用户名: 密码: 验证码:
基于实际井眼轨迹的钻柱动力学特性有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油钻井过程中钻柱的振动不可避免。剧烈的钻柱振动不仅会降低钻井效率,还会引发钻柱失效事故,增加钻井成本。国内外对钻柱失效的研究已经很多,但主要集中在改善钻柱的结构和材质方面。直到上世纪末,国外Baker Hughes、Schlumberger公司才在钻柱动力学特性研究方面取得突破性进展,并在钻柱振动和失效控制方面得到应用,获得了明显的经济效益。国内在这方面的研究起步较晚,理论研究相对落后,工程应用方面差距更大。因此,开展具有实用价值的钻柱非线性动力学特性研究对保障我国深井、超深井钻柱的安全性十分重要。
     有限元法广泛应用于钻柱动力学分析已达数十年,但仍旧局限于直梁单元和平面圆弧曲梁单元。对于三维弯曲井眼中钻柱的动力学特性分析,采用直梁单元和平面圆弧曲梁单元,其计算精度低、耗时长,全井钻柱,尤其是深井、超深井全井钻柱动力学特性计算更加困难,而运用空间曲梁单元来进行钻柱动力学特性的研究目前未见报道。而且,目前的研究中大都只给出了钻柱的变形、涡动轨迹、涡动速度等信息,而“钻柱的动态安全性评价”这一石油钻井工程师十分关心的问题则很少涉及。本文以了解和掌握井下钻柱的运动状态、减少钻柱失效事故、提高钻柱的安全可靠性为目标,应用空间曲梁有限元方法开展了基于实际井眼轨迹的钻柱动力学特性研究,开发了专用仿真计算程序,提出了钻柱的动态安全性评价方法。主要工作如下:
     1)建立了以空间曲梁单元为基础的钻柱动力学有限元分析模型,并利用该模型仿真计算了实际井眼轨迹条件下钻柱的动力学特性。
     2)提出了一种改进的有限元节点迭代方法,其不但能够求解直梁单元的钻柱动力学模型又能够求解空间曲梁单元的钻柱动力学模型。同时,验证了直梁单元、空间曲梁单元模型的可靠性,考察了直梁单元、空间曲梁单元的适用范围及其有效性。在此基础上开发了钻柱动力学特性仿真程序DDCS(Drillstring Dynamic Characteristics Simulation System),并利用理论算例和工程实测结果,验证了基于空间曲梁单元的钻柱动力学模型和DDCS的正确性。
     3)运用DDCS分析了全井钻柱的动力学特性,包括钻柱的涡动轨迹和涡动速度、钻柱的横向振动和轴向振动水平等;成功模拟了典型的钻柱运动现象——粘滑运动,分析了添加减振器前后钻柱轴向振动水平、轴向位移、轴向作用力的变化情况,从工程实例角度验证了基于空间曲梁单元的钻柱动力学模型和DDCS的正确性。
     4)分析了带铝合金钻杆钻柱的动力学特性,合理解释了铝合金钻杆容易产生划痕、压痕的原因,比较了钢质钻杆、铝合金钻杆动力学特性的异同,得出“含铝合金钻杆的钻柱更适宜采用井下动力驱动方式工作”的重要结论。
     5)实现了长度超过7000m的超深井钻柱的动力学特性的仿真计算,给出了钻柱的涡动轨迹、涡动速度和加速度等特性,研究了钻压、转速对钻柱动力学特性的影响规律。
     6)从钻柱动力学特性和第四强度理论出发,提出了钻柱的动态安全性评价方法——动态安全系数法。考虑钻柱与井壁的接触、碰撞作用等动态因素与静载水平,给出了钻柱的动态安全性评价标准,并以塔里木油田DB3井为例,分析了钻柱的动态安全状况并推荐了合理的转速、钻压范围。
During drilling operations, drillstring vibrations occur frequently and can’t be avoided completely, which not only reduce the rate of penetration and the longevity of down-hole tool, but also result in drillstring failure. Many research works have been carried out on preventing drillstring failure, but were mainly focused on the structure and material of drillstring. Up to the end of the 20th century, break-through in the field of dynamics had been achieved by some overseas companies, such as Baker Hughes, Schlumberger, et al., to prevent the drillstring vibrations and failure, and a great deal of profit have been obtained. However, limited relevant studies and practical vibration control methods associated with drillstring dynamics are reported in China, so the study of drillstring dynamic characteristics has practical value to ensure the safety of drillstring in deep and ultra-deep oilwell.
