用户名: 密码: 验证码:
活性污泥利用挥发性脂肪酸储存聚羟基脂肪酸酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用乙酸钠为碳源,通过好氧动态供料法对活性污泥进行驯化,富集聚羟基脂肪酸酯(PHA)积累菌,研究驯化后活性污泥积累PHA的规律。结果表明,瞬时投加高浓度碳源(931.5mg C/L),活性污泥合成聚羟基丁酸酯(PHB)。feast阶段内乙酸钠去除94%,其中53.4%的乙酸钠被转化为PHB,PHB储藏量为836mg/L。
     为了进一步提高活性污泥中PHB含量,分别考察F/M(食微比)、溶解氧、氮源对其累积的影响。研究发现:①随着F/M升高,PHB合成量也逐渐增加。当F/M比为2.5mg C L-1/ mg C L-1)时,PHB合成量于8h达最高值1070mg/L;②溶解氧浓度的提高明显加速了底物的吸收,但是适当限制氧气流量有利于PHB的合成。当空气流量为80L/h(KLa为8.93 L/h)时,乙酸钠的PHB转化率最大为0.76;③以氮源为限制因子时,活性污泥生物量的增加主要是由于PHB的合成引起的,PHB的最大积累量达1598mg/L,占的质量分数的65.2%。
     考察碳源类型对活性污泥合成PHA成分的影响,分别采用乙酸钠、丙酸钠、丁酸单一碳源以及其混合有机酸为碳源,合成PHA。研究发现,以乙酸钠或丁酸为碳源时,合成的PHA为PHB;以丙酸钠为碳源,合成的PHA为聚(3-羟基丁酸3-羟基戊酸3-羟基2-甲基戊酸酯)(P(HB-HV-HMV))共聚物;以混合有机酸为碳源合成的PHA也为P(HB-HV-HMV)共聚物,PHA中HV的含量与丙酸含量线性相关。
     考察以淀粉酸化液为碳源合成PHA的情况。在pH7、厌氧的条件下,有效地转化为丁酸、乙酸、乙醇、丙酸、戊酸。酸化废水经活性污泥合成PHA,合成结束后PHA占污泥干重的34.7%,纯度为96.8%。经分析,此PHA为PHBV,3HV的含量占8.9mol%。此样品熔点为150℃,热分解温度为270℃,具有较好的热稳定性。为了使淀粉液成为合成PHA的理想碳源,进一步研究了淀粉液的酸化条件(温度、HRT、OLR、pH)。研究发现最佳酸化温度为35℃;HRT主要影响酸化液中丁酸、乙酸的含量;OLR主要影响酸化液中乙醇的含量;而pH对酸化产物类型的影响较大,在pH为5.5的条件下,酸化液中丙酸含量提高,在低pH条件下,乙醇含量提高,在高pH条件下,丁酸含量高。因此通过调控酸化条件,提高酸化废水中丙酸的含量,使其成为活性污泥合成高性能PHA的理想碳源。
A sequencing batch reactor was conducted by aerobic dynamic feeding with acetate as carbon source to domesticate activated sludge to enrich PHA -accumulating microorganisms. After being domesticated, the PHB accumulation was researched. The results showed that feeding by high acetate dosage of 931.5mg C/L; the activated sludge produced PHB. During feast period, 94% acetate was removed, in which a fraction of 53.4% of acetate was transformed to PHB. The PHB content of activeated sludge is 836mg/L.
