用户名: 密码: 验证码:
马铃薯StCOL和StTFL1的克隆及其在块茎形成中的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯(Solanum tuberosum L.)是仅次于水稻、小麦、玉米之后的第四大粮食作物。块茎是马铃薯的繁殖器官,也是产品器官。研究马铃薯块茎形成的调控机制,不仅具有理论价值,而且对马铃薯的产量提高具有指导意义。马铃薯块茎形成是一个复杂的生物学过程,并受内在因素及外界因素的调控。最近,有报道将拟南芥的AtCO基因导入马铃薯,在短日照条件下,AtCO过表达可以导致块茎形成减少,说明AtCO对块茎的形成有负调节作用。但是其调控块茎形成机制以及内源CO在块茎形成中作用仍不清楚。为了揭示CO在马铃薯块茎形成中的作用,本文克隆了马铃薯StCOL、StTFL1和StLFY基因,并通过构建StCOL反义抑制和StTFL1过表达转基因植株,初步分析了StCOL和StTFL1对块茎形成的作用。主要研究结果如下:
     1.克隆了一个马铃薯StCOL cDNA序列(DQ882684)、基因组DNA序列及其启动子。该基因由一个内含子和两个外显子构成,StCOL cDNA序列含有一个1083 bp的开放阅读框,编码一个360个氨基酸残基构成的蛋白质分子,StCOL分子量为39.21 kD,等电点为5.09。采用DNAMAN对StCOL和其他同源蛋白的氨基酸序列比对,结果表明StCOL氨基酸序列与拟南芥的AtCO. AtCOL、AtCOL2和AtCOL3的氨基酸序列具有较高的一致性,在N-和C-末端分别具有保守的B-box和CCT结构域,在蛋白C-末端有一保守的7肽序列(YGVVPSF);系统进化分析结果表明StCOL与豌豆PsCOLb及拟南芥AtCOL3分子的亲缘关系最近;StCOL基因启动子序列上游有8个TATA-box、4个CAAT-box、1个I-box、4个GATA-box等多个顺式作用元件。采用半定量RT-PCR方法对StCOL mRNA水平分析结果显示,StCOL在马铃薯的根、茎、叶、顶芽、花芽和花中都有表达,其中在叶片中的表达水平最高;对块茎形成过程中该基因的表达分析结果显示,在块茎形成不同时期都有StCOL表达,在块茎形成后期表达水平较弱,在成熟块茎中检测不到该基因的表达。另外,体外微型薯的暗诱导过程中该基因持续表达,但该基因的表达水平不受蔗糖和赤霉素的影响。
     2.采用RT-PCR和RACE的方法克隆了马铃薯StTFL1 cDNA序列(DQ307621)。StTFL1 cDNA序列含有一个528 bp的开放阅读框,编码一个由175个氨基酸残基组成的蛋白,该蛋白分子量为19.86 kD,等电点为8.73,66~88位氨基酸间具有PEBP蛋白典型的特征结构,采用DNAMAN软件对StTFL1和其他同源蛋白的氨基酸序列比对,结果表明StTFL1和拟南芥TFL1、水稻CEN及烟草CEN在氨基酸水平有较高的一致性,而且拟南芥的TFL1和马铃薯的TFL1的二级结构基本一样。采用半定量RT-PCR方法对不同组织中该基因的表达水平检测结果显示,StTFL1基因在马铃薯的根、茎、叶、顶芽和花芽中均表达,其中在根中的表达水平最高;另外,发现在块茎形成的不同时期StTFL1都表达,尤其在匍匐茎形成时有高水平的表达。
     3.采用RT-PCR和RACE的方法克隆了马铃薯StLFY cDNA序列(EF062357)及基因组DNA序列(EU371047)。该基因由三个外显子和两个内含子组成,StLFY cDNA含有一个1257 bp的开放阅读框,编码一个由418个氨基酸残基组成的蛋白,该蛋白分子量为46.37 kD,等电点为6.18。采用DNAMAN软件对StLFY和其他同源蛋白的氨基酸序列比对,结果表明StLFY和AtLFY、NtFL2及SILFY在氨基酸水平有较高的一致性,而且在氨基末端都有一个保守的富含脯氨酸的区域。半定量RT-PCR分析结果显示,StLFY仅在马铃薯顶芽和花芽有较弱的表达,而且在匍匐茎初始形成时也有较弱表达。
     4.为了进一步了解StCOL和StTFL1与马铃薯块茎形成的关系,首先优化了一简便的农杆菌介导的马铃薯茎段遗传转化方法:茎段外植体暗中预培养2d,农杆菌侵染5~8 min,暗中共培养时间为2d,转入愈伤诱导和芽分化的培养基(MS+0.5 mg/LTDZ+0.3 mg/L GA3+50mg/L Kan+200 mg/L Car+200 mg/L Cef),光照培养4~5周即有不定芽的生成。采用PCR方法验证转基因植株,转化率约为5%。在此基础上,进行了StCO L和StTFL1基因的遗传转化,初步对StCO L和StTFL1在块茎形成中的作用以及它们之间的关系进行了分析。短日照条件下,与未转化对照组相比,表达StCOL反义片段的转基因株系叶片中StCOL mRNA水平下降,植株形成块茎个体总数增加,此结果表明StCO L对块茎的形成有负调节作用;过表达StTFL1转基因株系叶片中StTFL1 mRNA水平和形成的块茎个数均增加,表明StTFL1对块茎的形成有促进作用;分别对StCOL反义抑制和StTFL1过表达转基因植株中的StTFL1和StCOL转录表达分析,结果显示,StTFL1是StCOL的下游基因。
Potato (Solarium tuberosum L.) is ranked 4th in crop production following rice, wheat and maize. Potato tubers are propagation organ and product organ. Researches on the regulation mechanism of tuberization is not only of theoretical value but also of instructive significance for improving production. Potato tuberization is a complex biological process. Tuberization is regulated by many factors including the internal and the environmental factors. Recently, AtCO was introduced into potato, the over-expression of AtCO could reduce tuberization under short-day, this result showed that AtCO could negatively regulate tuber formation. However, roles of AtCO and inner CO in controlling tuber formation remain unclear. In order to reveal the role of CO in the tuber formation, this paper focused on cloning StCOL, StTFL1 and StLFY gene from potato, and preliminarily analyzing the roles of StCOL and StTFLl in tuberization by constructing over-expreession StTFLl and antisene repression StCOL transgenic plants. The main results are as follows:
     1. A gene named StCOL(Solanum tuberosum CONSTANS-LIKE, DQ882684) and its promoter was isolated from potato, the full length of the cDNA contains an open reading frame of 1083 bp coding a protein of 360 amino acids, corresponding to a 39.21 kD polypeptide with an isoelectric point of 5.09. Alignment of the amino acid sequence of StCOL and that of other homologues showed that StCOL had a high identity with AtCO, AtCOLl, AtCOL2 and AtCOL3 from Arabidopsis at amino acid level, especially in their N-and C-terminal regions containing two highly conserved B-boxes and CCT domain, respectively. In addition, the conserved 7-amino acid stretch (YGVVPSF) was also observed in C-terminal end of this new protein, it suggested that the new protein belonged to the CO or COL protein family. The deduced amino acid sequence and clustering