis and d ecision theory during hydropower operation period:
     (1) Risk assessmentof hydropower developmenton terrestrial ecosystemimpacts.B ased onthe concept of relativeriskand fuzzymembership theory.risk assessmentmodeli s proposed to qualitativecalculate and evaluate the terrestrial ecosystemimpacts. Terr estrial ecosystemrisk assessment index system is established for construction period and operation period of hydropower project, terrestrial ecosystemrisk assessment model is established based on relative risk theory and fuzzy membership, which ef fectively solve the multiplicity, randomness, fuzziness, incompleteness, uncertainties and othercharacteristics of watershed ecosystemevaluation, thus providesvaluablemet hods and decision making support for ecosystemandwatershed protection.
     (2) Prediction research of fish ecology impact from hydropower development. Fish impact prediction model is established based on improved geneticprogramming algorithm. For the deficit that geneticprogramming algorithm is difficult to conver ge tothe global optimum, usinguniform gradientto increasegenerationofindividuals an d group generation to improve the quality of initial groups, and dynamic restrictio n tree depth to improve the efficiency of algorithms. By application in Lancang ri verhydropower development and Meikong river fish impact, the prediction precision, results intuitive and interpretability of improved genetic programming is better tha n traditional genetic programming algorithms, which provides an effective way for fish impact of hydropower.
     (3) Cumulative effect research of ecological system for hydropower developme nt. Given theimpact ofhydropower developmenton ecosystemsare cumulative, assess ment system for environmental cumulative impact are established; for the various uncertainties of ecological system, a two stage comprehensive fuzzy evaluation mo del is established from water environment, terrestrial ecosystemsand aquaticecologic alenvironment aspect combining quantitativeand qualitative analysis. AHP theory is applied to solve the weight of each factor, and PCA theory is used to solve fuzzy assessment model, which reduced the model dimension and complexity. Take the Lancang river for instance, cumulative impact analysis for cascaded hydropower to water environment and ecological environment is analyzed, and recommendations are proposed to protect ecology, which provide a new approach to the cumulative effect from hydropower development, and provideareservefor further study ofhydrop ower development andwatershedecologyrelationships.
     (4) Reservoir operation risk research. According to the characteristicsof reservo ir operationinvolving multipletargets,the relationships between thereservoirmulti-objec tive are analyzed, multi-objectiveandmulti-objectivedecision making method are orga nized based on reservoirs multi-objective operation decision and analysis theory, w hich provides sufficient, comprehensiveand systematicbasis for decision making for operation plan. Forrisks associated withflood control operationof cascade reservoirs, risk assessment index system is established considering destruction probability of main objectives and constraints. Jointflood control operation riskestimation model is established, which effectively considered impact risks brought by prediction error, which has significant guiding meaning for flood control decision, and provides us eful referencevalue for cascadereservoir flood controltheery and methods.
引文
[1]陈辉,刘劲松,曹宇,等.生态风险评价研究进展[J].生态学报,2006(5):1558-1566.
    [2]Wayne G Landis. Twenty years before and hence:ecological risk assessment at multiple scales with multiple stressors and multiple endpoints. Human and Eeological Risk Assessment,2003,9:1317-1326.
    [3]W.J.G.M.Peijnenburg, L.Posthuma, H.J.P.Eijsackers and H.E.Allen. A conceptual framework for implementation of bicavailability of metals for environmental management purposes[J], Ecotoxicology and environmental safety, 1997,37(2):163-172.
    [4]National Academy of Sciences(NAS). Risk assessment in federal government:managing the process. National Academy Press,Washington D C,1983.
    [5]Wang B Z, et al. Translation. Foreign environmental science and technology.1985, (Suppliment):111.
    [6]Barnthouse L W, Suter G W II, Rosen A E, et al. Estimating responses of fish populations to toxic contamination. Environmental Toxicology Chemistry,1987, 6(8):11-24.
    [7]Barnthouse L W, Suter G W II, and Rosen A E. Inferring population-level significance from individual-level effects:an extrapolation from fisheries science to ecotoxicology. In:Suter G WII and Lewis MA(eds). Aquatic Toxicology and Environmental Fates,1998,11:289-300. ASTM STP 1007. American Society for Testing and Materials, PhiladelPhia, PA, USA.
    [8]Johnson A R. Evaluation ecosystem response to toxicant stress:A state space approach. In:Adams W J,Chapman G A,and Landis W G eds. Aquatic toxicology and hazard assessment,1955,10:275-285.ASTP STP 971. American society for Testing and Materials,PhiladelPhia,P A,USA.
    [9]Thorteical E C. Possibilities and consequences of major accidents in large nuclear Power Plants, DOC.740,U.5.A.E.C.,Washington D C,1975.
    [10]Hunsaker C T, Graham R L, Suter G WII, et al. Assessing ecological risk on regional scale. Environmental Management,1990,14:325-332.
