用户名: 密码: 验证码:
环糊精及杯芳烃超分子组装与识别的光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学是一门处于化学、生命科学、材料科学和信息科学交叉点的新兴学科,它的发展和大环化学密切相关,成为近年来一个研究非常活跃的领域。其中分别具有特殊结构和功能的环糊精和杯芳烃作为超分子化学第二代、第三代主体物质一直是人们研究的热点。而分子识别与组装是超分子化学的核心研究内容,尤其是识别生物分子和离子客体具有非常重要的意义。
     本论文具体研究内容简述如下:
     1.本文研究了在生理条件下(pH=7.50)中性红与DNA作用方式,并进一步探讨了环糊精与中性红形成的超分子体系与DNA分子的作用,结果表明:NR与DNA相互作用的方式有两种,主要取决于二者之间(NR∶DNA)的摩尔比,即R值。当R>2.5时,NR聚集在DNA分子表面;R<2.5时,NR嵌插到DNA的双螺旋结构中。而当NR-CDs与DNA发生作用时,超分子体系解离,从CDs空腔中释放出来的NR中性型体被DNA质子化形成酸性型体,酸性型体易嵌插到DNA双螺旋中形成DNA加合物。因此NR-CDs超分子组装与DNA的作用形式为嵌插作用。实际上,NR-CDs超分子体系中,环糊精起着一个运载客体分子嵌插到DNA双螺旋结构中。
     2.采用荧光光谱法、紫外可见光度法、共振光散射技术研究了藏红T(ST)与DNA及藏红T-环糊精超分子体系与DNA的作用,计算了二者的结合常数和结合位点数。结果表明:通过超分子体系与DNA的作用,证实了低浓度时,DNA与ST的作用方式为DNA诱导ST在其表面进行长距组装,在DNA高浓度下,ST单体分子嵌插在DNA双螺旋中,使其荧光量子产率增加。
     3.中性红与杯[4]芳烃磺酸钠形成稳定超分子包合物通过吸收和荧光光谱法得到证实。详细探讨了影响包合过程的因素,包括浓度、pH值、温度的影响,结果表明:二者形成化学计量1∶1包合物,杯[4]芳烃磺酸钠更易于包合中性红的酸性型体。热力学参数表明杯[4]芳烃磺酸钠与中性红形成包合物的主要是焓驱动的,水溶性杯芳烃磺酸钠呈现出小的疏水
Supramolecular chemistry is a novel intersection discipline of chemistry, life science, material science and informatics. Its development is close related to the macrocyclo-chemistry and has been stirring field in recent years. As host molecules of the second and third generation of supramolecular chemistry, cyclodextrins and calixarene with unique structure and function respectively are the current interest hottopic. Recognition and assembly of molecular are the important content of the supramolecular chemistry, especially recognition and sensing of biological molecule and ion. The major contents in this dissertation are described as follows:1. DNA assembling to neutral red (NR) and cyclodextrins (CDs)-NR inclusion complex has been investigated by means of absorption, fluorescence and resonance light scattering (RLS) technique. Depending on the molar ratio R of NR: DNA, the binding of NR with DNA involved in two processes at pH 7.50 and ionic strength 0.0045. The first process occured in R>2.5, where the neutral form of NR with one positive charge was predominant, and DNA was a polyanion. Moreover, enhanced RLS was observed, indicating the aggregation of NR in neutral form on the molecular surface of DNA. The second process occured in R<2.5, where the binding of NR to DNA leaded to extensive NR protonation even at pH 7.50, meanwhile DNA also protonates, and that a protonated NR with two positive charges (the acidic form of NR) could form DNA adducts with a binding mode different from that of the unprotonated form (the neutral form of NR). The results were also illustrated by the CDs-NR supramolecular system. The experimental data showed that NR-CDs decomposed when it bound to DNA. Thus, the decomposed NR was also protonated to form DNA adducts with intercalative mode. In fact, CDs played a role to carry guest molecule to intercalate DNA. A related mechanism is proposed.2. The interactive models of ST with double stranded DNA have been studied by means of the inclusion action of CDs supramolecular system. Through the
