用户名: 密码: 验证码:
早期强生长势小麦根系特征及其对氮素和水分利用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地中海气候影响下的澳大利亚西部地区,提高作物的早期生长势对农业生产起着至关重要的作用。试验以4个早期强生长势小麦品系Vigor18、37-6、38-19和92-11为材料,并以在澳大利亚西部广泛种植的普通商业品种Janz为对照,通过田间小区试验和温室试验,综合研究了早期强生长势小麦根系特征及其与氮素和水分利用的关系,以及开花后干旱胁迫对其氮素积累分配、籽粒产量和品质的影响。主要研究结果如下:
     1.早期强生长势小麦的生长势优势出现在播种17天(二叶期)后。各小麦基因型生物量、叶面积和氮素吸收在播后17-21天增长最快,根从播后21天开始快速增长。播后21-24天早期强生长势小麦生物量、叶面积、根长和氮吸收量均显著高于普通商业品种Janz,且各性状的相对生长率也显著高于普通商业品种Janz。早期强生长势小麦在二叶期至分蘖期生物量、叶面积、根长和氮吸收量及其增长速率均显著高于普通商业品种Janz,有利于植株的后期发育。
     2.从一叶期到拔节期,早期强生长势小麦Vigor18、37-6、38-19和92-11的根长增长速度显著高于普通商业品种Janz。在抽穗期,4个早期强生长势小麦Vigor18、37-6、38-19和92-11的总根长分别比Janz高32.86%、38.57%、44.29%和64.29%,但在4个基因型之间无显著差异。同时,4个基因型的氮吸收量分别比Janz高39.27%、34.07%、29.06%和36.27%,但4个基因型间的氮吸收量无显著差异。表明早期强生长势小麦较普通商业品种能够在早期吸收更多的氮素与其更大的根长密度密切相关。
     3. Janz、Vigor18和38-19在中层土壤(20-70cm)的氮肥吸收均显著高于上层土壤(0-20cm)和下层土壤(70-100cm)。在上层土壤中,早期强生长势小麦Vigor18和38-19的吸氮量比Janz高57-68%,在中层土壤比Janz高两倍。Vigor18和38-19在上层土壤的氮吸收率约为15%,而Janz仅为8.7%。在土壤中层,Vigor18和38-19的氮吸收效率为48-52%,而Janz仅25%。3个基因型在土壤下层的氮吸收量和吸收效率无显著差异。相对普通品种Janz,早期强生长势小麦材料Vigor18和38-19在中层土壤(20-70cm)的根系有更多的分支,从而增加了其根长密度和根数密度,这可能是早期生长势强的小麦能够在其生长早期吸收更多氮肥的主要原因。
     4.在田间条件下,早期强生长势小麦38-19和92-11的根长密度显著高于普通商业品种Janz;在成熟期花后干旱处理中,早期强生长势小麦38-19和92-11的根系较Janz深,在60-80cm土层中均有分布。在两种花后水分处理中,早期强生长势小麦38-19和92-11的水分利用量均显著高于普通商业品种Janz,其原因一方面是由于在干旱胁迫下早期强生长势小麦有更深的根系,能够在其生长后期从深层土壤中获得更多的水分;另一方面与早期强生长势小麦更大的根长密度密切相关。
     5.早期强生长势小麦38-19和92-11开花后的吸氮能力显著高于Janz,但其花前氮向籽粒中的运转能力较Janz低,最终导致了早期强生长势小麦的籽粒氮产量与普通商业品种Janz差异不显著。在花后干旱胁迫下,籽粒氮产量更多地依靠花前积累氮向籽粒中的运转。在不同早期生长势小麦之间,早期强生长势小麦花后氮积累受干旱胁迫的影响较普通商业品种Janz小,能够在花后干旱条件下持续从土壤中吸收氮素。同时,早期强生长势小麦38-19和92-11的籽粒蛋白质含量受花后干旱胁迫影响不显著。此外,花后干旱胁迫使Janz的籽粒产量显著减少,降低了38.01%,而对早期强生长势小麦影响不显著。花后干早对早期强生长势小麦籽粒蛋白质含量和产量的影响较普通商业品种小,在地中海气候地区有很大的增产和提高小麦品质的潜能。
Improving early vigour is very important for the crops grown in the Mediterranean-type climate of Western Australia. Field and glasshouse experiments were conducted using wheat cv. Janz, a current wheat commercial cultivar widely adapted in Western Australia, along with 4 vigorous wheat lines, including Vigor18,37-6,38-19 and 92-11. The aim of the experiment was to examine the root characteristics of vigorous wheat, and determine the effects of nutrition and water uptake. In addition, the nitrogen accumulation and transference, yield and quality of seeds affected by drought after anthesis were also conducted.
     The most important results are as follow:
     1. The advance of vigorous wheat lines appeared from 2-leaves stage at 17 DAS (day after sowing). Shoot biomass, leaf area and N (nitrogen) uptake improved mostly at 17-21 DAS. Root growth faster from 21 DAS. Shoot biomass, leaf area and N uptake in vigorous lines were significantly higher than that in Janz. The relative growth rates of shoot biomass, leaf area and N uptake were also higher in vigorous lines. The seedling characteristics from 2-leaves stage to tillering (17-24 DAS) indicated the difference in vigour of wheat lines.