    [11]NRC(National Researeh Council). Issues in risk assessment. National Academy Press, Washington D C, USA,1993.
    [12]EPA(US Environmental Protection Agency). Framework for ecological risk assessment. EPA 630-R-92-001. Office of Researeh and Development, Washington DC, USA,1992.
    [13]Munns W R, Kroes R, Veith G, et al. Approaches for integrated risk assessment [J]. Human and Ecological Risk Assessment,2003,9(1):267-272.
    [14]Sekizawa J, Tamabe S. A comparison between integrated risk assessment and classical health/environmental assessment:emerging beneficial properties [J]. Toxicology and Applied Pharmacology,2005,207(sup.2):716-622.
    [15]Suter G W II, Vermeire T, Munns W R, et al. An integrated framework for health and ecological risk assessment [J]. Toxicology and Applied Pharmacology,2005, 207(sup.):611-616.
    [16]WHO(World Health Organization). Report on integrated risk assessment, WHO/IPCS/IRA/01/12. Geneva, Switzerland,2001.
    [17]UKDOE. A Guide to Risk Assessment and Risk Management for Environmental Protection. Her Majesty's Stationery Office, London, UK,1995.
    [18]Y. Iwasa, H. Hakoyama, M. Nakamaru, J. Nakanishi. Estimate of population extinction risk and its application to ecological risk management. Population ecology, 2000,42(1):73-80.
    [19]Bruce K.Hope,Jeffrey A.Peterson. A procedure for performing population-level ecological risk assessment.Environmental Management,2000.25(3):282-289.
    [20]LammertKooistra, Rob S. E. W. Leuven, Piet H. Nienhuis, Ron Wehrens, Lutgards M. C. Buy dens. A procedure for incorporating spatial variability in ecological risk assessment of Dutch River Flood plains. Environmental Management,2001,28(3): 359-373.
    [21]Victor Dubowitz. The Journal:a crisis of space and time.[J]. Neuromuscular Disorders,2002,12(5):437.
    [22]Benjamin L. Preston. Indirect effects in aquatic ecotoxicology:implications for ecological risk assessment. Environmental Management,2002,29(3):311-323.
    [23]Ryan S. King, Curtis J. Richardson. Integrating bioassessment and ecological risk assessment>an approach to developing numerical water-quality criteria. Environmental Management,2003,31(6):795-809.
    [24]USEPA. Guidelines for Eeological Risk Assessment. FRL-6011-2,1998.
    [25]朱琳,佟玉洁.中国生态风险评价应用探讨[J].安全与环境学报,2003(3):22-24.
    [26]付在毅,许学工.区域生态风险评价[J].地球科学进展,2001(2):267-271.
    [27]阳文锐,王如松,黄锦楼,等.生态风险评价及研究进展[J].应用生态学报,2007(8):1869-1876.
    [28]马德毅,王菊英.中国主要河口沉积物污染及潜在生态风险评价[J].中国环境 科学,2003(5):74-78.
    [29]殷浩文.水环境生态风险评价程序[J].上海环境科学,1995(11):11-14.
    [30]许学工,林辉平,付在毅,等.黄河三角洲湿地区域生态风险评价[J].北京大学学报(自然科学版),2001(1):111-120.
    [31]张学林,王金达,张博,等.区域农业景观生态风险评价初步构想[J].地球科学进展,2000(6):712-716.
    [32]李自珍,李维德,石洪华,等.生态风险灰色评价模型及其在绿洲盐渍化农田生态系统中的应用[J].中国沙漠,2002(6):95-100.
    [33]周启星,王如松.城镇化过程生态风险评价案例研究[J].生态学报,1998(4):3-8.
    [34]刘文新,栾兆坤,汤鸿霄.乐安江沉积物中金属污染的潜在生态风险评价[J].生态学报,1999(2):64-69.
    [35]许学工,林辉平,付在毅,等.黄河三角洲湿地区域生态风险评价[J].北京大学学报(自然科学版),2001(1):111-120.
    [36]韩丽,戴志军.生态风险评价研究[J].环境科学动态,2001(3):7-10.
    [37]沈珍瑶,杨志峰.黄河流域水资源可再生性评价指标体系与评价方法[J].自然资源学报,2002(2):188-197.
    [38]刘成,王兆印,何耘,等.环渤海湾诸河口潜在生态风险评价[J].环境科学研究,2002(5):33-37.
    [39]何云峰,朱广伟,陈英旭,等.运河(杭州段)沉积物中重金属的潜在生态风险研究[J].浙江大学学报(农业与生命科学版),2002(6):82-87.
    [40]衷平,沈珍瑶,杨志峰.石羊河流域生态风险敏感性因子的确定[J].干旱区研究,2003(3):180-186.
    [41]付在毅,许学工,林辉平,等.辽河三角洲湿地区域生态风险评价[J].生态学报,2001(3):365-373.