     To improve the PHB content in activated sludge and to find the optimal condition for PHB synthesization. Three critical factors: F/M (food/microbiology), dissolved oxygen and nitrogen deficiency was evaluated. The results showed that:①with the F/M increasing, the maximum PHB production increased correspondingly. Feeding by a high dosage acetate with a F/M (Food to Microorganisms) of 2.5 mg C L-1/ mg C L-1, PHB production reached its maximum value of 1070mg/L at 8 h. when F/M ratio above 2.5 mg C L-1/ mg C L-1, PHB content didn’t increase anymore because of the long time of storage reaction (excess 8 hour).②the rate of substrate uptake increased with the increase of dissolved oxygen concentration, but a moderate dissolved oxygen supply appears to be appropriate for the most efficient conversion of acetate to PHB. At a moderate dissolved oxygen supply rate of 80L/h(KLa 8.93 L/h), a much higher conversion of 0.76 was reached.③Subjected to nitrogen -limiting conditions, the growth of activated sludge is manly due to the storage of PHB, yet the residual cell biomass didn’t increase. Under the nitrogen-limiting condition, the maximum value of PHB storage was 1598mg/L, 65.2% of activated sludge.
     To research the effect of carbon source on PHA stucture, unique carbon source aceatate, propionate, butyrate and mixed carbon of them was used to produce PHA, respectively. Results showed that using acetate or butyrate as carbon source, PHB was obtained, when the carbon source was propionate or mixed carbon, the terpolymer of HB/HV/HMV was obtained. And the HV content of PHA was linear with the propionate content.
     The production of PHA by starchy wastewater was investigated. The results showed that the starchy wastewater was almost acidificated to butyric, acetic, propionic, valeric acids and ethanol. At the second stage, activated sludge was fed by the organic acids discharged from the acidification reactor to produce PHA and 34.7% PHA of sludge was acquired, with a purity of 96.8%. The PHA in the sludge was extracted and its structure and thermal character were analyzed. The results showed that the PHA was composed of HB and HV and the PHA had HV content of 8.9 mol%. The results of thermal analysis showed that the melting point was 150℃and the thermal degradation temperature was 270℃. Therefore, feeding by the acidified starchy, the copolymer of 3HB and 3HV was produced by activated sludge, and the PHBV had the character of lower melting-temperature and good thermal stability.
     The acidogenic react was investigated for the optimal PHA production using the acidifitied starchy. Results showed that the degree of acidification was higher when temperature was controlled at 35℃. HRT influence the acetate and alcohol content and OLR influence alcohol content. However, the type of fermentation was maily influeced by pH. Propionic acid type fermentation occurred at pH about 5.5. Ethanol fermentation occurred at lower pH. Butyrate fermentation was dominant with a higher Ph value.therefore,improving the propionic acid content by control the fermentation condition make acidficited starchy a good carbon source for PHA synthesis.
引文
[1]庚晋.我国白色污染现状及对策[J].生态经济, 1996, 6: 56-58.
    [2]吴文伟,刘竞.治理白色污染是一项系统工程[J].环境卫生工程, 1993, 3: 14- 17.
    [3]唐赛珍,杨惠娣.降解塑料近期发展动向、问题及前景[J].现代塑料加工应用, 1994, 6(1): 5-11.
    [4]马书斌,宁家成.生物降解塑料研究开发中的几个问题[J].现代塑料加工应用, 1996, 8(3): 60-64.
    [5]罗明典.发展生物可降解塑料的途径和前景[J].生命科学, 1993, 5(3): 17-19.
    [6]黄根龙.治理塑料废弃物新技术途径探讨--专论可降解塑料的研究发展[J].化学进展,1998, 10(2):215-227.
    [7]范翔.剩余活性污泥合成聚羟基烷酸的可行性研究[D].哈尔滨:哈尔滨工业大学, 2005.
    [8]张献忠,万肇忠.降解塑料及其发展状况[J].环境保护, 1999, 3: 17-19.
    [9]王东山,黄勇,沈家瑞.生物降解塑料研究进展[J].广州化学, 2001, 26 (4): 38-44.
    [10]陈礼跷,魏金芳,赵玲.利用甲壳素制取生物降解塑料的探讨[J].中国塑料, 1996,10(2): 6-7.
    [11] Salmoral E M, Gonzalez M E, Mariscal S P. Biodegradable plastic made from bean products [J]. Industrial crops and production, 2000, 11(2): 217-225.
    [12]汪群慧,孙晓红,孟令辉等.生物降解性塑料--聚乳酸研究进展[J].塑料工艺, 2003, 31 (5): 1-4.