     2. Vigorous lines had higher root growth rate than Janz from 1-leaf stage to stem elongation. Root length in vigorous lines was similar but 32.86%,38.57%,44.29% and 64.29% higher than that in Janz separately. N uptake in vigorous lines was also higher than that in Janz. N uptake in vigorous lines was similar but 39.27%,34.07%,29.06% and 36.27% higher than that in Janz separately. This indicates that the early and more extensive horizontal growth of the roots was responsible for the superior uptake of N by the vigorous lines.
     3. The N uptake rate in the middle layer (20-70cm) of Janz, Vigor18 and 38-19 was higher than that in upper (0-20cm) and bottom layer (70-100cm). Vigorous wheat lines Vigor18 and 38-19 had more branches in the middle layer so that had bigger root length density and root number density than Janz, which resulted in higher N uptake by the vigorous lines.
     4. Root length density in vigorous lines 38-19 and 92-11 was higher than that in Janz, especially in 0-20cm layer. Root deeps of vigorous lines 38-19 and 92-11 were as much as 60-80cm, up to 20cm deeper than that in Janz under the drought stress after anthesis. Vigorous lines also had higher water use in both water conditions than Janz. The deeper roots under the drought stress after anthesis and bigger root length density of vigorous lines were responsible for the higher water use by vigorous lines.
     5. The nitrogen uptake ability after anthesis in vigorous lines was significantly higher than that in Janz, while the nitrogen translation ability was much lower. It resulted in similar grain N yield in vigorous lines and Janz. The grain N yield mostly depended on the translation from nitrogen accumuled before anthesis under drought stress. The influence of drought after anthesis was much lower in vigorous lines than that in Janz, so that vigorous lines could uptake nitrogen from soil under the drought condition. Drought after anthesis improved grain protein in Janz while had no significantly effect on that in vigorous lines. Drought after anthesis decreased yield in Janz by 38.01%, while did not have significantly effect to vigorous lines. The influence of drough after anthesis was lower in vigorous lines than that in Janz. It indicated that vigorous lines have higer potential for improving wheat yield and quality in the Mediterranean-type climate region.
引文
1. Akiko S, Miwako K, Shingo N, Mitsuru W. The effect of timing of nitrogen dressing on the baking quality of winter wheat. Japanese Journal of Crop Science, 1999,68:217-223
    2. Altenbach SB, DuPont FM, Kothari KM, Chan R, Johnson EL, Lieu D. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. Journal of Cereal Science,2003,37:9-20
    3. Anderson GC, Fillery IRP, Dunin FX, Dolling PJ, Asseng S. Nitrogen and water flows under pasture-wheat and lupin-wheat rotations in deep sands in Western Australia.2. Drainage and nitrate leaching. Australian Journal of Agricultural Research,1998,49:345-361
    4. Anderson K, Hoyle FC. Nitrogen efficiency of wheat cultivars in a Mediterranean environment. Australian Journal of Experimental Agriculture,1999,39:957-965
    5. Arslan A, Kurdali F. Rained vetch-barley mixed cropping in the Syrian semi-arid conditions water use efficiency and root distribution. Plant and Soil (Netherlands), 1996,183:149-160
    6. Asdey GH, smucker AJ, Admas MW. Seedling test for the quantitative measurement of root tolerances to compacted soil. Corp Science,1985,25:802-806
    7. Bake JM, van Bavel CHM. Resistance of Plant roots to water loss. Agronomy Journal,1986,78:641-644
    8. Barber JS. Factors influencing the grain yield and quality in irrigated wheat, Agricultural Science.1987,109:19-26
    9. Barber SA, Silberbush M.'Roots, nutrient and water influx, and plant growth'. ASA Special Publication No.49. (Eds SA Barber, DR Bouldin).1984,65-87. (American Society of Agronomy:Madison, WI)
    10. Barraclough PB. The growth and activity of winter wheat roots in the field:nutrient inflows of high-yielding crops. Journal of Agricultural Science(Cambridge),1986, 106:45-62
    11. Barraclouch PB, Leigh RA. The growth and activity of winter roots in the field:the effect of sowing date and soil type on root growth of high-yield crops. Journal of Agricultural Science(Cambridge),1984,103:59-74
    12. Bertholdsson NO. Early vigour and allelopathy-two useful traits for enhanced barley and wheat comprtitiveness against weeds. Weed Reasearch,2005,45: 94-102
    13. Botwright TL, Condon AG, Rebetzke GJ, Richards RA. Field evaluation of early vigour for genetic improvement of grain yield in wheat. Australian Journal of Agricultural Research,2002,53:1137-1145
    14. Brady DJ, Gregory PJ, Fillery IRP. The contribution of different regions of the seminal roots of wheat to uptake of nitrate from soil. Plant and Soil,1993,155-156
    15. Burkhard S, Walter J.H, Heiko CB. Factors that contribute to genetic variation for nutrient efficiency of crop plants. Zeitschrift fur Pflanzenernahrung und Bodenkunde.2007,157:215-224