    [42]卢宏玮,曾光明,谢更新,等.洞庭湖流域区域生态风险评价[J].生态学报,2003(12):2520-2530.
    [43]周晓蔚,王丽萍,郑丙辉
    [44]王丽萍,郑江涛,周晓蔚,等.水电梯级开发对生态承载力影响的研究[J].水力发电学报,2011(1):12-16,23.
    [45]王丽萍,郑江涛,周晓蔚,等.山区河流可持续发展能力评价研究[J].水利学报,2012(6):726-733.
    [46]鲁春霞,刘铭,曹学章,等.中国水利工程的生态效应与生态调度研究[J].资源科学,2011(8):4-7.
    [47]张洪波,黄强,张双虎.梯级水库运行对黄河上游水文条件的累积影响[J].河海大学学报(自然科学版),2011(2):137-142.
    [48]柳晓砹,李金文.李仙江流域梯级电站开发对生态环境的影响及防治措施[J].环境科学导刊,2007(2):69-72.
    [49]付鹏,陈凯麒,谢悦波,等.考虑社会影响的水利水电开发环境影响评价方法[J].水利学报,2009(8):1012-1018.
    [50]孙嘉宁.白鹤滩水库回水支流黑水河的鱼类生境模拟研究[D].浙江:浙江大学,2013.
    [51]王远坤,夏自强,王桂华.水库调度的新阶段——生态调度[J].水文,2008,01:7-9,76.
    [52]Tharme R E. A global perspective on environmental flow assessment:emerging trends in the development and application of environmental flow methodologies for rivers [J]. River Research and Applications,2003,19(5-6):397-441.
    [53]Murchie K J, Hair K P E, Pullen C E, et al. Fish response to modified flow regimes in regulated rivers; research methods, effects and opportunities [J]. River Research and Applications,2008,24(2):197-217.
    [54]Bunn S E, Arthington A H. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity [J]. Environmental Management,2002, 30(4):492.
    [55]董哲仁,孙东亚,王俊娜,等.河流生态学相关交叉学科进展[J].水利水电技术,2009(8):36-43.
    [56]Choi S, Yoon B, Woo H. Effects of dam-induced flow regime change on downstream river morphology and vegetation cover in the Hwang River, Korea[J].River Research and Applications,2005,21(2-3):315-325.
    [57]杨志峰,张远.河道生态环境需水研究方法比较[J].水动力学研究与进展(A辑),2003,03:294-301.
    [58]Khalid Karim, Maureen E. Gubbels, Ian C. Goulter. Review of Determination In stream Flow Requirements with Special Application to Australia, Water resources Bulletin American Water Resources Association,1995,31(6):1063-1077.
    [59]杜青辉.基于生态的辽河流域水库调度模式研究[D].华北水利水电学院,2012.
    [60]王西琴,刘昌明,杨志峰.生态及环境需水量研究进展与前瞻[J].水科学进展,2002,04:507-514.
    [61]王西琴.河流生态需水理论、方法与应用[M].第1版.北京:中国水利水电出版社,2007.
    [62]郝增超,尚松浩.基于栖息地模拟的河道生态需水量多目标评价方法及其应用 [J].水利学报,2008(5):557-561.
    [63]傅菁菁,芮建良,吴世东,等.基于环境的水库调度运行[C].水电2006国际研讨会.昆明,中国,2006:834-840.
    [64]Pavlov D S, Skorobogativ M A, Shtaf L G, Baryekian A S. The critical current velocity of fish and the degree of flow turbulence. Reports of theUSSR Academy of Sciences,1982,267:1019-1021.
    [65]Hinch S G, Rand P S. Optimal swimming speeds and forward-assisted propulsion: energy-conserving behaviours of upriver-migrating adult salmon. Canadian Journal of Fisheries and Aquatic Sciences,2000,57(12):2470-2478.
    [66]Smith D L, Brannon E L, Odeh M. Response of juvenile rainbow trout to turbulence produced by prismatoidal shapes. Transactions of the AmericanFisheries Society,2005,134(3):741-753.
    [67]邵奇,李萌,吴玉林,等.水力机械内鲤鱼草鱼的压力损伤模拟试验[J].工程热物理学报,2003,06:954-957.
    [68]王得祥.水流紊动对鱼类影响实验研究[D].河海大学,2007.
    [69]Garric J, Migeon B, Vindimian E. Lethal effects of draining on brown trout. A predictive model based on fieldand laboratory studies [J]. Water Research,1990, 24 (1):59-65.
    [71]Erich Staub. Effects of sediment flushing on fish and invertebrates in Swiss Alpine Rivers [C]//International Work shop and Symposium on Reservoir Sedimentation Management.Toyama City, Japan,2000:185-193.