    changes of absorption, fluorescence and resonance light scattering (RLS) spectra, the intrinsic binding constant (K) and the binding number (n) of ST with DNA and inclusion complexes with DNA was obtained in the case of 20 m mol/L Tris-HCl buffer solution (pH 7.2). According to the experimental results, it could be inferred that the interactive model of ST with DNA was: in low ratio of ST to DNA, the ST must intercalate into DNA and improve the fluorescence quantum yield of ST while in high ratio of ST to DNA, ST interacts with DNA by long range assembly. The small molecules are very important probes for studying the structure and function of nucleic acid, and the results can offer necessary information for understanding the cause of some diseases and curative mechanism of some drugs, especially anticancer ones.3 The formation of the inclusion complex of neutral red (NR) with 4-sulfocalixarene was studied by fluorescence and absorption spectroscopy and the binding constant (K) of the inclusion complexes were obtained. Experimental conditions including concentrations of 4-sulfocalixarene, media acidity and temperature were investigated for the inclusion formation in detail. The results suggested that 4-sulfocalixarene was more suitable for inclusion of the acid form of NR. The complexation thermodynamic parameters indicate that the complexation of NR with 4-solfuocalixarene is mainly driven by the favorable change in enthalpy. The soluble 4-sulfocalixarene has slight hydrophobic function. Electrostatic interaction of the guest's (NR) cationic moiety with sulfonates of the host (4-sulfocalixarene) is the mainly impetus of recognition. The related mechanism is proposed to explain the inclusion process.4. A plasticized poly (vinyl chloride ) optode membrane incorporated with a calix[6]arene hexaester ,a H~+-selective chromoionophore(3,3,'5,5'-tetramethyl-N,N-dibenzylbenzidine, TMB, a novel synthetical cationic dye), and a lipophilic potassium tetrakis (4-chlorophenyl )borate (KTpC1PB) was used as a sensing device for the indirect optical determination of potassium ion. It exhibited a reversible response to potassium ion in pH=4
    HC1 in the concentration range from l.OxlO'6 to l><10'2 M. The linear range was from 1.53xlO"5 to 3.20* 10"3 M. The proposed optode sensor exhibited a fast response of less than 1 min, good repeatability (n = 7, R.S.D = 3.62 %) at 5xlO"5M, and long-term stability with 92 % of its initial sensitivity after 1 months of storage. The selectivity of the potassium-selective membrane allows its application for detection of potassium concentration in real sample analysis. The result was satisfactory compared with atomic absorption spectrometry (AAS).5. A new calixarene-porphyrin supramolecular sensitizer for zinc ion has been proposed based on the porphyrin fluorescence intensity increasing.In aqueous solution, the fluorescence intensity of meso-tetrakid (4-N-methyl-pyridiniumyl)porphyrin (TMPyP) decreasing by forming a 4-solfuocalixarene-TMPyP inclusion complex. Furthermore, the formation of a supramolecular complex causes a remarkable increase of the porphyrin metalation rate following the porphyrin fluorescence emission increase with increasing the concentration of zinc ion. With the optimum conditions desceibed, The linear range was from 1.0 X 10"6 to 3.5 X 10"5mol/L and the relative standard deviation (R.S.D.) is 2.6% (10 |jl mol/L). The proposed method is simple, rapid and selective and can determinate Zn2+ without organic solevent.6. Using sodium dodecylsulfate as a protective medium, the selective recognition of Cu2+ is realized based on fluorescence quenching of TMPyP. The linear range was from 5.2 X 10~6~ 3.3 X 10"4mol/L. The limit of detection is 7.63 X 10' mol/L (S/N=3), and the precision is evaluated as the relative standard deviation (R.S.D.) in five replicates of a sample containing 10 u, mol/L of Cu2+, and the results is 1.5%. The system could be potentially used for rapid determination of Cu2+in water samples.