analysis revealed that StCOL was colse to PsCOLb in pea, and AtCOL3 in A.thiliana. Promoter of StCOL contained some cis-acting elements including eight TATA-boxes, four CAAT-boxes, one I-box, four GATA-boxes and so on. Analysis of StCOL mRNA level by semi-quantity RT-PCR showed that it was expresed in roots, stems, leaves, apical buds, floral buds, flowers, especially highly expressed in leaves, and it was expressed lightly in the whole process of tuber formation, the level of StCOL mRNA became weaker at the late stage of tuberization, and disapeared in mature tubers. In addition, it was expressed continuously in stems during darkness-induce microtuber formaiton in vitro, and was independent on the level of gibberellin A3 and sucrose.
     2. A homologue of TFL/CEN, designated StTFL1 (Solanum tuberosum terminal flower 1, DQ307621), was isolated from potato by RT-PCR and RACE. The cDNA sequence of StTFLl was 746 bp long and contained an ORF of 528 bp. The predicted amino acid sequence of the gene was consisted of 175 amino acids, corresponding to a 19.86 kD polypeptide with an isoelectric point of 8.73, and had a conserved region at 66~88 amino residue when being aligned with sequences of other members of PEBP family. Alignment of the amino acid sequence of StTFLl and that of other homologues showed that StTFLl had a high identity with TFL/CEN homologous members from A. thiliana, O. sativa and N. tabacum. The secondary structure models of AtTFLl and StTFL1 were nearly same. Clustering analysis revealed that StTFL1 was close to CaSP. Analysis of StTFLl mRNA by semi-quantity RT-PCR showed that it was expressed in roots, stems, leaves, apical buds and floral buds but not expressed in flowers, especially highly expressed in roots, and that it was expressed continuously during tuber formation, especially the level of its mRNA was more higher in initial stolons than in other tissues.
     3. A homologue of FLORICAULAILEAFY, designated StLFY(Solanum tuberosum LEAFY, EF062357), was isolated from potato by RT-PCR and RACE. The cDNA sequence of StLFY was 1417 bp long and contained an ORF of 1257 bp. StLFY gene contained three exons and two introns. The predicted amino acid sequence of the gene was consisted of 418 amino acids, corresponding to a 46.37 kD polypeptide with an isoelectric point of 6.18. Alignment of the amino acid sequence of StLFY and that of other homologues showed that StLFY had a high identity with LFY homologous members from A. thiliana, S. lycopersicum and N. tabacum, and had a conserved region in the N-termiusl when being aligned with sequences of other LFY homologues. Analysis of StLFY mRNA by semi-quantity RT-PCR showed that it was slightly expressed in apical buds, floral buds and initial stolons.
     4. In order to further understand the regulation role of StTFL1 and StCOL in potato tuberizatin, first of all, a simple genetic transformation method of Agrobacterium-mediated potato stem cuttings was optimized:stem explants were precultured for two days in darkness, then infected by Agrobacterium for 5~8 min, co-cultured for two days, finally, transferred to the MS medium supplemented with 0.5 mg/L TDZ+0.3 mg/L GA3+50 mg/L Kan+200 mg/L Car+200 mg/L Cef. Adventitious buds could emerge after induction in light for 4~5 weeks. The transformation was tested by PCR, the transformation efficiency reached to 5%. Based on this, the genetic transformation of StCOL and StTFLl was carried. The role and relationship between StCOL and StTFL1 in tuber formation were preliminarily analyzed by being compared with the wild type, transgenic lines of antisense-stCOL had a lower level of StCOL mRNA in leaves but more tubers in average. It suggested that StCOL could negatively regulate tuberization; the transgenic lines of over-expression StTFL1 had a higher level of StTFL1 mRNA in leaves but also more tubers in average. It suggested that StTFL1 could promote tuberization. Analysis of the transcription level of StTFL1 mRNA and StCOL mRNA in transgenic lines of antisense-repression StCOL and over-expression StTFL1 showed that StTFL1 was a downstream gene of StCOL.