     Although the finite element method has been widely utilized in dynamic analysis of drillstring for decades, it was limited in straight beam element and two-dimensional arc curved beam element. When they are used to analyze dynamic characteristics of drillstring in 3D-curved wellbore, a long time will be taken, and, thus, both?accuracy and efficiency of calculation are decreased. All of these make the dynamic characteristics analysis of drillstring in whole borehole difficult, especially for the drillstring of deep and ultra-deep well. An effective method which uses spatial curved beam element to analyze the drillstring dynamic characteristics in 3D-curved wellbore has not been reported yet. Furthermore, evaluation of drillstring dynamic safety has become a major concern of drilling engineers, but it is rarely studied by scholars. In order to understand the motion of downhole drillstring, minimize the drillstring failure and ensure the safety and reliability of drillstring, the spatial curved beam finite element method has been studied and a simulation program has been developed. At the same time, evaluation method of drillstring dynamic safety was studied in this thesis. The main contributions are summarized as follows:
     First, based on the spatial curved beam element, a new model of drillstring dynamics was proposed to analyze the dynamic characteristics of drillstring with double nonlinearity based on actual well path.
     Second, an optimized iterative method has been used to solve the nonlinear dynamics of drillstring effectively, which is compatible with straight beam element and spatial curved beam element. The adaptability and reliability of straight beam element and spatial curved beam element have been studied. Based on the new dynamic model and the optimized computation method, the simulation software DDCS (Drillstring Dynamic Characteristics Simulation System) has been developed, and the simulation results are consistent with the analytical as well as measurement data, which validated the model and the computation method.
     Third, the dynamic characteristics of drillstring in whole borehole, including whirl, lateral vibration and axial vibration, were analyzed by DDCS. Case studies on both stick-slip motion and dynamic characteristics analysis with and without vibration absorber were presented, and then the model and DDCS were then validated practically.
     Fourth, an analysis of dynamic characteristics of drillstring with aluminum alloy drill pipes was carried out. The differences between the dynamic characteristics of steel and aluminum alloy drill pipes were also obtained. The reasonable explanation was presented why aluminum alloy drill pipe is easy to scratch and indentation damage on its surface, and an important conclusion was summarized that aluminum alloy drill pipes prefer to be driven by power equipment at bottom hole.
     Fifth, the dynamic characteristics, the whirl orbit ,whirl speed and acceleration, et al., of drillstring over 7,000 meters long in the ultra-deep well was simulated successfully with DDCS, and, the effects of WOB (weight on bit) and rotary speed on the dynamic characteristics were obtained.
     Finally, in view of the contact and collision between drillstring and wellbore as well as the static stress of drillstring, a evaluation model of drillstring dynamic safety was firstly established based on drillstring dynamic characteristics and the fourth strength theory. Case study on dynamic safety of drillstring of DB3 well in Tarim Oilfield was made, and the reasonable rotary speed and WOB were presented.
引文
[1].狄勤丰,张绍槐.井下闭环钻井系统的研究与开发[J].石油钻探技术, 1997, 25(2): 56-59.
    [2].石油管材研究中心失效分析研究室. 1988年全国油田钻具失效情况调查报告[C]//石油专用管论文集.西安:陕西科技出版社, 1993.
    [3]. Sweet R G. Case history of drillstem failures offshore West Africa [J]. SPE Drilling Engineering, 1992, 7(1): 55-58.
    [4].高长福,范斌,张庆昌等.钻杆失效分析与可靠性探讨[J].石油工业技术监督, 2007, (10): 47-51.
    [5].王希勇,王长,熊继有等. 2005年塔里木油田钻具刺漏失效分析[J].河南石油, 2006, 20(1): 69-70.
    [6].徐鸿志.空气钻井条件下钻柱振动特性研究[D].东营:中国石油大学, 2009.