引文
[1] R. Wohler. Poggendorfs Ann. Phyaik 1828, 12:253
    [2] (a) C. Pedersen, Cyclic Polyethers and Their Complexes with Metal Salts, J. Am. Chem. Sic, 1967, 7017
    (b) C. Pedersen, The discovery of crown ethers (Noble lecture), J. Angew. Chem. Int. Ed. Engl. 1988, 27: 1021.
    [3] (a). D. J. Cram, J. M. Cram, Scien, 1974, 189: 803.
    (b) D. J. Cram, The design of molecular hosts, guests and their complexes (nobel lecture), J. Angew. Chem. Int. Ed. Engl. 1988, 27:1009
    [4] (a) J. M. Lehn, Supramolecular chemistry-scope and perspectives molecules, supermolecules and molecular devices. J. Angew. Chem. Int. Ed. Engl. 1988, 27:89
    (b) J. M. Lehn, Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization. J. Angew. Chem. Int. Ed. Engl. 1988, 27:1304
    [5] J. M. Lehn. Prespectives in Coordination Chemistry, New York, 1992, 447.
    [6] O. C. Fernando, J. G. M. Juan, G. F. Luis, O. S. Emilia, S. G. Francisco, V. B. Antonio Binding Affinity Properties of Dendritic Glycosides Based on a a-Cyclodextrin Core toward Guest Molecules and Concanavalin, J. Org. Chem. 2001, 66, 7786-7795.
    [7] E. Fischer, Ber Einfluss der konfiguration auf die wirkung der enzyme. Ber. Dt., Chem. Ges. 1894,27, 2985-2993
    [8] J. M. Lehn, J. Inclusion Phenomena and Molectlar Recognition in Chemistry, 1988, 6: 351.
    [9] 王南平,余晓冬,陈洪渊.[J].化学研究与应用,2001,13(1):27-31.
    [10] D. S. Lawrence, T. Jiang, M. Levett, Chem. Rev. 1995, 95, 2229-2260.
    [11] D. Philp,. P. F.Stoddart, Self-assembly in naturale and unnatural system, J Angew. Chem., Int. Ed. Engl. 1996, 35, 1154-1196.
    [12] 余晓冬,吴采樱.杯芳烃的超分子化学,化学通报,1998,11,13-18
    [13] 陈乐怡。合成树脂及塑料。1990,(2):45.
    [14] 方世壁、江英彦。高分子通报,1988,(1):55.
    [15] 梁受天。石油化工,1987,16(3):99.
    [16] J. Szejtli, Translated by Nogradi M and Horvath K. "Cyclodextrins and their inclusion complexes [M]. Ed. Akademi Kiado, Budapest, 1982:104."
    [17] M L Bender, M A Komiyam, Cyclodextrin in Chemistry [M]. Ed. Springer-Verlay, Berlin Hei-delberg, New York, 1978.
    [18] 鲁润华,汪汉卿。β-环糊精对聚氧乙烯十二烷基醚的双模式包结作用.物理化学学报,2005,21(10):1174-1177.
    [19] 范小毅,韩高义,陈世荣,杨频。β-环糊精与四-N-正丙基吡啶基卟啉新型作用方式的研究,无机化学学报.2001,17(2):188-192.
    [20] 鲁晓凤,许芳萍,夏震,曾钟智,谢明贵.[J].四川大学学报(自然科学版),1995,32(6):694-697.
    [21].何坚刚,方惠群.β-环糊精与巴比妥类化合物包合作用[J].无机化学学报,1999,15(2):230-234.
    [22] S. Munoz Botella, D. A. Lerner, B. del Castillo, M. A. Martin. Applications of Retinoid-Cyclodextrin Inclusion Complexes Part 2. Luminescence Properties at Room Temperature, [J]. Analyst, 1996, 121: 1557-1560.
    [23] 尤长城,赵彦利,刘育.竞争包结法研究β-环糊精及其两种衍生物对一些手性脂肪族客体分子的识别作用,高等学校化学学报 2001,22:218-222.