引文
1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell,2003,15:63-78
    2. Ahn YJ, Zimmerman JL. Introduction of the carrot HSP 17.7 into potato (Solanum tuberosum L.) enhances cellular membranestability and tuberization in vitro. Plant Cell Environ,2006,29:95-104
    3. Aksenova NP, Konstantinova TN, Golyanovskaya SA, Gukasyan IA,Gatz C, Romanov GA.Tuber formation and growth of in vitro cultivated transgenic potato plants overproducing Phytochrome B. Russian Journal of Plant Physiol,2002,49 (4):478-483
    4. Alvarez J, Guli CL, Yu XH, Smyth DR. Terminal flower. A gene affecting inflorescence development in Arabidopsis thaliana. Plant J,1992,2:103-116
    5. Amador V, Bou J, Martinez-Garcia J, Monte E, Rodriguez-Falcon M, Russo E. and Prat S. Regulation of potato tuberization by day length and gibberellins. Int. J. Dev. Biol,2001,45 (S1): 37-38
    6. An G, Watson BD.Transformation of tobacco, tomato, potato and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol,1986,81:301-305
    7. An H, Rousso C, Suarez-Lopez P, Corbesier L, Vincent C, Pinelro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development,2004,131:3615-3626
    8. Anand VK, Heberlein GT. Crown gall tumor genesis in potato tuber tissue. American J of Botany, 1977,64:153-158
    9. Anjan K Banerjee, Salome Prat and David J Hannapel. Efficient production of transgenic potato (S.tuber L. ssp. Andigena)plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci, 2006,170:732-7381
    10. Anne LM, Peter EH, Rhonda CM, Naveed A, Diane D, Gordon CM. Expression of tandem invertase genes associated with sexual and vegetative growth cycles in potato. Plant Mol Bio,1999, 41:741-751
    11. Arakawa T, Yu J, Langridge WH. Synthesis of a cholera toxin B subunit-rotavirus NSP4 fusion protein in potato. Plant Cell Rep,2001,20 (4):343-348
    12. Arnqvist L, Dutta PC, Jonsson L, Sitbon F. Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyl transferase cDNA. Plant Physiol,2003,131:1792-1799
    13. Ayre BG, Turgeon R. Graft transmission of a floral stimulant derived from CONSTANS1. Plant Physiol,2004,135 (4):2271-2278
    14. Bachem CWB, Vander HRS. De Bruijn SM, Vreugdenhil D, Zabeau M, Visser RG.F. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J,1996; 9:745-753
    15. Ballicora MA, Laughlin MJ, Fu Y, Okita TW, Barry GF, Preiss J. Adenosine 5'-diphospate-glucose pyrophosphorylase from potato tuber. Plant Physiol,1995,109:245-253
    16. Banfield MJ, Brady RL. The structure of Antirrhinum centroradialis protein (CEN) suggests a role as a kinase regulator. J. Mol. Biol,2000,207:1159-1170
    17. Banfield MJ, Barker JJ, Perry AC, Brady RL. Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure,1998,6:1245-1254
    18. Banerjee AK, Chatterjee M, Yu Y, Suh S-G, Miller WA, Hannapel DJ. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell,2006,18:3443-3457
    19. Baum DA, Yoon HS, Oldham RL. Molecular evolution of the transcription factor LEAFY in Bra-ssicaceae. Mol. Phylogenet. Evol,2005,37 (1):1-14
    20. Beajean A, Sangwan RS, Lecardonnel A, Sangwan-Norrel BS. Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal expalnts:an efficient protocol of transformation. J Exp Bot,1998,49:1589-1595
    21. Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E. The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J,2006,46 (3):462-76
    22. Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Huffman G. Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol, 1992,18:301-313
    23. Blazquez MA. Illuminating flowers:CONSTANS induces LEAFY expression. Bio Essays,1997,19: 277-279
    24. Bogorad L. Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. Trends Biotechnol,2000,18 (6):257-63
    25. Borello U, Caccarelli E, Giuliano G. Constitutive, light-responsive and circadian clock-responsive factors compete for the different I box elements in plant light-regulated promoters. Plant J,1993,4: 611-619
    26. Boss PK, Bastow RM, Mylne JS, Dean C. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell,2004,16:18-31
    27. Boss PK, Sreekantan L, Thomas MR. A grapevine TFL1 homologue can delay flowering and alter floral development when overexpressed in heterologous species. Funct Plant Biol,2006,33:31-41
    28. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science,1997,275:80-83
    29. Busch A, Gleissberg S. EcFLO, a FLORICAULA-like gene from Eschscholzia californica is expressed during organogenesis at the vegetative shoot apex. Planta,2003,217:841-848
    30. Capelle SC, Mok DWS, Kirchner SC. Effects of TDZ on cytokinin autonomy and the metabolism of N6-(DELTA2-isopen-tenyl) [8-14C] adenosine in callus tissues of Phaseolus lunatus L. Plant Physiol,1983,73:796-802
    31. Carmel-Goren L, Liu YS, Lifschitz E, Zamir D. The SELF-PRUNING gene family in tomato. Plant Mol Biol,2003,52:1215-1222
    32. Carmona MJ, Calonje M, Martinez-Zapater JM. The FTITFLl gene family in grapevine. Plant Mol Biol,2007,63:637-650
    33. Carmona MJ, Cubas P, Martinez-Zapater JM. VFL, the grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Physiol,2002,130(1):68-77
    34. Cerdan PD, Chory J. Regulation of flowering time by light quality. Nature,2003,423:881-885
    35. Chang HH, Chan MT. Improvement of potato transformation efficiency by Agrobacterium in the presence of silver thiosulfate. Bot Bul Acad Sin,1991,32:63-70
    36. Chautard H, Jacquet M, Schoentgen F, Bureaud N, Benedetti H. Tfslp, a member of the PEBP family, inhibits the Ira2p but not the Iralp Ras GTPase-activating protein in Saccharomyces cerevisiae. Eukaryot Cell,2004,3:459-470
    37. Chen H, Banerjee AK, Hannapel DJ. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20oxl. Plant J,2004,38:276-284
    38. Chen MJ, Ni M. RFI2, a RING-domain zinc finger protein, negatively regulates CONSTANS expression and photoperiodic flowering. Plant J,2006,46:823-833
    39. Cheng XF, Wang ZY. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J,2005,43:758-768
    40. Coen ES, Romero JM, Doyle S, Elliot R, Murphy G,Carpenter R. Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell,1990,63:1311-1322
    41. Conner A J, Christey MC. Plant breeding and seed marketing options for the introduction of transgenic insect resistant crops. Biocontrol Sci Techn,1994,4:463-473
    42. Dale P J, Mcpartlan H C. Field performance of transgenic potato plants compared with controls regenerated from tuber discs and shoot cuttings. Theor Appl Genet,1992,84:585-591
    43. Datta S, Hettiarachchi GH, Deng XW, Holm M. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. Plant Cell,2006,18:70-84
    44. De Block M. Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens.Theor Appl Genet,1988,76:161-114
    45. Degenhardt J, Tobin EM. A DNA binding activity for one of two closely defined phytochrome regulatory elements in an Lhcb promoter is more abundant in etiolated than in green plants. Plant Cell,1996,8:31-41
    46. Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy F, Millar AJ, Amasino RM. The ELF 4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature,2002,419 (6902):74-77
    47. Dommelen AV. Scientific requirements for the assessment of food safety. Biotechnology and development montor,1999,38:2-7
    48. Drobyazina PE, Khavkin EE. A structural homolog of CONSTANS in potato. Russ J. Plan Physiol, 2006,53 (5):698-701
    49. Edwards D, Murray JAH, Smith AG. Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol,1998,117:1015-1022
    50. Ewen SWB, Pusztai A. Effect of diets containing genetically modified potatoes expressing galant hus nivalislectine on rat small intestine. The Lancet,1999,354:1353-1354.