    [7]. Martin Hayes. Shocks & vibrations: A cause of drillstem failure [R]. http://www.slb.com/~/media/Files/drilling/brochures/mwd/drilling_dynamics_sensors_opt_br.ashx
    [8].苏华,张学鸿,王光远.钻柱力学发展综述之三:钻柱动力学[J].大庆石油学院学报, 1994, 18(3): 45-53.
    [9].胡以宝,狄勤丰,邹海洋等.钻柱动力学研究及监控技术新进展[J].石油钻探技术,2006, 34(6): 7-10.
    [10].狄勤丰,王文昌,胡以宝等.钻柱动力学研究及应用进展[J].天然气工业, 2006, 26 (4): 57-59.
    [11].李子丰,梁尔国.钻柱力学研究现状及进展[J].石油钻采技术, 2008, 30(2): 1-9.
    [12]. Lubinski A. A study of the buckling of rotary drilling string [J]. Drilling and Production Practice, 1950, 178-214.
    [13]. Lubinski, A, Woods, H B. Factors affecting the angle of inclination and dog—legging in rotary bore hole [J]. Drilling and Production Practice, 1953, 222-242.
    [14]. Woods H B, Lubinski A. Practical chart for solving problems on hole deviation [R]. American Petroleum Institute Drilling and Production Practice, 1954.
    [15]. Lubinski A. Maximum permissible dog—legs in rotary boreholes [J]. Journal of Petroleum Technology, 1961, 13(2):175-194.
    [16]. Williamson J S, Lubinski A. Prediction bottom hole assembly performance [R]. IADC/SPE 14764, 1987.
    [17]. Finnie I, Bailey J J. An experimental study of drill string vibration [J]. Journal of Engineering for Industry-Transactions of the ASME, 1960, 82(13): 117-121.
    [18]. Bailey J J, Finnie I. An analytical study of drill string vibration [J]. Journal of Engineering for Industry-Transactions of the ASME, 1960, 82(13): 122-128.
    [19]. Paslay P R, Bogy D B. Drill string vibrations due to intermittent contact of bit teeth [J]. Journal of Engineering for Industry-Transactions of the ASME, 1963, 85(5): 110-115.
    [20]. Dareing D W, Livesay B H. Longitudinal and angular drill string vibrations with damping[C]. The petroleum mechanical engineering and first pressure vessel and piping conference, Texas, 1968.
    [21]. Huang T, Dareing D W. Buckling and lateral vibration of drill pipe [J]. Journal of Engineering for Industry-Transactions of the ASME, 1968, 90(13): 130-136.
    [22]. Huang T, Dareing D W. Buckling and frequencies of long vertical pipes [J]. Journal of the Engineering Mechanics Division, 1969, 95(3): 52-61.
    [23]. Millheim K K, Apostal M C. The effect of bottom hole assembly dynamics on the trajectory of a bit [J]. Journal of Petroleum Technology, 1981, 33(12): 2323-2338.
    [24]. Millheim K K, Apostal M C. How BHA dynamics affect bit trajectory [J]. World Oil, 1981, 92(6): 183-205.
    [25]. Millheim K K. Computer simulation of the directional drilling process [R]. IADC/SPE 9990, 1982.
    [26]. Dunayevsky V A, Judzis A, Mills W H. Onset of drillstring precession in a directional borehole [R]. IADC/SPE 13027, 1984.
    [27]. Dunayevsky V A, Abbassian Fereldoun, Judzis Arnis. Dynamic stability of drillstringsunder fluctuating weight on bit [R]. IADC/SPE 14329, 1993.
    [28]. Baird J A, Jordan Apostal, Caskey B C, et al. GEODYN2: A bottomhole assembly/geological formation dynamic interaction computer program [R]. IADC/SPE 14328, 1985.
    [29]. Besaisow A A, Payne M L. A study of excitation mechanisms and resonances inducing BHA vibrations [J]. SPE Drilling Engineering/SPE15560, 1988, 3(1): 93-101.
    [30]. Mohammad M Eltrissi. Additional parameters for better vibration control [R]. IADC/SPE 125457, 2009.