    [24] T. Kuwabara, H. Nakajima, M. NanasawaA. Ueno, Color Change Indicators for Molecules Using Methyl Red-Modified Cyclodextrins, Anal Chem. 1999, 71:2844-2849
    [25] G. M. Zhang, S. M. Shuang, C. Dong, J. H. Pan. Study of the interaction of methylene blue with cyclodextrin derivatives by absorption and fluorescence spectroscopy. Spectrochimic Acta A.2003, 59(13), 2935-2941
    [26] S. M. Shuang, Y. Yang, J. H. Pan, Study on molecular recognition of para-aminobenzoic acid species by α-, β- and hydroxypropyl-β-cyclodextrin. Analytica Chimica Acta, 2002, 458, 305-310.
    [27] X. P. Wang, J. H. Pan, M. X. Ma, S. M. Shuang, Y. Zhang. Study on supramolecular systems of cyclodextrins and magnolol, honokiol by thin layer chromatography. Supramolecular Chemistry, 2002, 14(4), 323-328.
    [28] M.Legrand,M.J.Rougie,著,陈荣峰译,旋光谱和圆二色谱 河南大学出版社:开封 1990
    [29] T. Mori, Y. Inoue, Circular Dichroism of a Chiral Tethered Donor-Acceptor System: Enhanced Anisotropy Factors in Charge-Transfer Transitions by Dimer Formation and by Confinement, J Angew. Chem., Int. Ed. Engl. Volume 117, Issue 17, Pages 2638-2641
    [30] 李向军,连军,张勇,潘景浩,大黄素甲醚-环糊精超分子体系包结行为研究,化学研究与应用,1999,11(3):298-301.
    [31] 韩树波,朱敏,袁卓斌.以β-环糊精聚合物(β-CDp)的超分子包结物为固定化介质的安培型过氧化氢传感器的研究[J].高等学校化学学报,1999,20(7):1036—1039.
    [32] 常雁,张勇,樊慧芝,潘景浩,分析化学新近展H163,山西科学技术出版社,太原,1997.
    [33] J. Gu, J. H. Pan, Talanta, 1999, 50: 35.
    [34] 朱晓峰,许旭,林炳承.[J].高等学校化学学报,1998,19(9):1504-1506.
    [35] Xueyan Shi, Ruifang Fan, Yueqin Zhang, Junling Gu, Ruonong Fu. Synthesis and Characterization of Water-Soluble Carboxymethyl-Cyclodextrin Polymer as Capillary Electrophoresis Chiral Selector[J]. Chin. Chem. lett., 2000, 11(1): 69-70.
    [36] S. M. Shuang, Martin M. F. Choi. Retention behaviour and fluorimetric detection of procaine hydrochloride using carboxymethyl-β-cyclodextrin as an additive in reversed-phase liquid chromatography. Journal of Chromatography A, 2001, 919, 321-329.
    [37] O. Melania, T. Aura, G. Daniela, M. Ovidiu, H. Mihaela, J. Phys. Chem. B, 2002, 106: 257-263.
    [38] M. L. Bender M. Komiyama. Cyclodextrin Chemistry, Springer-Verlag Berlin Heidelberg New York 1978.
    [39] K. H. Fromming, J. Szejtli, Cyclodextrins in Pharmacy, Kluwer Academic: Dordrecht, The Netherlands, 1994.
    [40] J. Szijtli, T. Osa, Comprehensive Supramolecular Chemistry, Pergamon, 1996.
    [41] 童林荟.环糊精化学—基础与应用,科学出版社.2001.
    [42] 刘育,尤长城,张衡益.超分子化学-合成受体的分子识别与组装,南开大学出版社,天津,2001.