    16. Burns IG Influence of the spatial distribution of nitrate on the uptake of N by plants: a review and a model for rooting depth. European Journal of Soil Science,2006,31: 155-173
    17. Cassman KG, Datta SK de, Amarante ST. Long term comparison of the agronomic efficiency and residual benefits of orangic and inorganic nitrogen sources for tropical lowland rice. Experimental Agriculture,1996,32:427-444
    18. Clarkson DT. Factors Affecting Mineral Nutrient Acquisition by Plants. Annual Reviews of Plant Physiology.1985,36:77-115
    19. Clausnitzer V, Hopmans JW. Simultaneous modeling of transient three-dimensional root growth and soil water flow. Plant and Soil,1994,164:299-314
    20. Condon AG, Farquhar GD, Richards RA. Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat. Leaf gas exchange and whole plant studies. Australian Journal of Plant Physiology,1990,17:9-22
    21. Condon AG, Richards RA, Farquhar GD. Carbon isotope discrimination is positively correlated with grain yield and dry matter production in field grown wheat. Crop Science,1987,27:996-1001
    22. Cooper PJM, Gregory PJ, Keatinge JDH, Brown SC. Effects of fertilizer, variety and location on barley production under rain-fed conditions in northern Syria. II. Soil water dynamics and crop water use. Field Crops Research,1987,16:67-84
    23. Coque M, Gallais A. Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theoretical and Applied Genetics, 2006,112:1205-1220
    24. Coque M, Martin A, Veyrieras JB, Hirel B, Gallais A. Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines.3. QTL detection and coincidences. Theoretical and Applied Genetics,2008, 117:729-747
    25. Cox MC, Qualset CD, Rrains DW. Genetic variation for nitrogen assimilation in wheat II. Nitrogen assimilation in islation to grain yield and protein. Crop Science, 1985,25:435-440
    26. Dencic S, Kastori R, Kobiljski B, Duggan B. Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica,2000,113:43-52
    27. Desai RM, Bhatia CR. Nitrogen uptake and harvest index in durum wheat cultivars varying in their grain protein concentration. Euphytica,1978,27:561-566
    28. Dhugga KS, Waines JG. Analysis of nitrogen accumulation and use in bread and durum wheat. Crop Science,1989,29:1232-1239
    29. Entz MH, Gross KG, and Fowler DB. Root growth and soil water extraction by winter and spring wheat. Canadian Journal of plant science,1992,72:1109-1120
    30. Ercoli L, Lulli L, Mariotti M, Masoni A, Arduini I. Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. European Journal of Agronomy,2008,28:138-147
    31. Farquhar GD, Richards RA. Isotopic composition of carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 1984,11:539-552
    32. Fillery IRP. The fate of biologically fixed nitrogen in legume-based dry land farming systems:a review. Australian Journal of Experimental Agriculture,2001, 41:361-381
    33. Fillery IRP, McInnes KJ. Components of the fertilizer nitrogen balance for wheat production on duplex soils. Australian Journal of Experimental Agriculture,1992, 32:887-899
    34. Fischer RA. Growth and yield limitation to dryland wheatyield in Australia:a physiological framework. Journal of the Australian Institute of Agricultural Science, 1979,45:83-94
    35. Foyer CH, Lescure JC, Lefebvre C. Adaptations of photosynthetic electron transport, carbon assimilation and carbon partitioning in transgenic Nicotiana Plumbaginifolia plants to change in NR activity. Plant physiology,1994,104: 171-178
    36. Gastal F, Lemaire G.N uptake and distribution in crops:an agronomical and ecophysiological perspective. Journal of Experimental Botany,2002,53:789-799
    37. Goss MJ, Miller MH, Bailey LD, Grant CA. Root growth and distribution in relation to Nutrient availability and uptake. European Journal of Agronomy(France), 1993,2:57-67
    38. Gahoonia TS, Care D, Nielsen NE. Root hairs and acquisition of P by wheat and barley cultivars. Plant and Soil,1997,191:181-18
    39. Gahoonia TS, Nielsen NE. Root traits as tools for creating phosphorus efficient crop varieties. Plant and Soil,2004,260:47-57
    40. Gallardo M, Turner NC, Ludwig C. Water relations, gas exchange and abscisic acid content of Lupinus cosentinii leaves in response to drying different proportions of the root system. Journal of Experimental Botany,1994,45:909-918
    41. Gregory PJ, Root growth and activity. In'Physiology and determination of crop yield'.(Eds KJ Boote, JM Bennett, TR Sinclair, GM Paulsen).1994, 65-93.(American Society of Agronomy, Crop Science Society of America, Soil Science Society of America:Madison, WI)
    42. Gregory PJ, Gooding MJ, Ford KE, Hendriks PW, Kirkergaard JA, Rebetzke GJ. Genotypic and environmental influences on the performance of wheat root systems. In Roots and the soil environment. (Eds J Foulkes, G Russell, M Hawkesford, M Gooding, D Sparkes, E Stocgale). Aspects of Applied Biology,2005,73:1-10