    [73]Lazar Attila N, Butterfield Dan, Futter Martyn N. An assessment of the fine sediment dynamics in an upland riversystem:INCA-Sed modifications and implications for fisheries [J]. Science of The Total Environment,2010408 (12): 2555-2566.
    [74]Shrimpton J Mark, Zydlewski Joseph D, Heath John W. Effect of daily oscillation in temperature and increased suspended sediment on growth and smelting in juvenile chinook salmon, Oncorhychus tshawytscha [J]. Aquaculture,2007,273 (2-3): 269-276.
    [75]Huenemann T W, Dibble E D, Fleming J P. Influence of Turbidity on the Foraging of Largemouth Bass [J].Transactions of the American Fisheries Society,2012,141 (1):107-111.
    [76]Schwartz John S, Simon Andrew, Klimetz Lauren. Use of fish functional traits to associate in-stream suspended sediment transport metrics with biological impairment [J].Environmental Monitoring and Assessment,2011,179 (1-4):347-369.
    [77]Yi Yujun, Wang Zhaoyin, Yang Zhifeng. Two-dimensional habitat modeling of Chinese sturgeon spawning sites[J]. Ecological Modelling,2010,221 (5):864-875.
    [78]董耀华,汪秀丽.泥沙与河流水生生境[J].水利电力科技,2003(2):17-20.
    [79]陈兴茹,白音包力皋.水库排沙时期下泄水流水质与含沙量的相关关系[J].水利水电科技进展,2012(2):18-21.
    [80]王煜,戴会超.大型水库水温分层影响及防治措施[J].三峡大学学报(自然科学版),2009,06:11-14,28.
    [81]胡平,刘毅,唐忠敏等.水库水温数值预测方法[J].水利学报,2010,41(9):1045-1052.
    [82]王雅慧,李兰,卞俊杰.水库水温模拟研究综述[J].三峡环境与生态,2012,34(3):29-36.
    [83]刘兰芬,陈凯麒,张士杰,等.河流水电梯级开发水温累积影响研究[J].中国水利水电科学研究院学报,2007,5(3):173-180.
    [84]邓云,李嘉,李克锋,等.梯级电站水温累积影响研究[J].水科学进展,2008,19(2):273-279.
    [85]代荣霞,李兰,李允鲁.水温综合模型在漫湾水库水温计算中的应用[J].人民长江,2008,39(16):25-26.
    [86]郑江涛,王丽萍,周婷,等.怒江梯级水电开发对水温的影响及对策研究[J].水力发电,2012,38(8):1-3,21.
    [87]Wang Yuankun, Xia Ziqiang. Fuzzy Comprehensive Evaluation Model for Chinese Sturgeon Habitat Suitability in the Yangtze River [C]//Fuzzy Systems and Knowledge Discovery,2008. FSKD'08. Fifth International Conference, Shandong, China,2008:565-569.
    [88]班璇,李大美.葛洲规下游中华鲜产评场的多参数生态水文学模型[J].中国农村水利水电,2007(6):8-12.
    [89]班璇.中华鲟产卵栖息地的生态需水量[J].水利学报,2011,42(1):47-55.
    [90]李若男,陈求稳,吴世勇,等.模糊数学方法模拟水库运行影响下鱼类栖息地的变化[J].生态学报,2012,30(1):128-137.
    [91]杨宇.中华鲟葛洲坝栖息地水力特性研究[D].南京:河海大学,2007.
    [92]英晓明,崔树彬,刘俊勇,等.水生生物栖息地适宜性指标的模糊综合评判[J].东 北水利水电,2007,25(276):60-63,72.
    [93]工玉蓉,李嘉,李克峰,等.雅砻江锦屏二级水电站减水河段生态需水量研究[J].长江流域资源与环境,2007,16(1):81-85.
    [94]王锐,李嘉.引水式水电站减水河段的水温、流速及水深变化对鱼类产卵的影响分析[J].四川水力发电,2010(2):76-79.
    [95]王俊娜,李翀,段辛斌,等.基于遗传规划法识别影响鱼类丰度的关键环境因子[J].水利学报,2012,43(7):860-868.
    [96]The Council on Environmental Quality (CEQ), Considering cumulative effects under the national environmental policy act [Z].New York:CEQ,1997.
    [97]Burris R K, Larry W C. Cumulative impacts are not properly addressed in environmental assessment [J]. Environmental Impact Assessment Review,1997, 17:5-18.
    [98]Cooper T A, Canter L W. Documentation of cumulative impacts in environmental impact statements [J].Environmental Impact Assessment Review,1997,7:385-411.
    [99]杨宏.流域水电梯级开发累积环境影响评价研究[D].兰州:兰州大学,2007.
    [100]Canada Environmental Assessment Agency. Cumulative Effects Assessment Practitioners Guide [Z]. Ottawa:Canada Environmental Assessment Agency,1999.
    [101]叶兆木,邓力,李理.累积影响评价研究进展[J].四川环境,2006(4):99-102.