    51. Ewing EE, Struik PC.Tuber formation in potato:induction, initiation and growth. Horti Reviews, 1994,15:135-151
    52. Fowler S, Le K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J. GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO, 1999,18:4679-4688
    53. Fujino K, Koda Y, Kikuta Y. Reorientation of cortical microtubules in the subapical region during tuberization in single-node stem segments of potato in culture. Plant Cell Physiol,1995,36: 891-895
    54. Garner N, Blake J.The induction and development of potato microtubers in vitro on media free of growth regulating substances.Ann Bot,1989,63:663-67
    55. Gilmartin PM, Sarokin L, Memelink J, Chua N-H. Molecular light switches for plant genes. Plant Cell,1990,2:369-378
    56. Gopal J, Minocha L, Dhaliwal HS..Microtuberization in potato(Solanum tuberosum L.). Plant Cell Reports,1998,17:794-798
    57. Grierson C, Du J, Zabala MDT, BeggsK, Smith C, Holdsworth M, Bevan M. Seperate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. The Plant J,1994,5 (6):815-826
    58. Griffiths S, Dunford RP, Coupland G. Laurie DA.The evolution of CONSTANS-like gene families in barley, rice and Arabidopsis. Plant Physiol,2003,131:1855-1867
    59. Grotewold E, Drummond BJ, Bowen B, Peterson T. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell,1994,76:543-553
    60. Guo H, Yang H, Mockle T, Un C. Regulation of flowering time by Arabidopsis photoreceptors. Science,1998,279:1360-1363
    61. Halliday KJ, Salter MG, Thingnaes E, Whitelam GC. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J,2003,33: 875-885
    62. Hamberg M. New cyclopentenone fatty acids formed from linoleic and linilenic acids in potato. Lipids,2000,35:353-363
    63. Hayama R, Coupland G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol,2004,135:677-684
    64. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature,2003,422:719-722
    65. Heeres P, Schippers-Rozenboom M, Jacobsen E, Visser RGF. Transformation of a large number of potato varieties:genotype-dependent variation in efficiency and somaclonal variability. Euphytica, 2002,124:13-22
    66. Hendriks T, Vreugdenhil D, Stiekema WJ. Patatin and four serine proteinase inhibitor genes are differentially expressed during potato tuber development. Plant Mol Biol,1991,17 (3):385-394
    67. Hengst U, Albrecht H, Hess D, Monard D. The phosphatidylethanolamine-binding protein is the prototype of a novel family of serine protease inhibitors. J Biol Chem,2001,276:535-540
    68. Holm M, Hardtke CS, Gaudet R, Deng XW. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J,2001,20:118-127
    69. Huala E, Sussex IM. LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell,1992,4:901-913
    70. Hugo PC, Liu XJ, Serrano JS, Schmid R, Willmitzer L. Factors affecting gene expression of patatin and proteinase-inhibitor-Ⅱ gene families in detached potato leaves. Planta,1992,186 (4):495-502
    71. Hulme JS, Higgins ES. and Shields R. An efficient genotype-independent method for regeneration of potato plants from leaf tissue. Plant Cell Tiss Org Cult,1992,31:161-167
    72. Huq E, Tepperman JM, Quail PH. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. PNAS,2000,97:9654-9658
    73. Hutchinson MJ, Saxena P K. Acetylasalicylic acid enchances and synchronizes TDZ-induced somatic embryogenesis in geranium (Pelargonium x horturum Bailey) tissue cultures. Plant Cell Rep,1996,15:512-515
    74. Iglesias AA, Barry GF, Meyer C. Expression of the potato tuber ADP-glucose pyrophosphorylase in E. coli. J Biol chem,1993,268:1081-1086.