    43. Gregory PJ, Tennant D, Belford RK. Root and shoot growth, and water and light use efficiency of barley and wheat crops grown on a shallow duplex soil in a Mediterranean-type environment. Australian Journal of Agricultural Research,1992, 43:555-573
    44. Guttieri MJ, Ahmad R, Stark JC, Souza E. End-use quality of six hard red spring wheat cultivars at different irrigation levels. Crop Science,2000,40:631-635
    45. Guttieri MJ, Stark JC, O'Brien K, Souza E. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Science,2001,41: 327-335
    46. Haberale J, Svoboda P, Raimanova. The effect of post-anthesis water supply on grain nitrogen concentration and grain nitrogen yield of winter wheat. Plant Soil Environment,2008,54:304-312
    47. Habib R, Lafolie F. Water and nitrate redistribution in soil as affected by root distribution and absorption. In Plan root growth and ecological perspective'. (Ed. D Atkinson),1991,131-145. (Blackwell Scientific Publications:Oxford, UK)
    48. Hamblin A, Tennant D, Perry MW. The cost of stress:Dry matter partitioning changes with seasonal supply of water and nitrogen to dry land wheat. Plant and Soil,1990,122:47-58
    49. Hanks RJ. Yield and water-use relationships:an overview. In:Taylor HM, Jordan WR, Sinclair TR, eds, Limitations to efficient water use in crop production. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America,1983
    50. Hoad SP, Russell G, Lucas ME, Bingham IJ. The management of wheat, barley, and oat root systems. Advances in Agronomy,2001,74:195-247
    51. Hudak CM, Patterson RP. Root Distribution and Soil Moisture Depletion Pattern of a Drought-Resistant Soybean Plant Introduction. Agronomy journal,1996,88: 478-485
    52. Hasenstein KH. Comparative effectiveness of metal ions in inducing curvature of primary toots of Zea mays. Plant Physiology,1988,86:885-889
    53. Hubick KT, Farquhar GD. Carbon isotope discrimination and ratio of carbon gained to water lost in barley. Plant Cell Environment,1989,12:795-804
    54. Hurd EA. Root studies of three wheat varieties and their resistance to drought and damage by soil cracking. Canadian Journal of Plant Science,1964,44:240-248
    55. Hurd EA. Growth of roots of seven varieties of spring wheat at high and low moisture levels. Agronomy Journal,1967,60:201-205
    56. Colleen M, Hudak and Robert PP. Root Distribution and Soil Moisture Depletion Pattern of a Drought-Resistant Soybean Plant Introduction. Agronomy journal (USA),1996,88:478-485
    57. Hubick KT, Farquhar GD. Carbon isotope discrimination and ratio of carbon gained to water lost in barley. Plant Cell Environment,1989,12:795-804
    58. Hudak CM, Patterson RP. Root Distribution and Soil Moisture Depletion Pattern of a Drought-Resistant Soybean Plant Introduction. Agronomy journal (USA),1996, 88:478-485
    59. Jamison VC. Changes in air-water relation-ships due to structural improvement of soils. Soil Science,1953,76:143-151
    60. Jenner CF, Ugalde TD, Aspinall D. The physiology of starch and protein deposition in the endosperm of wheat. Australian Journal of Plant Physiology,1991,18: 211-226.
    61. Jensen RD, Taylor SA, Weibe HH. Negative transport and resistance to water flow through plant. Plant Physiol,1961,36:633-638
    62. Jungk A. Root hairs and the acquisition of plant nutrients from soil. Journal of Plant Nutrition and Soil Science-Zeitschrift fur Pflanzenernahrung und Bodenkunde, 2001,164:121-129
    63. Kage H. Relative contribution of mass flow and diffusion to nitrate transport towards roots. Zeitschrift fur Pflanzenernahrung und Bodenkunde,1997,160: 171-178
    64. Karasov CG Irrigation efficiency in water delivery. Technology,1982:62-74
    65. Klepper B. et al. Farm management and the function of field crop root system. Agric. Water Manage,1983,7:115-141
    66. Klepper B, Belford RK, Rickman RW. Root and Shoot Development in Winter Wheat, American Society of Agronomy,1984,76:117-122
    67. Kmoch HG, et al. Root Development of Winter Wheat as Influenced by Soil Moisture and Nitrogen Fertilization. Agronomy Journal,1957,49:20-25
    68. Kobata T, Palta JA, Turner NC. Rate of development of post-anthesis water deficits and grain filling spring wheat. Crop Science,1992,32:1238-1242
    69. Lahiri AN, Singh S, Kackar NL, Proc. India National Science Academic, Part B, 1997,3:77
    70. Lemerle D, Verbeek B, Cousens RD, and Coombes NE. The potential for selecting wheat varieties strongly competitive against weeds. Weed Research,1996,36: 505-13
    71. Li C, Cao W, Dai T. Dynamic characteristics of floret primordium development in wheat. Field Crops Research,2001,71:71-76
    72. Liao MT, Fillery IRP, Palta JA. Early vigour as a trait for improving nitrogen uptake by wheat. In'Plant Breeding for the 11th Millennium. Proceedings of the 12th Australasian Plant Breeding Conference'.15-20 September 2002, Perth, Western Australia.2002,522-524. (Australasian Plant Breeding Association Inc.)