    [31]. Mitchell R F, Allen M B. Case studies of BHA vibration failure [R]. IADC/SPE 16675, 1987.
    [32]. Skaugen E. The effects of quasi-random drill bit vibrations upon drillstring dynamic behavior [R]. IADC/SPE 16660, 1987.
    [33]. Birades M. Static and dynamic three-dimensional bottomhole assembly computer models [J]. IADC/SPE 15466, 1988, 3(2): 160-166.
    [34]. Brakel J D, Azar J J. Prediction of wellbore trajectory considering bottomhole assembly and drill-bit dynamics [J]. SPE Drilling Engineering, 1989, 4(2):109-118.
    [35]. Clayer F, Vandiver J K, Lee H Y. The effect of surface and downhole boundary conditions on the vibration of drillstrings [R]. IADC/SPE 20447, 1990.
    [36]. Apostal M C, Haduch G A, Williams J B. A study to determine the effect of damping on finite-element-based forced-frequency-response models for bottomhole assembly vibration analysis [R]. IADC/SPE 20458, 1990.
    [37]. Jansen J D. Whirl and chaotic motion of stabilized drill collars [J]. SPE Drilling Engineering/SPE 20930, 1992, 7(2): 107-114.
    [38]. Jansen J D. Non-linear rotor dynamics as applied to oilwell drillstring vibrations [J]. Journal of Sound and Vibration, 1991, 147(1): 115-135.
    [39]. Yigit A S, Christoforou A P. Coupled axial and transverse vibrations of oilwell drillstrings [J]. Journal of Sound and Vibration, 1996, 154(4): 617-627.
    [40]. Christoforou A P, Yigit A S. Dynamic modeling of rotating drillstrings with boreholeinteractions [J]. Journal of Sound and Vibration, 1997, 206(2): 243-260.
    [41]. Choura S, Yigit A S. Control of a two-link rigid-flexible manipulator with a moving payload mass [J]. Journal of Sound and Vibration, 2001, 243(5): 883-897.
    [42]. Christoforou A P, Yigit A S. Fully coupled vibrations of actively controlled drillstrings [J]. Journal of Sound and Vibration, 2003, (267): 1029-1045.
    [43]. Tucker R W, Wang C. An integrated model for drill-string dynamics [J]. Journal of sound and vibration, 1999, 224(1): 123-165.
    [44]. Tucker R W, Wang C. Torsional vibration control and cosserat dynamics of a drill-rig assembly [J]. Meccanica, 2003, 38: 143-159.
    [45]. Van de Vrande B L, Campen D H Van, A de Kraker. An approximate analysis of dry-friction-induced stick-slip vibrations by a smoothing procedure [J]. Nonlinear Dynamics, 1999, 19(2): 157–169.
    [46]. Chen S L, Blackwood K, Lamine E. Field investigation of the effects of stick-slip, lateral, and whirl vibrations on roller cone bit performance[R]. IADC/SPE 56439, 1999.
    [47]. Heisig G, Neubert M. Lateral drillstring vibrations in extended-reach wells [J]. IADC/SPE 59235, 2000.
    [48]. Baumgart A. Stick-slip and bit-bounce of deep-hole drillstrings [J]. Jouranal of energy resources technology, 2000, 122: 78-82.
    [49]. Arnaud Michel Chevallier. Nonlinear stochastic drilling vibrations [D]. Taxes: Rice University, 2000.
    [50]. Nikolaos P Politis. An approach for efficient analysis of drill-string random vibrations [D]. Taxes: Rice University, 2002.
    [51]. Pushkar N Jogi, John D Macpherson, Michael Neubert. Field verification of model-derived natural frequencies of a drill string [J]. Journal of Energy Resources Technology, 2002, 124: 154-162.
    [52]. Han-Il Park, Dong-Ho Jung .A finite element method for dynamic analysis of long slender marine structures under combined parametric and forcing excitations [J]. Ocean Engineering, 2002: 131-1325.
    [53]. Hayat Melakhessou, Alain Berlioz, Guy Ferraris. A nonlinear well-drillstring interaction model [J]. Journal Vibration and Acoustics, 2003, 125(1): 46-52.