    75. Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science,2005,309:293-297
    76. Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature,2003,426:302-306
    77. Ishida BK, Synder JW, Belknap.The use of in vitro-grown microtuber discs in Agrobacterium-mediated transformation of Russet and Lemhi Russet potatoes. Plant Cell Rep,1989, 8:325-328
    78. Ishizaki T, Kato A. Introduction of the tobacco retrotransposon Ttol into diploid potato. Plant Cell Rep,2005,24:52-58
    79. Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev,2002, 16:2006-2020
    80. Jackson SD. Multiple signaling pathways control tuber induction in potato. Plant Physiol,1999,119: 1-8
    81. Jackson SD, Heyer A, Dietze J, Prat S. Phytoehrome B mediates the Photophorodic control of tuberformation in potato.The Plant J,1996,9 (2):159-166
    82. Jackson SD, James P, Prat S. Phytochrome B affects the levels of a graft-transmissible signal involved in tuberization. Plant Physiol,1998,117:29-32
    83. Jackson SD, Willmitzer L. Jasmonic acid spraying does not induce tuberization in short-day requiring potato species kept in non-inducing conditions. Planta,1994,194:155-159
    84. Jefferson R, Goldsbrough A, Bevan M.Transcriptional regulation of a Patatin-I gene in potato. Plant Mol Biol,1990,4:995-1006
    85. Kang GK, David J Hannapel. A novel MADS-box gene of potato (Solanum tuberosum L.) expressed during the early stages of tuberization. Plant Mol Biol,1996,31:379-386
    86. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D. Activation tagging of the floral inducer FT. Science,1999,286:1962-1965
    87. Kelly AJ, Bonnlander MB, Meeks-Wagner DR. NFL, the tobacco homologue of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. Plant Cell,1995,7: 225-234
    88. Khuri S, Moorby J.Investigations into the role of sucrose in potato ev. Estima microtuber production in vitro.Ann Bol,1995,75:295-303
    89. Kim TG, Ruprecht R, Langridge WHR. SIVmac Gag p27 capsid protein gene expression in potato. Protein Expression and Purification,2004,36:312-317
    90. Klejnot J, Lin C. A CONSTANS experience brought to light. Science,2004,303:965-966
    91. Knapp S, Coupland G, Uhrig H, Starlinger P, Salamini F. Transposition of the maize transposable element Ac in Solanum tuberosum. Mol Gen Genet 1988,213:285-290
    92. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science,1999,286:1960-1962
    93. Koda Y. The role of jasmonic acid and related compounds in the regulation of plant development. Int. Rev. Cytol,1992,135:155-199
    94. Koda Y. Possible involvement of jasmonates in various morphogenic events. Plant Physiol,1997, 100:639-646
    95. Koda Y, Kikuta Y, Tazaki H, Tsujino Y, Sakamura S, Yoshihara T. Potato tuber-inducing activities of jasmonic acid and related compounds. Phytochemistry,1991,30:1435-1438
    96. KodaYK, Omer EA, YoshiharaT, Shibata H, Sakamura S, Okazawa Y. Isolation of a specific potato tuber-inducing substance from potatoleaves. Plant Cell physiol,1988,29 (6):1047-1051
    97. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol,2002,43:1096-1105
    98. Kolomiets KV, Hannapel D J, Gladon R J. Potato lioxygenase genes expressed during the early stages of tuberization. Plant Physiol,1996,112:446-449
    99. Kolomiets MV, Hannapel D J, Chen H, Tymeson M, Gladon RJ. Lipoxygenase is involved in the control of potato tuber development. The Plant Cell,2001,13:613-626
    100. Koornneef M, Hanhart CJ. and Vander-Veen JJ. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet,1991,229:57-66
    101. Kumar A, Miller M, Whitty P, Lyon J, Davie P. Agrobacterium-mediated transformation of five wild Solanum species using in vitro microtubers. Plant Cell Rep,1995,14:324-328
    102. Kurup S, Jones HD, Holdsworth MJ. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J.,2000,21:143-155
    103.Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell, 2003,15:5-18
    104. Lagercrantz U, Axelsson T. Rapid evolution of the family of CONSTANS LIKE genes in plants. Mol Biol Evol,2000,17(10):1499-507
    105. Larsson AS, Landberg K, Meeks-Wagner DR. The TERMINAL FLOWER2 (TFL2) gene controls the reproductive transition and meristem identity in Arabidopsis thaliana. Genetics,1998,149: 597-605
    106. Ledger S, Strayer C, Ashton F, Kay SA, Putterill J. Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant,2001,26:15-22
    107. Lehesranta SJ, Davies HV, Shepherd LVT, Koistinen, Massat N, Nunan N, McNicol JW, Karenlampi SO. Proteomic analysis of the potato tuber life cycle. Proteomics,2006,6:6042-6052
    108. Levy YY, Dean C. The transition to flowering. Plant Cell,1998,10:1973-1990
    109. Liljegren SJ, Gustafason-Brown C, Pinyopich A, Ditta GS, and Yanofsky MF. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell,1999,11: 1007-1018
    110. Lin C. Photoreceptors and regulation of flowering. Plant Physiol,2000,123:17-27