    73. Liao MT, Fillery IRP, Palta JA. Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Functional Plant Biology,2004,31:121-129
    74. Loerns GF, Bennet JM. Differences in drought resistance between two com hybrids, I Water relations and root-length density. Agronomy Journal,1987,79:502-807
    75. Loffler CM, Rauch TL, Busch RH. Grain and Plant Protein Relationships in Hard Red Sping Wheat. Crop Science,1985,25:521-524
    76. Lopez-Castaneda C, Richards RA. Variation in temperate cereals in rainfed environments. Ⅲ. Water use and water-use efficiency. Field Crops Research,1994, 39:85-98
    77. L6pez-Castaneda C, Richards RA. Farquhar GD. Variation in early vigor between wheat and barley. Crop Science,1995,35:472-479
    78. Lopez-Castaneda C, Richards RA, Farquhar GD, Williamson RE. Williamson Seed and Seedling Characteristics Contributing to Variation in Early Vigor among Temperate Cereals. Crop Science,1996,36:1257-1266
    79. Mckendry AL,Mc Vetcy PBE,Evans LE,Selection criteria for combing high grain yield and high grain protein concentration in bread wheat. Crop Science,1995,35: 1597-1602
    80. Narayan D. Root growth and productivity of wheat cultivars under different soil moisture condition. International Journal of Ecology and environmental sciences, 1991,17:19-26
    81. Nemeth T, Follett RF, Wierenga PJ. Nitrogen in Hungarian soils nitrogen management relation to groundwater protection. Integrated nitrogen management in relation to leaching and groundwater quality [Al. Selected papers from the symposium held at the 15th world Congress of soil Science, Acapulco, Mexico, 10-16 July,1994. Journal of Contaminant Hydrology,1995,20:185-208
    82. Miralles DJ, Slafer GA, Lynch V. Rooting patterns in near-isogenic lines of spring wheat for dwarfism. Plant and Soil,1997,197:79-86
    83. Nour AE, Wiebel DE. Evaluation of root characteristics in grain sorghum. Agronomy Journal,1987,70:217-219
    84. Nye PH, Tinker PB, Solute Movement in the Soil-Root System. University of California Press. Berkeley, CA, USA.1977
    85. Otoole JC, Bland WL. Genotypic variation in crop plant-root systems. Advances in Agronomy,1987,41:91-145
    86. Persson H, Fircks Y. Von, Majdi H, Nilsson LO. Root distribution in a Norway spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium-sulphate application. Plant and soil,1995,168/169:161-165
    87. Palta JA, Nobel PS, Root respiration for A. desertion:Influence of temperature, water status, and root age on daily patterns. Journal of Experimental Botany,1989, 40:181-186
    88. Poni S, Tagliavini M. Influence of root pruning and water stress on growth and physiological factors of potted apple grape peach and pear trees. Horticultural Science,1992,52:223-226
    89. Read JJ, Johnson DA, Asay KH, et al. Carbon isotope discrimination, gas exchange, and water use efficiency in crested wheatgrass clones. Crop Science,1991,31: 1203-1208
    90. Rebetzke GJ, Richards RA. Genetic improvement of early vigour in wheat. Australian Journal of Agricultural Research,1999,50:291-303
    91. Regan KL, Siddique KHM, Turner NC, Whan BR. Potential for increasing early vigour and total biomass in spring wheat. Ⅱ. Characteristics associated with early vigour. Australian Journal of Agricultural Research,1992,43:541-53
    92. Richards RA. The effect of dwarfing genes in spring wheat in dry environments. II. Growth, water use, and water-use efficiency Australian Journal of Agricultural Research,1992,43:529-39