    [102]毛文峰,吴仁海.可持续发展与累积影响评价[J].环境导报,1997(5):1-3.
    [103]毛文锋,吴仁海.建议在我国开展累积影响评价的理论与实践研究[J].环境科学研究,1998(5):1 1-14.
    [104]毛文锋,吴仁海,张淑娟.地理信息系统在累积影响评价中的应用[J].环境科学进展,1998(6):62-67.
    [105]宗永臣,杨永红,金建立,等.基于AHP的巴河水电梯级开发累积环境影响评价研究[J].四川环境,2009(3):94-99.
    [106]侯保灯,朱晓旭,梁川.岷江上游典型河段水电梯级开发水环境累积影响[J].人民长江,2010(7):32-37.
    [107]吴贻名,张礼兵,万飚.系统动力学在累积环境影响评价中的应用研究[J].武汉水利电力大学学报,2000(1):70-73.
    [108]张细兵,卢金友,蔺秋生.长江中下游岸线利用对防洪累积影响初步研究[J].长江流域资源与环境,2011(9):1138-1142.
    [109]郑江涛,王丽萍,周婷,等.怒江梯级水电开发对水温的影响及对策研究[J].水力发电,2012(8):1-3,21.
    [110]李兰,武见.梯级水库三维环境流体动力学数值预测和水温分层与累积影响规律研究[J].水动力学研究与进展A辑,2010(2):155-164.
    [111]张洪波,黄强,张双虎.梯级水库运行对黄河上游水文条件的累积影响[J].河海大学学报(自然科学版),2011(2):137-142.
    [112]钟华平,刘恒,耿雷华.怒江水电梯级开发的生态环境累积效应[J].水电能源科学,2008(1):58-61,65.
    [113]裴厦,谢高地,鲁春霞,等.水利工程梯级开发对河流生态系统服务累积影响浅析——以猫跳河为例[J].资源科学,2011(8):1469-1474.
    [114]柳晓砹,李金文.李仙江流域梯级电站开发对生态环境的影响及防治措施[J].环境科学导刊,2007(2):71-74.
    [115]付鹏,陈凯麒,谢悦波,等.考虑社会影响的水利水电开发环境影响评价方法[J].水利学报,2009(8):1012-1018.
    [116]钟华平,刘恒,耿雷华.澜沧江流域梯级开发的生态环境累积效应[J].水利学报,2007(0):582-586.
    [117]梁瑞峰,邓云,脱友才,等.流域水电梯级开发水温累积影响特征分析[J].四川大学学报(工程科学版),2012(0):221-227.
    [118]杨丽虎,陈进,常福宣,等.梯级水库对生态系统基流的累积影响[J].武汉大学学报(工学版),2007(3):22-26.
    [119]周孝德,宋策,唐旺.黄河上游龙羊峡—刘家峡河段梯级水库群水温累积影响研究[J].西安理工大学学报,2012(1):1-7.
    [120]薛联芳,顾洪宾,崔磊,等.红水河干流梯级开发对水温累积影响的调查研究[J].水力发电,2010(11):5-8.
    [121]Wood E F. Bayesian approach to analyzing uncertainty among flood frequency models[J]. Water Resource Research,1975,11(6):839-843.
    [122]傅湘,王丽萍,纪昌明.洪灾风险评价通用模型系统的研究[J].长江流域资源与环境,2000,9(4):518-524.
    [123]储祥元.水力不确定模型研究[J].水利学报,1992,(5):33-38.
    [124]赵阿兴,马宗晋.自然灾害损失评估体系的研究[J].自然灾害学报,1993,2(3):1-7.
    [125]国家科委全国重大自然灾害综合研究组.中国重大自然灾害及减灾对策(分论)[M].北京:科学出版社,1993.
    [126]王劲峰.中国自然灾害影响评价方法研究[M].北京:中国科学技术出版社,1993,38-57.
    [127]中国灾害防御协会,国家地震震害防御司.中国减灾重大问题研究[M].北京:地震出版社,1992.
    [128]王华东,王飞.南水北调中线水源工程环境风险评价[J].北京师范大学学报(自 然科学版),1995,31(3):410-414.
    [129]纪昌明,张验科.基于随机模拟的水库泄洪风险分析[J].人民黄河,2009,31(5):36-37.
    [130]AlfredoH-S. Ang,Wilson H. Tang. Probability Concepts in Engineering Planning and Design,Volume II,Decision,Risk and Reliability[M], New York:John Wiky and Sons,1984.
    [131]Yazicigil, Hasan; Houck,Mark H.. Effects of risk and reliability on optimal reservoir design[J]. Water Resources Bulletin,1984,20(3):417-423.
    [132]LeeHan-Lin, Mays Larry W. Hydraulic uncertainties in flood levee capacity [J] Journal of Hydraulic Engineering,1986,112(10):928-934.