    [13] Lee S Y. Bacterial polydroxyalkanoates [J]. Biotechnology and Bioengeeing, 1996, 49: 1-14.
    [14] Kato M, Bao H J, Doi Y. Characterization of intracellular inclusions during growth on octane [J]. Applied Microbiology and Biotechnology, 1996, 45: 363-370.
    [15] QU Bo, LIU JunXin. Determination of optimum operating conditions for production of polyhydroxybutyrate by activated sludgesubmitted to dynamic feeding regime. Chinese Science Bulletin, 2009, 54 (1): 142-149.
    [16] Steinbuchel A and Valentin HE. Diversity of bacterial polyhydroxyalkanoic acids [J]. FEMS Microbiology Letter.1995, 128: 219-228.
    [17] Sudesh K, Abe H, Dio Y. Synthesis, structure and properties of polyhydroxy- alkanoates:biological polyesters[J]. Polymer Science. 2000, 25: 1504-1555.
    [18] Anderson AJ and Dawes EA. Occurrence, metabolism, metabolic role, and industrial used of bacterial polyhydroxyalkanoates [J]. Microbiology Review. 1990, 54: 450-472.
    [19] Doi Y, Kitamura S and Abe H. Microbial synthesis and characterization of poly (hydroxybutyrate-co-hydroxyhexanoate) [J]. Macromolecules.1995, 23: 4822- 4828.
    [20] Eggink G, De Waard P, Huijberts GNM, et al. Formation of novel poly (hydro- xyalkanoates) from long-chain fatty acids[J]. Canadian Journal of Micro- biology.1955, 41(suppl.1): 14-21.
    [21]胡平,陈国强,张增民等.生物可降解塑料聚羟基脂肪酸酯的生产及物性表征.合成树脂及塑料, 1997, 14(2): 45-49.
    [22] Peter JB, Phil B, and Sally J. Organ physical properties of poly (hydroxyl- butyrate) and copolymers of hydroxybutyrate and hydroxyvalerate [J]. FEMS Microbiology Reviews.1992, 103: 289-298.
    [23] Kunikoa M, Nakamura Y, and Doi Y. New bacterial copolysters produced in Alcaligenus eutrophus from organic acid [J]. Polymer Communications.1988, 29: 174-176.
    [24] Kunikoa M, Nakamura Y, and Doi Y. Crystalline and thermal-properties of bacterial copolyesters poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly (3-hydroxy- butyrate-co-4-hydrobutyrate) [J]. Macromolecules.1989, 22(2): 694- 697.
    [25] Kubota M, Nakano M, Juni K. Mechanism of Enhancement of the Release Rate of Aclarubicin from Poly-B-hydroxybutyric Acid Microspheres by Fatty Acid Esters [J]. Chemical Pharmaceutical Bulletin, 1988, 36(1): 333-337.
    [26]土肥义治.生物塑料的发酵生产及其利用[J].天津微生物, 1989, (1): 24-29.
    [27]于慧敏,沈忠耀.可生物降解塑料聚-β-羟基丁酸酯(PHB)的研究与发展[J].精细与专用化学品, 2001, 8: 11-14.
    [28]陈坚.环境生物技术[M].北京:中国轻工业出版社, 1999.
    [29]陈国强,吴琼.生物可降解塑料聚羟基脂肪酸酯(PHA)的生产技术研究[J].精细与专用化学品, 2000,18: 22-25.
    [30] Suzuki T, Deguchi H, Yamane T, et al. Control of molecular weight of poly- 3-hydroxybutyric acid produced in fed-batch culture of Promonas extorquens [J]. Applied Microbiology and Biotechnology, 1988, 27: 487-491.
    [31] Gross R A, Demello C, Lenz R W, et al. Biosynthesis and charact erization of poly(3-hydroxyalkanoates) produced by Pseudomonas oleovorans [J]. Polymer Journal, 1989, 22: 1106-1115.