    111. Liu AT, Stephens LC, Hannapel DJ. Transformation of Solanum brevidens using Agrobacterium tumefaciens. Plant Cell Rep,1995,15:196-199
    112. Liu J, Yu J, Mclntosh L, Kende H, Zeevaart JA: Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiol,2001,125:1821-1830
    113. Liu XJ, Prat S, Willmitzer L, Frommer WB. Cis-regulatory elements directing tuber-specific and sucrose-inducible expression of a chimeric class I patatin promoter/GUS-gene fusion. Molecular Genetics and Genomics,1990,223 (3):401-406
    114. Lorenzen J, Ewing E. Starch accumulation in leaves of potato (Solanum tuberosum L.) during the first 18 days of photoperiod treatment. Ann Bot,1992,69:481-485
    115. Losey JE, Rayor LS, Carter ME. Transgenic pollen harms monarch larvae. Nature,1999,399: 214-216
    116. Luo H, Song F, Goodman RM, Zheng Z. Up-regulation of OsBIHDl, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol,2005,7:459-468
    117. Maccarrone M, Van Zadelhoff G, Veldink GA, Vliegenthart JFG, Finanzzi-Agro A. Early activation of lipoxygenase in lentil (Lens culinaris) root protoplasts by oxidative stress induces programmed cell death. Eur J Biochem,2000,267:5078-5084
    118. Martinez-Garcia J F, Virgos-Soler A,Prat S. Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. PNAS,2002,99:15211-15216
    119. Meyerow EM. Genetic and molecular mechanisms of pattern formation in Arabidopsis flower development. Plant Res,1998,111:233-242
    120. Migney GA, Pikaard CS, Park WD. Molecular characterization of the patatin multigene family of potato. Gene,1988,62:27-44
    121.Mockler T, Yang H, Yu X, Parikh D, Cheng YC, Dolan S, Lin C. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. PNAS,2003,100 (4):2140-2145
    122. Mockler TC, Guo H, Yang H, Duong H, Lin C. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development,1999,126:2073-2082
    123. Molinero-Rosales N, Jamilena M, Zurita S, Gomez P, Capel J, Lozano R. FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J,1999,20 (6):685-693
    124. Mouradov A, Glassick T, Teasdale RD. NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. PNAS, 1998,95:6537-6542
    125. Murthy BNS, Saxena PK. Somatic embryogenesis and plant regeneration of neem (Azadirachta inidica A. Juss). Plant Cell Rep,1998,17:469-475
    126. Nakamura M, Tsunoda T, Obokata J. Photosynthesis nuclear genes generally lack TATA-boxes:a tobacco photosystem I gene responds to light through an initiater. Plant J,2002,29:1-10
    127. Nam KH, Kong F, Matsuura H, Takahashi K, Nabeta K, Yoshihara T. Temperature regulates tuber-inducing lipoxygenase-derived metabolites in potato (Solanum tuberosum). Plant Physiol, 2008,165 (2):233-238
    128. Nam KH, Minami C, Kong F, Matsuura H, Takahashi K, Yoshihara T. Relation between environmental factors and the LOX activities upon potato tuber formation and flower-bud formation in morning glory. Plant Growth Regul,2005,46:253-260
    129. Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B. FKF1 a clock controlled gene that regulates the transition to flowering in Arabidopsis. Cell,2000,101:331-340
    130. Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J, 2003,36:82-93
    131. Newell CA, Rozman R, Hinchee MA, Lawson EC, Haley L, Sanderson P, Kaniewski W, Turner NE, Horsch RB, Fraley RT. Agrobacterium-mediated transformation of Solanum tuberosum L. cv. 'Russet Burbank'. Plant Cell Rep,1991,10:30-34
    132. Olesinski AA, Almon E, Navot N, Perl A, Galun E, Lucas WJ, Wolf S. Tissue-specific expression of the tobacco mosaic virus movement protein in transgenic potato plants alters plasmodesmal function and carbohydrate partitioning. Plant Physiol,1996,111:541-550
    133. Onouchi H, Igeno M I, Perilleux C, Graves K, Coupland G. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell, 2000,12:885-900
    134. Ooms G, Karp A, Roberts J. From tumour to tuber:tumour cell characteristics and chromosome numbers of crown gall-derived tetraploid potato plants (Solanum tuberosum cv.)'Mris Bard'. Theor Appl Genet,1983,66:169-172
    135. Osterlund MT, Hardtke CS, Wei N, Deng XW. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature,2000,.405:462-466
    136. Park WD. Molecular appraoches to tuberization in Potato. In: Vay da ME ed., Molecular and Cellular Biology of the Potato. CAB International,1990,43-56
    137. Poovaiah BW, Takezawa D, An G, Han TJ. Regulated expression of a calmodulin isoform alters growth and development in potato. J Plant Physiology,1996,149:553-558
    138. Putterill J, Robson F, Lee K, Simon R, and Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell,1995,80:847-857
    139. Raices M, Chico JM, Tellez-Inon MT, Ulloa RM. Molecular characterization of StCDPKl, a calcium-dependent protein kinase of Solanum tuberosum that is induced at the onset of tuber development. Plant Mol Biol,2001,46:591-601