    [133]O.Levin. Optimal control of a storage reservoir during a flood season [J].Automatic, 1969,5(1):27-34.
    [134]Warren A. Hall, David T. Howell. The optimization of single-purpose reservoir design with the application of dynamic programming to synthetic hydrology samples[J], Journal of Hydrology,1963,1(4):355-363.
    [135]Valadares Tavares L.. Firm outflow from multiannual reservoirs with skew and autocorrelated inflows[J]. Journal of Hydrology,1978,38(1-2):93-112.
    [136]L.V. Tavares, J. Kelman. A method to optimize the flood retention capacity for a multi-purpose reservoir in terms of the accepted risk[J]. Journal of Hydrology,1985,81(l-2):127-135.
    [137]Tongtiegang Zhao,Ximing Cai,Dawen Yang. Effect of streamflow forecast uncertainty on real-time reservoir operation [J]. Advances in Water Resources, 2011,34(4):495-504.
    [138]Chun-Tian Cheng, K.W.Chau. Flood control management system for reservoirs[J]. Environmental Modelling & Software,2004,19(12):1141-1150.
    [139]Chia-Ling Chang,Chung-Hsin Hsu. Multi-criteria analysis via the VIKOR method for prioritizing land-use restraint strategies in the Tseng-Wen reservoir watershed [J]. Journal of Environmental Management,2009,90(11):3226-3230.
    [140]Ben Abdelaziz Foued, Mejri Sameh. Application of goal programming in a multi-objective reservoir operation model in Tunisia[J]. European Journal of Operational Research,2001,133(2):352-361.
    [141]Li-Chiu Chang, Fi-John Chang.Multi-objective evolutionary algorithm for operating parallel reservoir system [J]. Journal of Hydrology,2009,377(1-2):12-20.
    [142]Cheng Chuntian, K. W. Chau. Three-person multi-objective conflict decision in reservoir flood control [J]. European Journal of Operational Research,2002,142(3): 625-631.
    [143]Chun-Tian Cheng, Ming-Yan Zhao,K.W. Chau, et al. Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure [J] Journal of Hydrology,2006,316, (1-4):129-140.
    [144]Ni-Bin Chang,C.G. Wen, Y.L. Chen. A fuzzy multi-objective programming approach for optimal management of the reservoir watershed [J]. European Journal of Operational Research,1997,99(2):289-302.
    [145]胡振鹏,冯尚友.综合利用水库防洪与兴利矛盾的多目标风险分析[J].武汉水利电力学院学报,1989,22(1):71-79.
    [146]李万绪.水电站水库运用的风险调度方法[J].水利水电技术,1997,28(3):34-38,46.
    [147]徐向阳,戴国荣.大中型水库洪水风险分析与制图[J].水利管理技术,1998,18(1):7-10.
    [148]田峰巍,解建仓,王新宏,等.水库调度决策中的风险及其传递计算方法[J].西安理工大学学报,1998,14(1):13-17.
    [149]黄强,沈晋,李文芳,等.水库调度的风险管理模式[J].西安理工大学学报,1998,14(3):230-235.
    [150]黄强,苗隆德,王增发.水库调度中的风险分析及决策方法[J].西安理工大学学报,1999,15(4):6-10.
    [151]田峰巍,黄强,解建仓.水库实施调度及风险决策[J].水利学报,1998,(、3):57-62.
    [152]李继清,张玉山,王丽萍,等.基于集对分析理论的水电站中长期风险调度问题研究[J].水文,2006,26(4):21-26.
    [153]王丽萍,郑江涛,周晓蔚,等.水电梯级开发对生态承载力影响的研究[J].水力发电学报,2011,30(1):12-16,23.
    [154]赵建民,李靖,黄良,等.三峡工程对长江流域生态承载力影响的初步分析[J].水力发电学报,2008,27(05):130-134,152.
    [155]Paulo Pinho et al. The Quality of Portuguese Environmental Impact Studies:the Case of Small Hydropower Projects[J]. Environmental Impact Assessment Review, 2007,27(3):189-205.
    [156]王丽萍,郑江涛,周晓蔚,等.山区河流可持续发展能力评价研究[J].水利学报,2012,43(6):726-733.
    [157]CHEN Shao-qing et al. Ecological Risk Assessment of Hydropower Dam Construction Based on Ecological Network Analysis[J]. Procedia Environmental Sciences,2010(2):725-728.
    [158]黄小雪,姜跃良,蒋红,等.流域梯级开发中河道生态环境需水量研究[J].水力发电学报,2007,26(03):110-114.
    [159]EPA(US Environmental Protection Agency). Framework for ecological risk assessment. EPA/630/R-92/001.
    [160]Wang Liping,Huang Haitao,Shi jia,et al. Terrestrial ecological risk assessment model of Nuozhadu reservoir.2013 International Conference on Renewable Energy and Environmental Technology. Jilin, China.2014,838-845.