    [43] S. Jozsef, Cyclodextrin: Introduction, [J]. Chem. Rev., 1998, 98(5): 1731-1742
    [44] U. Kaneto, H. Fumitoshi, L. Tetsumi. Cyclodextrin Drug Cattier Systems[J]. Chem. Rev. 1998, 98(5): 2045-2076
    [45] S. Jozsef, Cyclodextrin: Introduction, Chem. Rev., 1998, 98(5), 1731.
    [46] U. Kaneto, H. Fumitoshi, L. Tetsumi. Cyclodextrin Drug Carrier Systems, Chem. Rev., 1998, 98(5): 2045.
    [47] S. L. David, J. Tao, L. Michael. Chem. Rev., 1995, 95: 2229.
    [48] 卢昌盛,张越,孟庆金,朱慧珍.环糊精与聚合物的包合作用,无机化学学报 2000,16(6),853.
    [49] 宋乐新,周桃玉,郭子建.环糊精及其衍生物的超分子晶体结构研究进展,无机 化学学报,2000,17(1):9.
    [50] 黎洪珊,王培玉.β-环糊精的研究进展及在药剂学上的应用[J].Chin.Pharm..J.,1999,34(4):220-223.
    [52] A. Ferancova, J. Labuda. Fresenius. Cyclodextrins as electrode modifiers. Fresenius J. Anal. Chem. 2001, 370(1):1-10
    [53] 刘雪,曹克玺,骆定法,孙得志,环糊精作为超分子结构的构筑单元,化学世界,2001.(6):321-323.
    [54] W. Saenger, Oral Delivery of Meglumine Antimoniate-β-Cyclodextrin Complex for Treatment of Leishrnaniasis. Antimicrob Agents Chemother. 2004 January, 48(1): 100-103
    [55] Y. Matsui, T. Kurita, Y. Date, Bull. Chem. Soc. Jpn. 1972, 45: 3229.
    [56] Y. Matsui, T. Kurita, M. Yaji, T. Okayama, K. Mochida, Y. Data, Bull. Chem. Soc. Jpn 1975, 48: 2187.
    [57] A. Cho, K. L. Ochoa, A. K. Yatsimirsky, A. V. Eliseev, Org. Lett. 2000, 2:1741.
    [58] P Ling, R. N. Fu, R. J. Dai, et al. [J] Chromatographia, 1996, 43 (9/10): 546-550.
    [59] X. D. Yu, L. Lin, C. Y. Wu, Synergistic Effect of Mixed Stationary-Phase in Gas-Chromatography, [J]. Chromatographia, 1999, 49(9/10): 567-571.
    [60] I. Willner, Z. Goren, Diaza-crown ether capped cyclodextrin: A receptor with two recognition sites, [J]. J Chem. Soc. Chem. Commun., 1983, 24: 1469-1470.
    [61] B. Jurgen, J. J. Engberson, D. N. Reinhoudt, Novel water-soluble β-CD-calix arene couples as fluorescent sensor molecules for the detection of neutral analytes, [J]. J. Org. Chem., 1998, 63(16): 5339-5344.
    [62] 曾昭睿,刘敏,丁玉强,环糊精-冠醚用作毛细管气相色谱手性固定相的研究,[J].色谱,1998,16(5):390-392.
    [63] A. Ueno, Kikan Kagakui sostsu, 1997, 31: 44-57.
    [64] B. L. Zhang, R.. Breslow, Selective catalytic hydroxylation of a steroid by an artificial cytochrome P-450 enzyme, J. Am. Chem. Soc, 1997, 119(9): 4535-4536.
    [65] 刘俊秋,宁云刚,师成波,等.硒代β-环糊精模拟谷胱甘肽过氧化物酶的研究,高等学校化学学报,1998,19(9):1446-1448.
    [66] 沈静茹,雷灼霖.β-环糊精构筑模拟L-(+)抗坏血酸氧化酶的研究,[J]中央民族学院学报(自然科学版).1998,17(1):9-13.
    [67] R. F. Pasternack, E. J. Gibbs, J. J Villafranca, Circular dichroism spectroscopy of a cationic porphyrin bound to DNA. Biochem. Biophys. Res. Commun. 1982, 108: 66.