    [32] Withlot B, Huisman G W, Preuting H. Bacterial poly (3-hydroxyalkanoates) [M]. NBMP Dordrecht Kluwer Acdemic Publishers, 1990, 161-173.
    [33] Timn A, Steinbuchel A. Formation of polyesters consisting of medium-chain- length 3-hydroxyalkanoic acids from gluconate by Pseudomoraaeruginosa and other Fluorescent pseudomonas [J]. Applied Environmental Microbiology, 1995, 56: 3360-3367.
    [34] Doi Y, Sagawa A, Nakamuras Y, et al. Production of biodegradable copolymers by Alcaligenes eutrophus [M]. NBMP Dordrecht Kluwer Academic Publishers, 1990, 37-48.
    [35] Lee S Y. Bacterial Polydroxyalkanoates [J]. Biotechnology and Bioengeeing, 1996, 49: 1-14.
    [36] Anderson A J, Dawes E A. Occurrence Metabolism, Metabolic Role and Indus- trial Uses of Bacterial Polydroxyalkanoates [J]. Microbiology Review, 1990, 54 (4): 450-472.
    [37] Robert W, Lenz Richard A, Brandl R. Poly (β-hydroxyalkanoates): Natural bio- compatible and biodegradable Polyesters produced by bacteria [J]. Chinese Journal of Polymer Science, 1989, 7: 289-298.
    [38]陈琦,黄和容,易祖华.微生物合成生物降解塑料研究现状与展望[J].微生物学通报, 1994, 21(5): 297-303.
    [39]郭秀君,于听.一种新型生物塑料的研究进展和开发前景[J].生物工程展, 1997, 17(5): 61-65.
    [40] Paulo C, Lemos Luisa S S, Maria AMR. Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding [J]. Journal of Biotechnology, 2006, 122: 226-238.
    [41] Serafim L S, Lemos P C, Oliveira R F, et al. Optimisation of polyhydroxy -butyrate production by mixed cultures submitted to aerobic dynamic feeding conditions [J]. Biotechnology and Bioengeeing, 2004, 87(2): 145-160.
    [42] Dionisi D, Majone M, Papa V, et al. Biodegradable polymers from organic acids by using activated sludge enriched byaerobic periodic feeding [J]. Biotechnology and Bioengeeing, 2004, 85(6): 569-579.
    [43] Oeding, V, Schlegel, H. G.β-ketothiolase from Hydrogenomonas eutrophaH16 and it significance in the regulation of poly (β-h ydroxybutyrate) metabolism [J] Biochemical Journal. 1973, 134: 239-248.
    [44] Park,J. S. ,L ee,Y H.Metabolic characteristics of isocitrate dehydrogenase leaky mutant of Alcaligenes eutrophus and its utilization for poly(β-hydroxybutyrate) production[J]. Journal of Fermentation and Bioengineering. 1996, 81: 197-205.
    [45] Huisman G W, Wonink E, Meima R, Kazemier B, Terstra P, Witholt B. Meta- bolism of poly(3-hydroxyalkanoates)(PHAs)by Pseudomonaso leavorans[J]. Journal of Biology and Chemistry. (1991)266: 2191-2198.
    [46] Timm A, Steinbuchel A. Cloning and molecular analysis of the poly- (3-hydro- xyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1 [J], European Journal of Biochemistry. (1992b) 209: 15-30.
    [47] Lee S Y, Chang H N, Chang Y K. Better Living Trough Innovative Biochemical Engineering [M] Singapore: Singapore University Press, 1994, 53-55.
    [48] Shirai Y, Yamaguchi M, Kusubayashi N, et al. Better Living Through Innova- tive Biochemical Engineering [M]. Singapore: Singapore University Press, 1994, 263-265.
    [49] Shimizu H, Sonoo S, Shioya S, et al. Biochemical Engineering for 2001 [M]. Tokyo: Springer-Verlag, 1992, 195-197.
    [50] Satoh H, Mino T, Matsuo T, Metabolism of organic substances in anaerobic phase of biological phosphate uptake process [J]. Water Science and Technology, 1991, 25(6): 83-92.