    140. Raices M, Gargantini PR, Chinchilla D, Crespi M, Tellez-Inon MT, Ulloa RM. Regulation of CDPK isoforms during tuber development. Plant Mol Bio,2003,52:1011-1024
    141. Reyes JC, Muro-Pastor MI, Florencio FJ. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol,2004,134 (4):1718-1732
    142. Richard J, Andrew G, Michael B.Transcriptional regulation of a patatin-1 gene in potato. Plant Mol Biol,1990,14:995-1006
    143. Robson F, Costa MM, Hepworth SR, Vizir I, Pineiro M, Reeves PH, Putterill J, Coupland G Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J,2001,28:619-631
    144. Romano A, Raemakers K, Visser R, Mooibroek H. Transformation of potato (Solanum tuberosum) using particle bombardment. Plant Cell Rep,2001,20:198-204
    145. Romano A, Raemakers K, Visser R, Mooibroek H. Transformation of potato (Solanum tuberosum) using particle bombardment. Plant Cell. Rep,2003,20:198-204
    146. Romano A, Vander LHW, Witholt B, Eggink G and Mooibroek H. Expression of poly-3-(R)-Hydroxy-alkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Planta,2005,220:45-464
    147. Rosahl S, Sehmidt R, Sehell J, Willmitzer L.Isolation and characterization of a gene from Solanum tuberosum encoding patatin, the major storage protein of potato tubers. Mol Gen Genet,1986,203: 214-220
    148. Rosin FM, Hart J K, Homer HT, Davies P J, Hannapel DJ. Overexpression of a knotted-like homeobox gene of potato alters vegetative development by decreasing gibberrllin accumulation. Plant Physiol,2003,132:106-117
    149. Royo J, Vancanneyt G, Perez AQ Sanz C, Stormann K, Rosahl S, Sanchez-Serrano JJ. Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. J Biol Chem,1996,271:21012-21019
    150. Ruiz-Garcia L, Madueno F, Wilkinson M, Haughn G, Salinas J, Martinez-Zapater JM. Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell, 1997,9:1921-1934
    151. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000,288:1613-1616
    152. Sarkar D, Pandey SK, Sharma S. Cytokinins antagonize the jasmonates action on the regulation of potato(Solanum tuberosum L.) tuber formation in vitro. Plant Cell Tissue Organ Cult,2006,87: 285-295
    153. Schultz EA, Haughn GM. LEAFY:a homeotic gene that regulates inflorescence development in Arabidopsis. Plan t Cell,1991,3:771-781
    154. Shannon S, Meeks-Wagner DR. A mutation in the Arabidopsis TFLl gene affects inflorescence meristem development. Plant Cell,1991,3:877-892
    155. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS. Stable chloroplast transformation in potato:use of green fluorescent protein as a plastid marker. Plant J,1999,19: 209-216
    156. Simon R, Igeno MI, and Coupland G. Activation of floral meristem identity genes in Arabidopsis. Nature,1996,384:59-62
    157. Snyder GW, Belknap WR. A modified method for routine Agrobacterium-mediated transformation of in vitro grown potato microtubers. Plant Cell Rep,1993,12:324-327
    158. Stiekema WJ, Heidekm PF, Louwerse JD, Verhoeven HA, Dijkhuis P. Introduction of foreign genes into potato cultivars Bintje and Desiree using an Agrobaclerium tumefaciena binary vector. Plant Cell Rep,1988,7:47-50
    159. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature,2001, 410:1116-1120
    160. Takahashi K, Fujino K, KikutaY, KodaY. Expansion of potato cells in response to jasmonic acid. Plant Sci,1994,100:3-8
    161. Takezawa D, Liu Z H, An G, Poovaiah BW. Calmodulin gene family in potato:developmental and touch-induced expression of the mRNA encoding a novel isoform. Plant Mol Bio,1995,27: 693-703
    162. Thum KE, Kim M, Morishige DT, Eibl C, Koop HU, Mullet JE.Analysis of barley chloroplast psbD light-responsive promoter elements in transplastomic tobacco. Plant Mol Biol,2001,47: 353-366
    163. Tiessen A, Hendriks JHM, Stitt M, Branscheid A, Gibon Y, Farre EM, Geigenberger P. Starch synthesis in potato tubers in regulated by post-translational redox modification of ADP-glucose pyrophosphorylase:A novel regulatory mechanism linking starch synthesis to the sucrose supply. The Plant Cell,2002,14:2191-2213
    164. Trujillo C, Rodriguez-Arango E, Jaramillo S, Hoyos R, Orduz S, Arango R. One-step transformation of two Andean potato cultivars (Solanum tuberosum L. subsp. andigena). Plant Cell Rep,2001,20:637-641
    165. Twell D, Ooms G.The 5'flanking region of a patatin gene directs tuber specific expression of a chimaeric gene in potato. Plant Mol Biol,1987,9:345-375
    166. Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell,1993,5:1529-1539
    167. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science,2004,303:1003-1006
    168. Visser C, Quresni JA, Gill R. Morphoregulatory role of TDZ. Substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyls cultures. Plant, Physiol,1992,99:1704-1707