    [54]. Bernd Schmalhorst, Michael Neubert. Dynamic modeling software [C]. AADE Technical Conference, 2003, AADE-03-NTCE-53.
    [55]. Bulent Yardimoglu, Daniel J Inman. Coupled bending-bending-torsion vibration of a pre-twisted beam with aerofoil cross-section by the finite element method [J]. Shock and Vibration, 2003, 10: 223–230.
    [56]. Trindade M A, Wolter C, Sampaio R. Karhunen–Loève decomposition of coupled axial/bending vibrations of beams subject to impacts [J]. Journal of Sound and Vibration, 2005, 279(3): 1015-1036.
    [57]. Samuel G Robello, Schottle G, Gupta D B. Vibration analysis, model prediction, and advoidance: a case history [R]. IADC/SPE 102134, 2006.
    [58]. Aslaksen H, Annand M, Duncan R, et al. Integrated FEA modeling offers system approach to drillstring optimization [R]. IADC/SPE 99018, 2006.
    [59]. Daniel Perez, Russ Lockley, Alan J Clarke, et al. Application of small vibration logging tool yields improved dynamic drilling performance [J]. IADC/SPE 105898, 2007.
    [60]. Khulief Y A, Al-Sulaiman F A, Bashmal S. Vibration analysis of drillstrings with self-excited stick-slip oscillations [J]. Journal of Sound and Vibration, 2007: 540-558.
    [61]. Gao Guohua, Miska Stefan. Dynamic buckling and snaking motion of rotating drilling pipe in a horizontal well [R]. IADC/SPE 113883, 2008.
    [62]. Shiau T N, Huang K H, Wang F C, et al. Dynamic response of a rotating multi-pan shaft with general boundary conditions subjected to a moving load [J]. Journal of Sound and Vibration, 2009, 323:1045-1060.
    [63]. Ritto T G, Soize C, Sampaio R. Non-linear dynamics of a drill-string with uncertain model of the bit–rock interaction [J]. International Journal of Non-Linear Mechanics, 2009, 44: 865-876.
    [64]. Hakimi H, Moradi S. Drillstring vibration analysis using differential quadrature method [J]. Journal of Petroleum Science and Engineering, 2010, 70(3), 235-242.
    [65]. Dykstra M W, Chen D C-K, Warren T M, et al. Drillstring component mass imbalance a major source of downhole vibrations [R]. IADC/SPE 29350, 1996.
    [66]. Dykstra M W, Neubert M, Hanson J M, et al. Improving drilling performance by applying advanced dynamics Models [R]. IADC/SPE 67697, 2001.
    [67].署恒木,吕英民,蔡强康.有限元法在底部钻具组合动态分析中的应用[J].石油大学学报, 1990, 14(6): 54-61.
    [68].署恒木,吕英民,蔡强康.下部钻具组合的动态分析[J].石油学报, 1992, 13(1): 108-117.
    [69].帅健,蔡强康,吕英民.弯曲井眼中下部钻具组合的有限元分析[J].石油学报, 1990, 11(4): 95-105.
    [70].帅健,吕英民,蔡强康.全井中钻柱的有限元模型及应用[J].石油学报, 1995, 16(1): 118-126.
    [71].苏义脑,白家祉.用纵横弯曲法对弯接头——井下动力钻具组合的三维分析[J].石油学报, 1991, 12(3): 110-120.
    [72].张学鸿,陈抡元,刘巨保.整体钻柱力学接触有限元分析[J].石油学报, 1992, 13(3): 102-108.
    [73].王珍应,潘欣,马德坤.底部钻具组合性能分析的传递矩阵方法[J].石油机械, 1994, 22(4): 16-21.
    [74].王珍应,林建,施太和等.钻柱轴向振动仿真与井底状态检测方法探讨[J].石油机械, 2001, 29(6): 43-51.
    [75].章扬烈,肖载阳.自激横振下单根钻杆的振动与应力分析[J].石油机械, 1993. 21(7): 15-21.
    [76].章扬烈.钻柱运动学与动力学[M].北京:石油工业出版社, 2001.