    [68] M. J. Carvlin, N. Datta-Gupta, R. J. Fiel, Biochemistry 1982, 22: 66.
    [69] Wilson W. D., Li Y., Veal J. M.. Adv. DNA Sequence Specific Agents, 1992, 1: 89
    [70] R. F. Pastemack, C. Bustamante, P. J. Collings, A. Giannetto, E. J. Gibbs, Prophyrin Assemblies on DNA as Studied by a Resonance Light-Scattering Technique J. Am. Chem. Soc., 1993, 115: 5393-5399.
    [71] R. F. Pastemack, P. J. Collings, Resonance light scattering: A new technique for studying chromophore aggregation. Science, 1995, 269: 935-939.
    [72] R. F. Pastemack, K. S. Schaefer, P. Hambright, Aggregation of chlorophyll a probed by resonance light scattering spectroscopy. Inorg. Chem., 1994, 33: 2062-2065.
    [73] J. C. de, Pauls, J. H. Robblee, R. F. Pastemack, Biiophys. Synthesis, Characterization, and Interaction with DNA of the Novel Metallointercalator Cationic Complex (2,2':6',2"-Terpyridine)methylplatinum(Ⅱ). J. Am. Chem. Sic., 1995, 68: 335-341.
    [74] G. Arens, L. M. Scolaro, R. F. Pastemack, R. Romeo, Inorg. Chem., 1995, 34: 2994-3002.
    [75] 黄承志.北京大学博士学位论文
    [76] C. Z. Huang, A. K. Li, S. Y. Tong, Determination of Nucleic Acids by a Resonance Light-Scattering Technique with a,b,g,d-Tetrakis- [4-(trimethyammomiumyl) phenyl] porphine, Anal Chem., 1996, 68(13): 2259-2264.
    [77] C. Z. Huang, A. K. Li, X. D. Liu, Determination of nucleic acids at nanogram levels with safranine T by a resonance light-scattering technique, Anal. Chi. Acta, 1998, 375:89-97.
    [78] 黄承志,李克安,童沈阳,水溶性游离碱卟啉与核酸作用的光谱研究,高等学校化学学报.1997.18(4):525-529.
    [79]. G. C. Zhao, J. J. Zhu, H. Y. Chen, Spectroscopic studies of the interactive model of methylene blue with DNA by means of β-cyclodextrin, Spectrochim. Acta, Part A, 1999,55 (5): 1109-1117.
    [80] G. C. Zhao, J. J. Zhu, H. Y. Chen, Voltammetric studies of the interaction of methylene blue with DNA by means of β-cyclodextrin, Anal. Chim. Acta., 1999 394(2-3): 337-344.
    [81] G. C. Zhao, J. J. Zhu, H. Y. Chen, Study of Interaction of Berberine with DNA in the Presence of-Cyclodextrin, Spectrosc. Lett., 1998, 31(8): 1705-1718.
    [82] T. Ikeda, K. Yoshida, H. J. Schneder, Anthryl(alkylamino) cyclodextrin Complexes as Chemically Switched DNA Intercalators, J. Am. Chem. Soc., 1999, 117: 1453-1455.
    [83] M. A. Hossain, K. Hamasaki, H. Mihara, A. Ueno, Association and Guest-Induced Dissociation of a Novel α-Helix Peptide Bearing Pyrene and γ-Cyclodextrin in the Side Chain. Chem. Lett. 2000, 252-253.
    [84] S. Matsumura, S. Sakamoto, A. Ueno, H. Mihara, Construction of Helix Peptides with β-Cyclodextrin and Dansyl Units and Their Conformational and Molecular Sensing Properties. Chem. Eur. [J]. 2000, 6:1781-1788.
    [85] 冯喜增,邢婉丽,曹瑛,何锡文.罗丹明B-β-环糊精衍生物探针型主客分子相互识别作用的研究,高等学校化学学报,[J],1997,18(10):1637.