    [51] Satoh H, Iwamoto Y, Mino T, et al. Activated sludge as a possible source of biodegradable plastic [J]. Water Science and Technology, 1998, 38(2): 103- 109.
    [52] Satoh H, Mino T, Matsuo T. Uptake of organic substance and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes [J]. Water Science and Technology, 1992, 26(5-6): 933-942.
    [53] Matsuo T, Mino T, Satoh H. Metabolism of organic substances in anaerobic phase of biological phosphate uptake process [J]. Water Science and Technology, 1992, 25 (6): 83-92.
    [54] Mino T, Arun V, Tsuzuki T, et al. Effect of biological phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. Biological Phosphate Removal from Wastewater [M]. UK: Pergamon Press, 1987, 27-38.
    [55] Martinez-Toledomv, Gonzalez-lopez J, Rodelas B, et al. Prodution of Poly-3 -hydroxybutyrate by Azotobacter chroococcum H23 in chemical defined medium and alpechin medium [J]. Applied bacteriology, 1995, 78(4): 413-418.
    [56] Chua H, Yu P H, Ho L Y. Coupling of waste water teratment with storage polymer production [J]. Applied biochemistry and biotechnology, 1997, 63: 627-635.
    [57] Holowach L P, Swift G W, Wolk S W, et al. Bacterial conversion a waste stream containing methyl-2-hydroxyisobutyric acid to biodegradable poly- hydroxyalkanoates polymers [J]. American Chemical Society Symposium Series, 1994, 575: 202-211.
    [58] Bertrand J L, Ramsay B A, Ramsay R A, et al. Biosynthesis of poly-3- hydro xyalkanoates from pentoses by Pseudomonas pseudoflava [J]. Applied Envir- onmental Microbiology, 1990, 56 (10): 3133–3138.
    [59]文欣,庄国强,郑士民.真养产碱菌利用甜菜糖蜜发酵产聚3-羟基丁酸酯的研究[J].微生物学报, 1995, 35(2): 115-120.
    [60]文欣,郑士民,陈琦.真养产碱菌利用高果糖浆积累聚3-羟基丁酸酯的研究[J].微生物学通报, 1994, 21(2): 71-75.
    [61]高廷耀,夏四清,周增炎.城市污水生物脱氮除磷机理研究进展.上海环境科学, 1999, 18(1): 16-18.
    [62]吴光学.强化生物除磷的机理模型研究进展[J].环境污染与防治, 2004, 26 (4): 259-263.
    [63]田淑媛,厌氧下的PHB和聚磷酸盐及其生化机理研究[J].中国给水排水, 2000, 16(7): 5-7.
    [64]杨幼慧,伍朝晖,钟士清,等.食品工厂活性污泥积累生物降解塑料PHA的研究[J].食品与发酵工业, 2002, 28(8): 5-8.
    [65]管运涛,王乐,滕飞,等.活性污泥对聚-β-羟基丁酸酯(PHB)积累能力的影响[J].清华大学学报:自然科学版, 2007, 47(6): 814-817.
    [66] Adeline S M, Takabataka H, Satoh H, et al. Production Polyhydroxyalkanoates (PHA) by activated sludge treating municipal waste water: effect of pH, sludge retention time (SRT) and acetate concentration in influent [J]. Water research, 2003, 37: 3602-3611.
    [67]王红武. PHB及糖原在废水生物处理好氧条件下的形成[J].精细化工, 2000, 17(9): 519-525.
    [68]黄晓钰,利用食品工厂活性污泥发酵生产PHB的培养基配方研究(一)[J].农业环境保护, 2001, 20(5): 329-332.
    [69]陈然.利用食品工厂活性污泥发酵生产PHB的培养基配方研究(二)[J].农业环境保护, 2001, 20(6): 424-428.
    [70]林东恩,张逸伟,郭世骚.活性污泥好氧厌氧合成聚羟基丁酸酯[J].华南理工大学学报:自然科学版, 2002, 30(9): 100-104.