    [77].屈展.石油钻柱振动问题的力学机理分析与计算[D].四川:西南石油学院, 1994.
    [78].刘延强,吕英民.环空钻柱结构三维非线性分析[J].应用数学和力学, 1994, 15(3): 259-272.
    [79].刘延强.环空钻柱三维二重非线性动力学问题的研究[J].力学学报, 1998, 30(1): 96-103.
    [80].高宝奎,高德利.深井钻柱的横向振动浅论[J].石油钻采工艺, 1996, 18(4): 8-14.
    [81].刘巨保,张学鸿,孙超等.水平井钻柱受力变形分析的曲梁单元[J].天然气工业, 1996, 16(6): 38-40.
    [82]. Liu Jubao, Ding Haojiang, Zhang Xuehong. Application of gap element to nonlinear mechanics analysis of drillstring [J]. Journal of Zhejiang University Science, 2002, 3(4): 440-444.
    [83].罗敏.管道内旋转细长梁固液耦合动力学分析[D].黑龙江:大庆石油学院, 2009.
    [84].罗敏,刘巨保.用Newmark法求解旋转细长梁的影响因素分析[J].大庆石油学院学报, 2003, 27(1): 66-69.
    [85].刘巨保,罗敏.井筒内旋转管柱动力学分析[J].力学与实践, 2005, 27(4): 39-41.
    [86].张学鸿,刘巨保.水平井钻柱接触问题的间隙元法[J].计算结构力学及其应用, 1992, 9(4): 405-410.
    [87].焦永树.石油钻井工程中钻柱的静力学分岔研究与混沌运动分析[J].天津:天津大学, 1998.
    [88].焦永树,蔡宗熙,严宗达.井孔约束下水平井段钻柱的混沌运动[J].固体力学学报, 2001, 22(1): 64-68.
    [89].孔凡忠,吕英民,底部钻具组合三维静力分析的新方法[J].石油大学学报, 1999, 13(1): 55-58.
    [90].孔凡忠,郑小平,姚振汉.底部钻具组合的二重非线性有限元分析[J].工程力学, 2000, 17(6): 32-40.
    [91].刘清友,马德坤,钟青.钻柱扭转振动模型的建立及求解[J].石油学报, 2000, 21(2): 78-82.
    [92].祝效华,刘清友,童华.三维井眼全井钻柱系统动力学模型研究[J].石油学报, 2008, 29(2): 289-295.
    [93].庞东晓,刘清友,孟庆华等.三维弯曲井眼钻柱接触非线性问题求解方法[J].石油学报, 2009, 30(1): 122-124.
    [94].殷朝阳,王光远.钻柱动力学有限元分析及室内轴向实验结果对比[J].哈尔滨建筑大学学报, 2000 ,33(3): 6-10.
    [95].石晓兵,施太和.弯曲井眼内下部钻柱失效[J].西南石油学院学报, 2001, 23(5): 54-57.
    [96].石晓兵,陈平,熊继有.油气深井随钻扩眼钻柱扭转振动分析[J].西南石油大学学报, 2008, 30(6): 81-84.
    [97].黄根炉,韩志勇.大位移井钻柱扭转振动顶部扭转负反馈减振研究[J].石油大学学报, 2001, 25(5): 32-35.
    [98].黄涛.钻柱耦合振动的理论及试验研究[D].东营:石油大学, 2001.
    [99].管志川,韩志勇,王以法等.井下钻柱受力实测接头研究[J].石油大学学报, 2002, 26(4): 29-32.
    [100].管志川,靳彦欣,王以法.直井底部钻柱运动状态的实验研究[J].石油学报, 2003, 24(6): 102-106.
    [101].狄勤丰,吴玉禄,石向前.预弯曲动力学防斜打快技术初探[J].石油学报, 2003, 24(3): 86-89.
    [102].狄勤丰,朱卫平,姚建林等.预弯曲动力学防斜打快钻具组合动力学模型[J].石油学报, 2007, 28(6): 118-121.
    [103].胡以宝,狄勤丰,王文昌等.斜直井眼中转速对钻柱动力学特性的影响[J].工程力学, 2010, 27(5): 184-190.