    [161]殷浩文.生态风险评价[M].上海:华东理工大学出版社,2001.
    [162]邹云鹏.大型水利水电工程的生态风险研究[D].广西:广西大学,2006.
    [163]汤鑫华.论水力发电对生态环境的影响[J].水电与新能源,2010(5):67-73.
    [164]水利水电工程施工对生态环境影响及保护对策浅析.http://www.zgsyzzs.cn/Article/HTML/919.html
    [165]祁继英,阮晓红.大坝对河流生态系统的环境影响分析[J].河海大学学报(自然科学版),2005(1):37-40.
    [166]刘胜祥,等.水利水电工程生态环境影响评价技术研究[M].北京:中国环境科学出版社,2003.
    [167]柳晓砹,李金文.李仙江流域梯级电站开发对生态环境的影响及防治措施[J].环境科学导刊,2007(2):69-72.
    [168]聂青,陈星.南湖荡滨水区生态风险评价研究[J].水电能源科学,2011,29(7):22-24.
    [169]Landis W.G., Weigers J.A.. Design considerational a suggested approach for regional and comparative ecological risk assessment. Human and Eeoiogical Risk Assessment,1997,3:287-297.
    [170]田艳.黄山风景区生态风险分析与评价研究[D].安徽:安徽师范大学,2010
    [171]阳文锐,王如松,黄锦楼,等.生态风险评价及研究进展[J].应用生态学报,2007(8):191-198.
    [172]SHI Xiaoqing, ZHAO Jingzhu, OUYANG Zhiyun. Assessment of eco-security in the Knowledge Gride-science environment [J].The Journal of System and Software, 2006,79:246-252.
    [173]袁喜,李丽萍,涂志英,等.鱼类生理和生态行为对河流生态因子响应研究进展[J].长江流域资源与环境,2012,(1):24-29.
    [174]贾敬德.长江渔业生态环境变化的影响因素[J].中国水产科学,1999,(2):113-115.
    [175]朱江译,贾志云.淡水生物多样性危机[J].世界白然保护联盟通讯(1UCU),1999,(4):3-4.
    [176]邹淑珍,吴志强,胡茂林,等.水利枢纽对河流生态系统的影响[J].安徽农业科学,2010,22:11923-11925.
    [177]杨宏.流域水电梯级开发累积环境影响评价研究[D].兰州:兰州大学,2007.
    [178]Whittaker RH.Evolution and measurement of species diversity. Taxon, 1972, 21:213-251.
    [179]Peet R K.The measurement of species diversity. Ann. Rey. Eeol. System,1974, 5:285-307.
    [180]Simpson E H. Measurement of diversity. Nature,1949,163,688.
    [181]Pielou E C. Ecological diversity. John Wiley and Sons Inc,1975.
    [182]蒋艳,冯顺新,马巍,等.金沙江下游梯级水电开发对鱼类影响的分析[C].水力学与水利信息学进展,2009.西安,中国,2009:63-69.
    [183]杨琼.水利工程对水体生态系统的影响[J].西藏科技,2007,05:30-33.
    [184]Berkam P.G. McCartney, M., Dugan, petal.2000.Dams, ecosystem functions and environmental restoration, Thematic Review 11.1 Prepared as an input to the World Commission on Dams, Cape Town [OL].www.dams.org.
    [185]白音包力皋,许凤冉,陈兴茹,等.小浪底水库排沙对下游鱼类的影响研究[J].水利学报,2012,10:1146-1153.
    [186]Sandra Postel Brian Richter.河流生命一为人类社会自然管理用水[M].武会先,王万战,宋学东译.郑州:黄河水利出版社,2005.
    [187]CarothersW, BryanT. Brown. The Colorado River Through Grand Canyonp[M]. Natural History and Human Charge, Tueson:University of Arizona Press,1991.
    [188]骆辉煌,李倩,李种.金沙江下游梯级开发对长江上游保护区鱼类繁殖的水温影响[J].中国水利水电科学研究院学报,2012,04:256-259,266.
    [189]王俊娜,董哲仁,廖文根,等.基于水文-生态响应关系的环境水流评估方法——以三峡水库及其坝下河段为例[J].中国科学:技术科学,2013,(6):715-726.
    [190]蔡玉鹏.大型水利工程对长江中下游关键生态功能区影响研究[D].河海大学,2007.
    [191]许思思.人为影响下渤海渔业资源的衰退机制[D].北京:中国科学院研究生院(海洋研究所),2011.
    [192]李若男,陈求稳,吴世勇等.模糊数学方法模拟水库运行影响下鱼类栖息地的变化[J].生态学报,2012,30(1):128-137.
    [193]刘稳,诸葛亦斯,欧阳丽,等.水动力学条件对鱼类生长影响的试验研究[J].水科学进展,2009,6(3):812-817.