    [71] Lee S Y. Plastic bacteria progress and prospects for polyhydroxyalkanoate prod- uction in bacteria [J]. Trends Biotechnology,1996, 14: 431-438.
    [72] Ueno T, Satoh H, Mino T, el a1. Production of biodegradable plastics[J]. Polymer Preprint, 1993, 42: 981-986
    [73] Saito K, SoejimaT, Tomozawa T, el al. Production of biodegradable plastics from volatile acids usingactivated sludge[J]. Environmental Systems Engineering, 1995, 52: 145-154.
    [74] Loosdrecht V, Pot MAM, Heijnen J J. Importance of bacterial storage polymers in bioprocess [J]. Water Science and Technology, 1997, 35: 41-47.
    [75] Dionisi D, Majone M, Tandoi V, et al. Sequencing batch reactor influence of periodic operation on performance of activated sludges in biological waste watertreatment [J]. Industrial and Engineering Chemistry Research, 2001, 40: 5110- 5119.
    [76] Serafim S, Lemos P C, Oliveira R, et a1. Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions [J]. Biotechnology and Bioengineering, 2004, 87: 145-160.
    [77] Meesters K. Production of poly-3-hydroxyalkanoates from waste streams [D]. Delft: Delft University of Technology, 1998.
    [78] Mino T,Satoh H,Matzuo T. Metabolism of Different Bacterial Populations in Enhanced Biological Phosphate Removal Procecces [J].Water Science and Technology, 1994, 29(7): 67-70.
    [79] Samuel T,Jiany.Resources Conservation and Recycling, 1997, 19: 157-164.
    [80] Paulo C Lemos, Lu′isa S S, Maria A M R. Synthesis of polyhydroxyalkanoates from different short- chain fatty acids by mixed cultures submitted to aerobic dynamic feeding [J]. Journal of Biotechnology, 2006, 122: 226-238.
    [81] Serafim L S, Lemos P C, Oliveira R F, et al. Optimisation of polyhydroxy- butyrate production by mixed cultures submitted to aerobic dynamic feeding conditions [J]. Biotechnology and Bioengineering, 2004, 87(2): 145-160.
    [82] Dionisi D, Majone M, Papa V, et al. Biodegradable polymers from organic acids by using activated sludge enriched byaerobic periodic feeding [J]. Biotechnology and Bioengineering, 2004, 85(6): 569-579.
    [83] Katie A T, Mark N, Ralf C. The Effect of DissolvedOxygen on PHB Accumu- lation in Activated Sludge Cultures [J]. Biotechnology and Bioengineering, 2003, 82: 238- 250.
    [84]吴光学,管运涛. SRT及碳源浓度对厌氧/好氧交替运行SBR工艺中PHB的影响[J].环境科学, 2005, 26(2): 126- 130.
    [85] Chua A S M , Takabatake H , Satoh H , Mino T.Production of polyhydroxy- alkanoates ( PHA) by activated sludge treating municipal wastewater : effect of pH , sludge retention time ( SRT ) , and acetate concent ration in influent. Water Resource , 2003 , 37 (15) : 3602-3611
    [86] Wang F, Lee S Y. Poly (3-hydroxybutyrate) production with high polymer content by fed-batch culture of Alcaligenes latus under nitrogen limitation [J]. AppliedEnvironmental Microbiology, 1997, 63: 3703-3706.
    [87] Choi J, Lee S Y. Process analysis and economic evaluation for poly (3-hydroxy- butyrate) production by fermentation [J].Bioprocess Engineering, 1997, 17: 335- 342.
    [88]尹进,沈忠耀.第七届全国生物化工学术会议论文集,北京:化学工业出版社,1996,406.
    [89]林东恩,高振忠,张逸伟,等.华南农业大学学报(自然科学版),2003,24:93-94.
    [90] Chen Y,Chen J,Yu C,et a1. Recovery of poly-3-hydroxybutyrate from Alcaligenes eutrophus by surfactant-chelate aqueous system [J]. Process Bio- chemistry, 1999, 34: 153-157.