    [104].唐继平,狄勤丰,胡以宝等.铝合金钻杆的动态特性分析及其磨损机制[J].石油学报, 2010, 31(4): 684-688.
    [105].李子丰,张永贵,侯绪田.钻柱纵向和扭转振动分析[J].工程力学, 2004, 21(6): 203-210.
    [106].谈梅兰.三维曲井内钻柱的双重非线性静力有限元法[D].南京:南京航空航天大学, 2004.
    [107].李茂生,闫相祯,高德利.钻井液对钻柱横向振动固有频率的影响[J].石油大学学报, 2004, 28(6): 68-71.
    [108].李茂生,闫相祯,高德利.钻柱与井壁碰撞的非线性有限元分析[J].石油机械, 2006, 34(8): 15-18.
    [109].韩春杰,闫铁.大位移井钻柱“粘滞—滑动”规律研究[J].天然气工业, 2004, 24(11):58-60.
    [110].闫铁,韩春杰,毕雪亮.斜井眼内钻柱轴向振动的有限元分析[J].石油钻探技术, 2006, 34(4): 6-8.
    [111].赵跃宇,康厚军,冯锐等.曲线梁研究进展[J].力学学报, 2006, 36(2): 170-186.
    [112].赵跃宇,冯锐,劳文全.空间曲梁非线性动力学方程[J].动力学与控制学报, 2005, 3(4): 34-38.
    [113].刘磊,刘克宾.结构分析中的曲梁单元[J].北方交通大学学报, 2002, 26(4): 20-23.
    [114].哈尔滨工业大学理论力学教研室编.理论力学[M].北京:高等教育出版社, 2002.
    [115].刘修善,王珊,贾仲宣等.井眼轨道设计理论与描述方法[M].哈尔滨:黑龙江科学技术出版社, 1993.
    [116].《钻井手册(甲方)》编写组.钻井手册(上册)[M].北京:石油工业出版社, 1990.
    [117].李鹤林,李平全,冯耀荣.石油钻柱失效分析及预防[M].北京:石油工业出版社, 1999.
    [118].赵国珍,龚伟安.钻井力学基础[M].北京:石油工业出版社, 1988.
    [119].蔡宗熙.石油钻井中钻具组合的力学分析及其应用[D].天津:天津大学力学系, 1992.
    [120].高国华.油井管柱的屈曲和分叉[M].北京:石油工业出版社, 1996.
    [121].高德利,刘凤梧,徐秉业.油气井管柱的屈曲行为研究[J].自然科学进展, 2001, 11(9): 976- 980.
    [122].李子丰,马兴瑞,黄文虎.油气井杆管柱的静力稳定性[J].工程力学, 1997, 14(1): 17-25.
    [123]. Ashley D K, McNary X M, Tomlinson J C. Extending BHA life with multi-Axis vibration measurements [R]. IADC/SPE 67696, 2001.
    [124].屈展.石油钻柱振动分析[M].西安:陕西科学技术出版社, 1996.
    [125].屈展,刘德铸.钻柱振动问题及其理论研究进展[J].石油机械, 1996, 24(2): 54-57.
    [126]. Mirzajanzade A H, Bulatov A I, Gusonan A M, et al. Well drilling and cementing: a system approach, models and artificial intelligence[C]. 13th World Petroleum Conference, Buenos Aires, 1991.
    [127]. Prasert Sananikone, Osamu Kamoshima, White D B. A field method for controlling drillstring torsional vibrations[R]. IADC/SPE 23891, 1992.
    [128]. David C-K Chen, Mark Smith, Scott LaPierre. Integrated drilling dynamics system closes the model-measure-optimize loop in real time[R]. IADC/SPE 79888, 2003.
    [129].高德利,高宝奎,狄瑞平.钻柱涡动特性分析[J].石油钻采工艺, 1996, 18(6): 9-13.
    [130].史玉才,王军,管志川.下部钻柱涡动机理及规律的实验研究[J].广西大学学报,2007, 32(2): 126-129.
    [131].姚永汉,狄勤丰,朱卫平等.底部钻具组合的涡动特征分析[J].石油钻探技术, 2010, 38(4): 84-88.