    93. Richards RA, Lukacs Z. Seedling vigour in wheat-sources of variation for genetic and agronomic improvement. Australian Journal of Agricultural Research,2002,53: 41-53
    94. Robinson D, Rorison IH. Relationships between root morphology and nitrogen availability in a recent theoretical model describing nitrogen uptake from soil. Plant, Cell and Environment,1983a,6:641-647
    95. Robinson D, Rorison IH. A Comparison of the Responses of Lolium perenne L., Holcus lanatus L. and Deschampsia flexuosa (L.) trin. to a localized supply of nitrogen. New Phytologist.1983b,94:263-273
    96. Robinson D, Rorison IH. Root Hairs and Plant Growth at Low Nitrogen Availabilities. New Phytologist,1987,107:681-693
    97. Sanford DA, Maekown CT. Variation in nitrogen use efficiency among soft red winter wheat genotypes. Theoretical and Applied Genetics,1986,72:158-163
    98. Sattelmacher B, Gerendas J, Thorns K, Bruck H, Bagdady NH. Interaction between root growth and mineral nutrition. Environmental and Experimental Botany,1993, 33:63-73
    99. Sattelmacher B, Horst WJ, Becker HC. Factors that contribute to genetic variation for nutrient efficiency of crop plants. Zeitchrift fur Pflanzenernahrung und Bodenkunde,1994,157:215-224
    100. Sattelmacher B, Klotz F, Marschner H. Influence of nitrogen level on root growth and morphology of two potato varieties differing in nitrogen acquisition. Zeitschrift fur Pflanzenernahrungnd Bodenkunde,1990,157:215-224
    101. Sharp RE, DaviesWJ, Root Growth and Water Uptake by Maize Plants in Drying Soil. Journal of Experimental Botany,1985,36:1441-1456
    102. Siddique KHM, Tennant D, Perry MW, Belford RK. Water use and water use efficiency of old and modernwheat cultivars in a Mediterranean type environment. Australian Journal of Agricultural Research.1990,41,431-447
    103. Sirohi GS, Uprety DC, Tomar OPS. Studies on the root growth of wheat varieties. Indian Journal of Plant Physiology,1978,21:185-196
    104. Smika DE, Greb BW. Protein Content of Winter Wheat Grain as Related to Soil and Climatic Factors in the Semiarid Central Great Plains. Agronomy Journal,1973,65: 433-436
    105. So HB, Jayasekara KS. The effects of root/shoot ratios on the water relationships of sorghum (Sorghumbicolor L. Moench). In'International Symposium on Plant Roots'.22-26 August1988, Uppsala, Sweden
    106. Sommer KJ. Importance of root signals for growth and yield of some tropical crop plants in drying soil. PhD thesis, The Univesrity of Queensland, Australia,1991
    107. Tanner CB, Sinclair TR. Efficient water use in crop production:Research or re-search, pp.1-27. In Taylor HM et al. (ed) Limitations to efficient water use in crop production. ASA, CSSA, AND SSSA, Madison, WI
    108. Taylor HM, Gardner HR. Penetration of cotton seeding Taproots as influenced by bulk density, moisture content and strength of soil. Soil Science,1963,96:153-156
    109. Taylor HM, Hlepper B. Rooting density and water extraction for corn. Agronomy journal.1973,65:965-968
    110. Taylor HW, Jordan WR (eds). Limitations to efficient water use in crop production. Ameriean Society of Agronomy,1983,393-410
    111. Turner NC, Rate of development of postanthesis water deficits and grain filling of spring wheat. Crop Science,1992,32:1238-1242
    112. Turner NC, Nicholas ME. Early vigour:A yield-positive characteristic for wheat in drought-prone Mediterranean-type environments. In'Crop Improvement for stress tolerance'. (CCSHAU Hisar and MMB, New Delhi, India).1998,47-62
    113. Viets FG, Water deficits and nutrient availability. In:Koz-Lowski, T.T(ed). Water deficits and plant growth,1972,3:217-247