    [91] Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxy- alkanoates: Biological polyesters [J]. Progress in Polymer Science, 2000, 25: 1503-1555.
    [92] Lemos P C, Viana C, Salgueiro E N, Ramos A M, Crespo J P S G, Reis M A M.. Effect of carbon source on the formation of polyhydroxyalkanoates (PHA) by a phosphate-accumulating mixed culture [J]. Enzyme and Microbial Technology, 1998, 22: 662-671.
    [93] Chua H, Yu P H F, Ma C K. Accumulation of biopolymers in activated sludge biomass [J]. Applied Biochemistry and Biotechnology.1999, 77–79: 389-399.
    [94] Serafim L S, Lemos P C, Torres C, Reis M A M, Ramos A M, Bioresource Technology. (submitted)
    [95] Carrasco F, Dionisi D, Martinelli A, Majone M, Thermal stability of poly- hydroxyalkanoates[J].Journal of Applied Polymer Science, 2006, 100: 2111- 2121.
    [96] Reis M A M, Serafim L S, Lemos P C., Ramos A R., Aguiar F R, van Loosdrecht M, Production of polyhydroxyalkanoates by mixed microbial cultures [J]. Bioprocess and Biosystems Engineering.2003, 23, 377.
    [97] W. Punrattanasim,“The Utilization of Activated Sludge Polyhydroxyalkanoates for the Production of BiodegradablePlastics”, PhD Thesis, Virginia Polytechnic Institute andState University, Blacksburg, EUA, 2001.
    [98]郝晓地,朱景义,曹秀芹.利用混合菌群活性污泥法实现生物可降解塑料PHA的合成[J].生态环境, 2005, 14(6): 967-971.
    [99] Meesters K. Production of poly-3-hydroxyalkanoates from waste streams [D]. Delft: Delft University of Technology, 1998.
    [100]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第三版) [M].北京:中国环境科学出版社, 1989.
    [101] Beccari M, Majone M, Massanisso P and Ramadori R. A bulking sludge with high storage response selected under intermittent feeding [J]. Water Research, 1998, 32(11): 3403-3413.
    [102] Majone M, Massanisso P, Carucci A, Lindrea K and Tandoi V. Influence of storage on kinetic selection to control aerobic filamentous bulking. Water Science and Technology, 1996, 34(5-6):223-232.
    [103] Dias J M, Lemos P C, Serafim L S, et al. Rencent Advances in Polyhydroxy- alkanoate Production by Mixed Aerobic Cultures: From the Substrate to the Final Product [J]. Macromolecular Biosciecce, 2006, 885-906.
    [104] Third KA, Newland M, Cord-Ruwisch R. The effect of dissolved oxygen on PHB accumulation in activated sludge cultures [J]. Biotechnology and Bioeng- ineering. 2003, 82: 238-250.
    [105] Serafim L S, Lemos P C, Oliveira R, et al. Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions [J]. Biotechnology and Bioengineering, 2004, 87 (2): 145-160.
    [106] Sera W M, Lemos L S, Oliveira P C, et a1.Optimization of polyhydroxy- butyrate production bymixed cultures submitted to aerobic dynamic feeding conditions[J].Biotechnology and Bioengineering. 2004, 87(2), 145-160.
    [107] Takabatake H,Satoh H,Mino T,et a1.Recovery of biodegradable plastics from activated sludge process[J].Water Science and Techno1ogy, 2000, 42(3-4): 351- 356.
    [108] Kasemsap C, Wantawin C. Batch production of polyhydroxyalkanoate by low- polyphosphate-content activated sludge at varying pH [J]. Bioresource Tech- nology. 2007, 98: 1020-1027.
    [109] Lee S Y . Bacterial polyhydroxyalkanoates[J] . Biotechno1ogy and Bioengi- neering.1996, 49(1): 1-14.
    [110] Braunegg G,Lefebvre G,Genser K F.Polyhydroxyalkanoate,biopolyesters from renewable sources : Physiological and engineering aspects[J] . Journal of Biotechno1ogy.1998, 65: 127-61.