    169. Visser RGF, Jacobsen E, Hesseling-Meinders A, Schans MJ, Withold B, Feenstra WJ. Transformation of homozygous diploid potato with Agrobacterium tumefaciens binary vector system by adventitious shoot regeneration on leaf and stem segments. Plant Mol. Biol,1989,12: 329-337
    170. Visser RGF, Vreugdenhil D, Hendriks T, Jacobsen EJ. Gene expression and carbohydrate content during stolon to tuber transition in potatoes (Solanum tuberosum). Plant Physiol,1994,90: 285-292
    171. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. LEAFY controls floral meristem identity in Arabidopsis. Cell,1992,69:843-859
    172. Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell,2006,18 (11):2971-2978
    173. Wintz H, Dietrich A. Electroporation of small RNAs into plant protoplasts:mitochondrial uptake of transfer RNAs. Biochem Biophys Res Commun,1996,223 (1):204-210
    174. Xu N, Hagen G, Guilfoyle T. Multiple auxin response modules in the soybean SAUR15A promoter. Plant Sci,1997,126:193-201
    175. Xu X, Vreugdenhil D, Van Lammeren AAM. Cell division and cell enlargement during potato tuber formation. J Exp Bot,1998,49:573-582
    176. Xue GP. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J, 2003,33:373-383
    177. Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T. TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol,2005,46:1175-1189
    178. Yanagisawa S, Schmidt RJ. Diversity and similarity among recognition sequences of Dof transcription factors. Plant J,1999,17:209-214
    179. Yang J, Lin R, Sullivan J, Hoecker U, Liu B, Xu L, Deng XW, Wang H. Light regulates COP 1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell,2005,17:804-821
    180. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell,2000,12 (12): 2473-2484
    181. Yoshihara T, Amanuma M, Tsutsumi T, Okumura Y, Matsuura H, Ichihara A. Metabolism and transport of [2-14C](±)jas-monic acid in the potato plant. Plant Cell Physiol,1996,37:586-590
    182. Yanovsky MJ. and Kay SA. Molecular basis of seasonal time measurement in Arabidopsis. Nature, 2002,419:308-312
    183. Yi JY, Seo HW, Yang MS, Robb EJ, Nazar RN, Lee SW. Plant defense gene promoter enhances the reliability of shiva-1 gene-induced resistance to soft rot disease in potato. Planta,2004,220: 165-171
    184. Yuceer C, Harkess L, Land SB, Luthe DS. Structure and developmental regulation of CONSTANS-LIKE genes isolated from Populus deltoids. Plant Sci,2002,163:615-625
    185.白宝璋.马铃薯块茎形成与光周期和植物激素关系的研究进展.吉林农业大学学报,1986,8(2):6-9
    186.陈峥,金红,罗智敏.提高马铃薯遗传转化体系再生频率的研究.天津农业科学,2002,8(4):4-6
    187.杜海莲,张军,肖平,韩冬丽,陈红岩,高毅,曾定,陈启锋,夏宁邵.马铃薯遗传转化系统的优化及禽流感病毒(HSNI)基因的导入.厦门大学学报,2000,39:699-706
    188.傅道林,王兰岚,蓝海燕,邓向东,陈正华.将抗真菌病基因导入马铃薯的研究.激光生物学报,2000,9:189-193
    189.傅道林,王兰岚,张海燕,陈正华.用微束激光穿刺技术将商陆抗病毒蛋白(PAP) cDNA导入马铃薯的研究.光子学报,2000,29:970-974
    190.郭志鸿,张金文,陈正华,王兰岚.利用RNA干涉技术及微束激光转化法培育抗病毒马铃薯.激光生物学报,2006,15:525-531
    191.贾笑英.利用转基因技术培育马铃薯(Solanum tuberosum L.)高淀粉及抗病新品系.甘肃农业大学博士学位论文.2006
    192.李昌,金宁一,王罡,王萍,余云舟,季静,吴颖,张艳贞,张艳华.基因枪法转化马铃薯及转基因植株的获得.作物杂志,2003,1:12-14
    193.李东栋.根癌农杆菌介导的愈伤组织遗传转化获得雄性不育柑橘植株.华中农业大学博士学位论文.2002
    194.李晶.马铃薯再生体系的建立及遗传转化的研究.东北农业大学农学硕士学位论文.2003
    195.柳俊。马铃薯试管块茎的形成机理及块茎形成调控.华中农业大学博士学位论文.2001
    196.柳俊,谢从华.马铃薯块茎发育机理及其基因表达.植物学通报,2001,18:531-539
    197.柳俊,谢从华,黄大恩,廖勇,吴承金.马铃薯试管块茎形成机制的研究6-BA对试管块茎形成与膨大的影响.马铃薯杂志,1995,9:7-11
    198.罗小英,侯磊,李德谋,裴炎.大麦β-1,3-葡聚糖酶基因表达载体的构建及其对马铃薯的遗传转化.西南农业学报,2000,13:1-5
    199.马崇坚,柳俊,谢从华.抑制脂氧合酶对马铃薯试管块茎形成及膨大的影响.园艺学报,2003,30:291-295
    200.马志刚,鄢波,王玲仙,黄兴奇,万萌,郑丽屏.马铃薯prpl-1启动子的克隆及转基因研究.西南农业学报,2002,15(1):12-15
    201.全锋,张爱霞,曹先维.植物激素在马铃薯块茎形成发育过程中的作用.中国马铃薯,2002,16(1):29-32
    202.沙爱华,蔡淑平,张晓娟,吴学军,邱德珍,周新安.大豆开花基因GmCO和GmFT的克隆及表达.西北植物学报,2006,26(10):1996-2000
    203.双宝,吕文河.马铃薯基因转化的研究进展.马铃薯杂志,1996,10:49-54
    204.司怀军,谢从华,柳俊.农杆菌介导的马铃薯试管薯遗传转化体系的优化及反义class I patatin基因的导入.作物学报,2003,29:801-805
    205.宋波涛,谢从华,柳俊.马铃薯sAGP基因表达对块茎淀粉和还原糖含量的影响.中国农业科学,2005,38(7):1439-1446
    206.宋东光,王光清,汪训明.Patatin启动子驱动的乙肝表面抗原基因在马铃薯中的表达.高技术通讯,2000,10(2):18-20
    207.宋艳茹,李枞,侯林林,张莉枝,马庆虎,彭学贤,崔晓江,周雪荣,王海云,莽克强.双价外壳蛋白基因植物表达载体的构建及马铃薯转基因植株的鉴定.植物学报,1994,36:842-848
    208.王关林,方宏荡.主编.植物基因工程(第二版).科学出版社,2002
    209.王兰岚,傅荣昭,宋桂英,张健,徐正平,孙勇如.利用激光微束穿刺法将外源基因导入小麦的研究.遗传学报,1995,22:394-399
    210.王清,黄惠英,张金文,李学才.反义酸性转化酶基因对低温贮藏马铃薯块茎还原糖和淀粉含量的影响.植物生理与分子生物学学报,2005,31:533-538
    211.王永锋,栾雨时.马铃薯转基因研究进展.中国马铃薯,2004,18:227-231
    212.许萍,张丕方.关于植物细胞脱分化的研究概况.植物学通报,1996,13(1):20-24
    213.鄢铮,郭德章.植物激素对马铃薯试管薯形成的影响.中国马铃薯,2004,18:84-86
    214.杨美珠,潘乃穗,陈章良.高效马铃薯遗传转化体系的建立及外源甜蛋白基因的导入.植物学报,1992,34:31-36
    215.杨仲毅,王兰岚,宋桂英,徐正平,张丽华,刘桂珍,陈正华.利用微束激光穿刺法将菜豆几丁质酶基因导入油菜的研究.激光生物学报,1999,8:8-11
    216.姚新灵,丁向真,吴晓玲,郭蔼光.马铃薯AGPase大小亚基功能研究.生物技术通报,2004,(5):13-17
    217.雍伟东,种康,许智宏,谭克辉,朱至清.高等植物开花时间决定的基因调控研究.科学通报,2000,45:455-466
    218.张根义,徐武,李鸣,张敬,李安生.植物细胞感受态研究初探.农业生物技术学报,1997,5(1):100-102
    219.张鹤龄.表达PVY和PLRV双价外壳蛋白基因马铃薯的抗病性研究.植物学报,1997,39:236-240
    220.周思军,李希臣,刘昭军,刘文萍,南相日.通过农杆菌介导将菜豆几丁质酶基因导入马铃薯.中国马铃薯,2000,2:70-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700