    114. Virgona JM, Rarlow WR. Drought stress induces in the non-structural carbohydrate composition of wheat stem. Australian Journal of Plant Physiology,1991,18: 239-247
    115. Wiesler F, Horst WJ. Differences among maize cultivars in the utilization of soil nitrate and the related losses of nitrate through leaching. Plant and Soil,1993,151: 193-203
    116. Wiesler F, Horst WJ. Root growth and nitrate utilization of maize cultivars under field conditions. Institute of Plant Nutrition,1994,163:267-277
    117. Yin B, Shen RF, Zhu ZL. Use of new water soluble surface film-forming material to reduce ammonia loss from water solution. Pedosphere,1996,6:329-334
    118. Zadoks JC, Chang T, Konzak CF. A decimal code for the growth stages of cereals. Weed Research,1974,14:415-421
    119. Zhang J, Sui X., Li B, Su B, Li J, Zhou D. An improved water-use Efficiency for winter wheat grown under reduced irrigation. Field Crops Research,1998,59: 91-98
    120. Zhang XY, Dong P, Chen SY. Root growth and soil water utilization of winter wheat in the North China Plain. Hydrological Processes,2004,18:2275-2287
    121. 陈培元.冬小麦根系的研究.陕西农业科学,1980:1-6
    122. 陈培元等.限量灌溉对冬小麦增产和水分利用的影响,干旱地区农业研究,1992,10:48-53
    123. 陈培元,詹谷宇,谢伯泰.冬小麦根系的研究.山西农业科学,1980,6:1-6
    124. 陈尚漠.早区农田水分利用效率探讨,干早地区农业研究,1995,1:14-19
    125. 陈素英,张喜英,胡春胜等.秸秆覆盖对夏玉米生长过程及水分利用的影响.干旱地区农业研究,2002,20:55-66
    126. 戴良香.冬小麦品种演替过程中氮素吸收和分配羞异的研究.河北农业大学学报,1998,21:23-29
    127. 董桂春,王余龙,吴华,等.水稻主要根系性状对施氮时期反应的品种间差异.作物学报,2003,29:871-877
    128. 杜建军,田霄鸿,王朝辉,李生秀,高亚军,李世清,王喜庆.根系吸收水分和养分的作用以及以肥促根的效应.王德水主编.早地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995,106-110
    129. 杜建军,王朝晖,田霄鸿等.施肥对作物吸取、转运、利用土壤水分的影响.见汪德水主编.早地肥水关系原理与调控技术.北京:中国农业科技出版社,1995,182-186
    130. 杜金哲,李文雄,胡尚连,刘锦江.春小麦不同品质类型氮的吸收、转化利用及 籽粒产量和蛋白质含量的关系.作物学报,2001,27:134-147
    131. 高亚军,王喜庆,杜建军等.施肥对提高水分利用效率的影响.见汪德水主编.早地肥水关系原理与调控技术.北京:中国农业科技出版社,1995,191-194
    132. 高延军,张喜英.冬小麦品种间水分利用效率的差异及其影响因子分析.灌溉排水学报,2004,23:45-49
    133. 赫晓玲.小麦不同根群对产量形成的作用.中国小麦栽培研究新进展.北京:农业出版社,1993,473-479
    134. 何绪生,李素霞,李旭辉.控效肥料的研究进展,植物营养与肥料学报,1998,4:97-106
    135. 黄文学.水分对春小麦根系生长动态的影响.西北农业学报,1995,4:21-24
    136. 黄严帅,郭万胜,沈序桃等.生态环境和栽培措施对江苏优质专用小麦品质的影响.耕作与栽培,2004,1:4-6
    137. 黄元仿.土壤——作物系统中氮素行为的定量研究及其应用前景.土壤与植物营养研究新动向(第三卷).张福锁,龚元石,李晓林主编.北京:中国农业出版社,1995,68-81
    138. 胡蔼堂主编.植物营养学(上、下册).北京:北京农业大学出版社,1995
    139. 翟丙年,李生秀.不同水分状况下施氮对夏玉米水分利用效率的影响.植物营养与肥料学报,2005,11:473-480
    140. 翟丙年,李生秀.冬小麦水氮配合关键期和亏缺敏感区的确定.中国农业科学,2005,38:1188-1195
    141. 姜东,谢祝捷,曹卫星等.花后干早和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004,30:175-182
    142. 姜东,于振文,苏波,许玉敏,余松烈.不同施氮时期对冬小麦根系衰老的影响.作物学报,1997,23:181-190
    143. 江荣风,张起刚.锌对冬小麦生长和氮素利用的影响.北京农业大学学报,1995,21(增刊):77-80
    144. 蒋永忠,刘海琴,张永春.高效尿素提高氮利用的机理.江苏农业学报,2000,16:180-184
    145. 蒋永忠,吴金桂,娄德仁.氮素化肥对农业生态环境的污染及其控制措施.江苏农业科学,1998,6:48-50
    146. 金继运.“精准农业”及其在我国的应用前景.植物营养与肥料学报,1998,4:1-7
    147. 巨晓棠,张福锁.关于氮肥利用率的思考.生态环境,2003,12:192-197
    148. 康绍忠,张建华.控制性交替灌溉——一种新的农田节水调控思路.干早地区农业研究,1997,15:1-6
    149. 兰涛,姜东,谢祝捷等.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响.水土保持学报,2004,18:193-196
    150. 刘殿英,黄炳茹,董庆裕.土壤水分对冬小麦根系的影响.山东农大学报,1991,22:103-110
    151. 吕殿青,周延安,孙本华.氮肥施用对环境污染影响的研究.植物营养与肥料学报,1998,4:8-15
    152. 李金才,魏凤珍,余松烈等.孕穗期渍水对冬小麦根系衰老的影响.应用生态学报,2000,11:723-726
    153. 李生秀,李世清,高亚军,王喜庆,贺海香,杜建军.施用氮肥对提高早地作物利用土壤水
    154. 分的作用机理和效果.干早地区农业研究,1994,12:38-46
    155. 李世清,李生秀,田霄鸿等.杨凌中等.肥力田块小麦的水肥耦合效应.见汪德水主编.早地肥水关系原理与调控技术.北京:中国农业科技出版社,1995,246-252
    156. 李友军.旱地小麦根系生育与调控效应的研究.干旱地区农业研究,1997,15:6-16
    157. 李玉山.渭北旱原土壤水分动态规律及其对冬小麦的生长关系.陕西农业科学,1992,1-5
    158. 李志熙,彭珂珊,廖允成.黄土高原水土流失区干旱条件下节水灌溉持续增产效益诊断.水土保持研究,2006,13:66-69,