    [111] Satoh H., Mino T., Matsuo T. Uptake of organic substrates and accumulation of polyhydroxyalanoates linked with glycolysis of intracellular carbonhydrate under anaerobic conditions in the biological excess phosphate removal process es.Water Science and Technology.1992, 26(5-6): 933-942.
    [112] Satoh H., Mino T., M at suo T. Microstructure of copoly (3-hydroxyalkanoates) produced in the anaerobic-aerobic activated sludge process. Polymer Interna- tional.1996, 39: 183-189.
    [113]吴琼,孙素琴,余海虎等.聚羟基脂肪酸酷细菌合成的生长环境依赖性.高分子学报, 2000(6): 751-755.
    [114] Madison L. and Huisman G. Metabolic engineering of poly (3-hydroxyalka- noates): from DNA to plastic [J]. Microbiology and Molecular biology reviews, 1999, 63(1): 21-53.
    [115] Doi Y., Segawa A., and Kunioka M. Biosynthesis and characterization of poly (3-hydroxybutyrateco-4-hydroxybutyrate) in Alealigenes eutrophus [J]. Inter- national Journal of Biological Macromolcules, 1990, 12: 106-111.
    [116]陈银广,杨海真,顾国维.废水生物处理过程对微生物胞内PHA的影响.化工进展, 2000, 5: 36-39.
    [117]刘敏,陈滢,任南琪.模拟淀粉废水厌氧发酵生物制氢[J].四川大学学报, 2006, 38(2): 55-59.
    [118] Yu Jian. Production of PHA from starchy wastewater via organic acids [J]. Journal of Biotechnology, 2001, 86: 105-112.
    [119] Dionisi D, Majone M, V Papa, et al. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding [J]. Biotech- nology and Bioengineering, 2004, 85(6): 569-579.
    [120] Ren Nanqi, Wang Baozhen, Huang Juchang. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnology and Bioengineering , 1997 ,54 (5) : 428~433.
    [121] Dio Y, Kunioka M, Nakamura Y, et al. Nuclear magnetic resonance studies on poly (β-hydroxybutyrate) and a copolymer ofβ-hydroxybutyrate andβ-hydro- xyvalerate isolated from Alcaligenes euteophus H16[J]. Macromolecules, 1986, 19(11): 2860-2864.
    [122] Wong AL, Chua H, Lo WH, et al. Synthesis of bioplastics from food industry wastes with activated sludge biomass [J]. Water Science and Technology, 2000, 41(12): 55-59
    [123] Madison L. and Huisman G. Metabolic engineering of poly (3-hydroxy- alkanoates): from DNA to plastic [J]. Microbiology and Molecular biology reviews, 1999, 63(1): 21-53
    [124] Bordes P, Hablot E, Pollet E, et al. Effect of clay organomodifiers on degrada- tion of polyhydroxyalkanoates [J]. Polymer Degradation and Stability, 2009, 94(5): 789-796.
    [125] Wallen I, Robwo W K. Polyhydroxyalkanoate from activated sludge [J]. Envi- ronmental Science and Technology, 1974, 8: 576-579.
    [126] Hu W F, Chua H, Yu P H F. Synthesis of poly (3-hydroxybutyrate-co-3- hydro- xyvalerate) from activated sludge [J]. Biotechnology Letters, 1997, 19(7): 695-698.
    [127] Hahn S K and Chang Y K. A themogravimetric analysis for poly (3-hydroxy- butyrate) quantification [J]. Biotechnology Techniques, 1995, 12(9): 873-878.
    [128] Carrasco F, Dionisi D, Martinelli A, et al. Thermal stability of polyhydroxy- alkanoates [J]. Journal of Applied Polymer Science, 2006, 100(3): 2111-2121.
    [129] Nguyen P H L, Kuruparan P, Visvanathan C. Anaerobic digestion of municipal solid waste as a treatment prior to landfill[J]. Bioresource Technology, 2007, 98(2): 380-387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700