    [132].朱炳坤.水平钻柱屈曲载荷的分析计算[J].石油矿场机械, 2006, 35(4): 65-67.
    [133].范募辉,焦永树,王磊.垂直井中受压段旋转钻柱的分岔研究[J].工程力学, 2003,20(6): 127-129.
    [134].李子丰.近期国内钻柱静动力分岔研究及存在问题[J].石油机械, 2004, 32(6): 68-70.
    [135]. Liu Feng, Wang Xinwei. Nonlinear buckling analysis of tubing in deviated wells by finite element method [J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2004, 21(1): 36-42.
    [136].苏华,张学鸿,王光远.钻柱力学发展综述之二:钻柱静力学[J].大庆石油学院学报, 1994, 18(1): 43-52.
    [137].宁克岩.钻井系统动力学特性仿真研究[D].四川:西南石油学院, 2002.
    [138]. Dykstra M W. Nonlinear drillstring dynamics [D]. Oklahoma: the University of Tulsa, 1996.
    [139]. Bathe Klaus-Jürgen. Finite element procedures in engineering analysis [M]. New Jersey: Prentice-Hall, Inc. 1982.
    [140]. Przemieniecki J S. Theory of matrix structural analysis [M]. McGraw-Hill Book Company, 1968: 179-273.
    [141].宋天霞,邹时智,杨文兵.非线性结构有限元计算[M].武汉:华中理工大学出版社, 1996.
    [142].崔俊芝,梁俊.现代有限元软件方法[M].北京:国防工业出版社, 1995.
    [143]. Cook R D.有限元分析的概念和应用[M].何穷,程耿东译.北京:科学出版社, 1981
    [144].赵越宇,冯锐,杨相展.索-曲梁组合结构的面内振动[J].工程力学, 2007, 24(1): 67-70.
    [145].张小柯.石油钻柱疲劳失效的动力学机理研究[D].上海:上海大学, 2005.
    [146].谢贻权,何福保.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社, 1981.
    [147].姚永汉.石油钻井底部钻具组合动力学特性分析[D].上海:上海大学, 2010.
    [148].王瑁成.有限单元法[M].北京:清华大学出版社, 2003.
    [149].王文龙,李子丰.不同激振条件下减振器对钻柱纵向振动的影响[J].工程力学, 2011, 28(4): 221-225.
    [150].黄根炉,韩志勇.大位移井钻柱粘滑振动机理分析及减振研究[J].石油钻探技, 2001, 29(2): 4-6.
    [151]. Jansen J D. Nonlinear dynamics of oilwell drillstrings [D]. Delft: Delft University, 1993.
    [152]. Leine R, Campen D V. Stick-slip whirl interaction in drillstring dynamics [J]. Journal of vibration and acoustics, 2002, 124(2): 209-220.
    [153].吕拴录,骆发前,周杰等.铝合金钻杆在塔里木油田的推广应用前景分析[J].石油钻探技术, 2009, 37(3):74-77.
    [154].胡以宝,狄勤丰,姚建林等.斜直井眼中钻柱的动力学特性分析[J].石油钻采工艺, 2009, 31(1):14-17.
    [155].胡以宝,狄勤丰,姚建林,陈锋.超深井钻柱的动力学特性分析[C].中国力学学会学术大会,郑州, 2009.
    [156].刘鸿文.材料力学[M].北京:高等教育出版社, 1992.
    [157]. Tom H Hill. Standard DS-1: Drill stem design and operation [M]. Houston: T H HILL Associates, 2004.
    [158]. Macpherson John. IADC stick-slip mitigation workshop [R]. 2010. http://www.iadc.org/ committees/advanced_rig_technology/
    [159]. Hoffmann Olieier. New technology for understanding downhole vibrations and theirdamaging effects in select North America drilling applications [R]. 2010.// http://www.spegcs.org/
    [160].狄勤丰,朱卫平,姚建林等.预弯曲动力学防斜打快钻具组合动力学模型[J].石油学报, 2007, 28(6): 117-121.
    [161].苏义脑.求定向井井底真实钻压值的理论分析和初步计算[J].石油钻采工艺, 1991, (2): 31-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700