    159. 李志勇,王璞,翟志席,等.不同水肥优化模式下冬小麦根系生长及水氮利用效率.耕作与栽培,2003,1:17-19
    160. 卢援民,熊勤学等.冬小麦根系各种参数垂直分布试验研究.应用生态学报,1991,2:127-133
    161. 林琪.土壤水与冬小麦产量形成的关系及节水灌溉方案.华北农学报,1998,1-5
    162. 罗其友.21世纪节水农业持续推进的战略思考.农业技术经济,1999,3:5-9
    163. 马瑞昆,贾秀领.供水深度与冬小麦根系发育的关系.干旱地区农业研究,1991,3:1-9
    164. 马新明,熊淑萍,李琳,等.土壤水分对不同专用小麦后期光合特性及产量的影响.应用生态学报,2005,16:83-87
    165. 马元喜.不同土壤对小麦根系生长动态的研究.作物学报,1987,13:37-44
    166. 马元喜.小麦的根.北京:中国农业出版社,1999,50-100
    167. 马忠明.有限灌溉条件下作物——水分关系的研究.干旱地区农业研究,1991:1-9
    168. 孟兆江,刘安能,吴海卿.商丘试验区夏玉米节水高产水肥耦合数学模型与优化方案.灌溉排水,1997,16:18-21
    169. 孟兆江,王和洲,庞鸿宾等.农业用水高效持续的几项关键技术.灌溉与排水,1999,18(增刊):63-66
    170. 苗果园.黄土高原早地冬小麦根系生长规律的研究.作物学报,1989,15:104-115
    171. 苗果园,张云亭,尹钧,侯跃生.黄土高原早地冬小麦根系生长发育规律的研究.作物学报,1989,15:104-115
    172. 秦武发,李宗智.生态因子对小麦品质的影响.北京农业科学,1989,4:21-24
    173. 钦绳武,刘芷宇.土壤——根系微区养分状况的研究.不同形态肥料氮索在根际的迁移规律.土壤学报,1989,26:117-123
    174. 茹天祥,曹瑞宗,常满仓,王思源,杨拴芬,王瑞祥.红土旱地冬小麦根系生长动态观测.干旱地区农业研究,1996,14:47-52
    175. 彭羽,郭天财,王晨阳.冬小麦开花后水分调控对光合特性及产量性状的影响.麦类作物学报,2001,21:83-86
    176. 邵明安,黄明斌编著.土——根系系统水动力学.陕西科学技术出版社,2000,131-155
    177. 石惠恩.灌溉对冬小麦籽粒产量和营养品质影响的初步研究.北京农学院学报,1998,3:167-171
    178. 石惠恩,李春喜.小麦中后期灌溉对产量和营养品质的影响.河南职技师院学报,1989,17:108-112
    179. 史文娟,康绍忠,梁宗锁.控制性分根交替灌溉技术的研究现状与发展,1999, 412-416
    180. 孙传范,曹卫星,戴廷波.土壤——作物系统中氮素利用效率的研究进展.土壤,2001,33:64-69
    181. 孙广玉,何庸,张荣华,等.大豆根系生长和活性特点的研究.大豆科学,1996,15:317-320
    182. 田纪春.《优质小麦》.山东科技出版社,1995
    183. 田佩占.人豆品种根系生态类型的研究.作物学报,1984,10:173-178
    184. 唐建阳,翁伯琦,何萍.提高稻田尿素利用率若干方法与机理探讨.植物营养与肥料学报,1998,4:242-248
    185. 王晨阳,郭天财,彭羽,等.花后灌水对小麦籽粒品质性状及产量的影响.作物学报,2004,30:1031-1035
    186. 王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究.华北农学报,1992,7:1-8
    187. 王法宏.大豆抗早品种特性的研究.1990,2:196-199
    188. 王密侠,康绍忠,蔡焕杰.调亏灌溉对玉米生态特性及产量的影响.西北农业大学学报,2000,28:31-36
    189. 王韶唐.植物水分利用效率与早地农业生产.于早地区农业研究,1987,2:67-80
    190. 王绍中,茹天祥.丘陵红粘土旱地冬小麦根系生长规律的研究.植物生态学报,1997,21:175-190
    191. 王玉贞,李维岳,尹枝瑞.玉米根系与产量关系的研究进展.吉林农业科学,1999,24:6-8
    192. 王月福,陈建华,曲健磊,等.土壤水分对小麦籽粒品质和产量的影响.莱阳农学院学报,2002,19:7-9
    193. 王月福,于振文,李尚霞,余松烈.氮肥施用量对小麦蛋白质组成及加工品质的影响.中国农业科学,35:1071-1078
    194. 王朝辉,田霄鸿,李生秀.冬小麦生长后期地上部分氮素的氨挥发损失.作物学报,2001,27:1-6
    195. 王志芬,陈学留,余美炎,中秀珍,王奎波,王同燕.冬小麦根系活力变化动态的研究.华北农学报,1993,8(增刊):70-73
    196. 吴敬民,高建峰,胡洪基,张才银.氮肥不同施用方法对小麦生长及其吸收利用氮素的影响.土壤通报,1994,25:210-212
    197. 许前欣,赵振达,李振云.稻田水面分子膜对提高氮肥利用率的研究.农业环境保护,1998,17:216-218
    198. 许振柱,李长荣,陈平,等.土壤干旱对冬小麦生理特性和干物质积累的影响.干旱地区农业研究,2000,18:113-118
    199. 许振柱,于振文,张永丽.土壤水分对小麦籽粒淀粉合成和积累特性的影响.作物学报,2003,29:595-600
    200. 徐兆飞,张惠叶,张定一.小麦品质及其改良.北京:气象出版社,1999
    201. 薛清武.灌浆期土壤干旱条件下氮素营养对小麦旗叶光合作用的影响.干早地区农业研究,1989,2:86-93
    202. 严小龙,张福锁.植物营养遗传学.北京:中国农业出版社,1997:1-179
    203. 杨凯,胡荣海,肖京城.不同抗旱性冬小麦品种抽穗期根系垂直分布及单根活力的研究.西北植物学报,1998,18:190-195
    204. 杨兆生,张立祯.小麦开花后根系衰退及分布规律的初步研究.华北农学报,1999,14:28-31
    205. 杨震,朱兆良,蔡贵信,等.表面成膜物质抑制水稻田氨挥发的研究.土壤学报,1995,32(增刊2):160-166
    206. 尹斌,沈仁芳,朱兆良.水面分子膜对提高氮肥利用率及水稻产量的影响.红壤生态系统研究,1998,5:192-195.
    207. 尹斌,沈仁芳,朱兆良.农田施氮对环境的影响和有效施氮的措施.南京大学学报(自然科学版),1997,33(专辑):265-267
    208. 张和平,刘晓楠.华北平原冬小麦根系生长规律及其与氮肥磷肥和水分的关系.华北农学报,1993,8:76-82
    209. 张岁歧,山仑.节水农业中的生物学问题.国际旱地节水农业研讨会论文集,117-123
    210. 张喜英.作物根系与土壤水利用.北京:气象出版社,1999,100-131
    211. 张正斌、山仑.小麦旗叶水分利用效率比较研究.科学通报,1997,42:1876-1881
    212. 赵立新,荆家海.旱地冬小麦施肥效应研究.干旱地区农业研究,1991,4:46-50
    213. 赵先贵.用CCC(氯化氯代胆碱)浸种对提高早地小麦氮肥利用率的研究.干旱地区农业研究,1990,2:55-65
    214. 郑丕尧,王法宏,王瑞舫,王树安.大豆不同抗旱性品种根系形状的比较研究.中国油料,1989,2:6-9
    215. 郑圣先,刘德林,聂军等.控释氮肥在淹水稻田土壤上的去向及利用率.植物营养与肥料学报,2004,10:137-142
    216. 周苏玫,王晨阳,张重义等.土壤溃水对小麦根系生长及营养代谢的影响.作物学报,2001,27:674-679
    217. 周涛,惠开基.施肥提高早地水分利用效率的机理和效果.土壤通报,2000,31:85-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700