    [194]朱晏苹,曹振东,付世建.不同游泳速度条件下瓦氏黄颡幼鱼的有氧和无氧代谢反应[J].水生生物学报,2010,34(5):905-912.
    [195]李嘉,王玉蓉,李克锋,等.计算河段最小生态需水的生态水力学法[J].水利学报,2006(10):17-22.
    [196]余国安,王兆印,刘乐,等.新构造运动影响下的雅鲁藏布江水系发育和河流地貌特征[J].水科学进展,2012(2):19-25.
    [197]易雨君,程曦,周静.栖息地适宜度评价方法研究进展[J].生态环境学报,2013(5):163-169.
    [198]Bovee K D. Guide to stream habitat analysis using the instream flow incrementalmethodology[R]. Washington D C:USDI Fish and Wildlife Service, 1982.
    [199]Schramm H L, Eggleton M A. Applicability of the flood-pulse concept in a temperate floodplain river ecosystem:thermal and temporal components [J]. River research and application,2006,22 (5):543-553.
    [200]赵新昱,陈文伟,牛晓丽.遗传算法和遗传规划对比研究[J].系统工程与电子技术,2000,22(12):84-87.
    [201]Koza J R. Genetic Programming II:Auto matic Discovery of Rcusable Programs.MIT Press,1994.
    [202]Koza, John R. Gentic Programming:A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems[M].Stanford University Computer Science Department Technical Report STANCS-90-1314.1990.
    [203]夏炎.遗传规划理论及其在符号回归中的应用[D].上海:上海交通大学,2007.
    [204]岳建平,李珂等.大坝安全监控遗传规划模型的改进[J].河南科学,2004,22(1):92-95.
    [205]牛爱光,王惠文.遗传规划的改进算法[J].运筹与管理,2007,16(1):67-70.
    [206]狄为民,王梅杰.基于遗传规划的相关关系预测方法研究[J].河南科学,2004,22(1):92-95.
    [207]王战权,云庆夏,杨东媛.改进的遗传规划研究[J].系统工程理论与实践,2000,(5):66-69.
    [208]李丽娜.累积环境影响评价指标体系研究[D].北京:中国环境科学研究院,2003.
    [209]赵万里,王瑞莲.基于模糊主成分分析的水库正常蓄水位优选法[J].水电能源科学,2013,(2):74-76,94.
    [210]戚蓝.模糊综合评判水工建筑物对生态环境的影响[J].中国农村水利水电,2003,(3):55-56.
    [211]李朝霞,牛文娟.水电梯级开发对生态环境影响评价模型与应用[J].水力发电学报,2009,(2):35-40,34.
    [212]钟华平,刘恒,耿雷华.澜沧江流域梯级开发的生态环境累积效应[J].水利学报,2007,(0):582-586.
    [213]陈丽晖,何大明.澜沧江-湄公河水电梯级开发的生态影响[J].地理学报,2000(5):577-586.
    [214]水电水利规划设计总院.澜沧江中下游梯级电站环境影响研究和评价报告[J].北京,2010:145-146.
    [215]张静波,张洪泉.流域梯级开发的综合环境效应[J].水资源保护,1996(3):30-31,35.
    [216]姚维科,崔保山,董世魁,等.水电工程干扰下澜沧江典型段的水温时空特征[J].环境科学学报,2006(6):1031-1037.
    [217]郑江涛,王丽萍,周婷,等.基于MIKE平台的水电工程对水温影响预测评价[J].人民长江,2012,43(7):63-66.
    [218]郑江涛,王丽萍,周婷,等.怒江梯级水电开发对水温的影响及其对策研究[J].水力发电,2012,38(8):1-3,21.
    [219]郑江涛,王丽萍,周婷,等.怒江梯级水电开发对水温的影响及其对策研究[J].水力发电,2012,38(8):1-3,21
    [220]李克飞.水库调度多目标决策与风险分析方法研究[D].北京:华北电力大学,2013.
    [221]王丽萍,黄海涛,张验科,等.梯级水库群联合防洪调度风险估计模型[J].中国农村水利水电,2014,40(3):69-72,76.
    [222]刘丹,王丽萍.陆浑水库的综合利用调度研究[J].武汉水利电力大学学报,2000,33(1):24-28.
    [223]陈珽.决策分析[M].北京:科学出版社,1987.
    [224]曹广晶,蔡治国.三峡水库综合调度管理综述[J].中国三峡建设[科技版],2008,39(2):1-5.
    [225]黄海涛,王丽萍,喻杉,等.梯级水电站水库群调度函数优化模型研究[J].人民长江,2013,44(23):67-69,72.
    [226]张验科.综合利用水库调度风险分析理论与方法研究[D].北京:华北电力大学,2012.
    [227]王丽萍,张验科,纪昌明,等.模拟最大熵法及其在水库泄洪风险计算中的应用[J].水利学报,2011,42(1):27-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700