    [86] 王键吉,刘文彬,卓克垒等.杯芳烃应用研究的新进展,化学通报[J],1996,(2):11-16.
    [87] 胡旭波,硫杂杯芳烃的合成及其聚合物[D].武汉:武汉大学博士学位论文.
    [88] 吴鸣虎.化学通报[J],1995:511-515.
    [89] 李建森,陈远荫,卢雪然等.有机化学[J],2000,20(6):841-849.
    [90] Shinkai S.. Tet rahedron[J], 1993, 49: 8933-8968.
    [91] Takesh itaM, Shinkai S.. Bull. Chem. Soc. Jpn. [J], 1995, 68:1088-1097.
    [92] 陈淑华,李东红,袁立华等.杯芳烃类受体的分子识别作用研究进展,有机化学[J].1999,19:339-347.
    [93] 马会民,马泉莉,杯芳烃光学识别试剂,分析化学,2002,30(9):1137-1142.
    [94] 陈朗星,徐华、李一峻,何锡文,杯芳烃化学传感器的研究进展,分析化学,2000,28(2):232-239.
    [95] 曹飞,杯芳烃的研究进展,江西化工,2003,3:36-38.
    [96] 张春,郑炎松,梅付名,李光兴,杯芳烃对生物活性分子的识别性能,化学进展,2004,16(6):934-939。
    [97] 陈淑华,李东红,袁立华,赵华明,杯芳烃类受体的分子识别作用研究进展,有机化学,1999,19:339-347.
    [98] 黄志兵,李来生,王宇晓,吴宇梅,水溶性杯芳烃在分析化学中的应用,江西师范大学学报.2003,27(4):304-309.
    [99] 史春越,曹家庆,范平,杯芳烃对有机小分子识别作用的研究进展,辽宁大学 学报,2003,30(1):83-86.
    [100] K. Iwanmoto, S. Shinkai, Syntheses and ion selectivity of all conformational isomers of tetrakis (ethoxycarbonyl) methoxy) calix[4]arene. J. Org. Chem., 1992, 57:7066~7073
    [101] S Shinkai. Calixarenes-the third generation of supermolecules. Tetrahedron, 1993, 49(40): 8933.
    [102] C. D. Gutsche, Acc. Chem. Res., 1983, 16:161~172
    [103] C. D. Gutsche, D. Balram, H. Kwang. calixarenes 4 the synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J Am Chem Soc, 1981, 103, 3782-3792.
    [104] C. D Gutsche, M. Iqbal, I. Alam. Calixarenes 20. The interaction of calixarenes and amines. JAm Chem Soc, 1987, 109: 4314.
    [105] E. Pinkhassik, V. Sidorov, I. Stibor. Calix[4]arene-based receptors with hydrogen-bonding groups immersed into a large cavity. J. Org Chem., 1998, 63: 9644.
    [106] L. Zhang, L. A. Gadinez, T. Lu, et al. Molecular recognition at an Interface: binding of monolayer-anchored ferrocenyl groups by an amphiphilic calixerene host. Chem Int Ed Engl, 1995, 34:
    [107] J. H. Yang, F. Huang, X. Wu, et al. Spectrochim Acta Part A[J], 2002, 58(8):1775.
    [108] 高建华,翟海云,陈彬.杯[8]芳烃与铈(Ⅲ)形成的镧系超分子作荧光探针测定蛋白质,分析化学[J].2002.30(3):295.
    [109] C. N. Baki, E. U. Akkaya. Boradiazaindacene-appended calix[4]arene: fluorescence sensing of pH near neutrality. J. Org. Chem., 2001, 66 (4):1512.
    [110] Z. Asfai, M. Nierlich, P. Thuery, et al. Anal, Quim. Int. Ed., 1996, 92:260.
    [111] S. Shinkai, S Mori, H. Koreishi, et al. Hexasulfonated calix[6]arene derivatives: a new class of catalysts surfactants and host molecules. J Am Chem. Soc., 1986, 108: 2409.
    [112] P. D. Beer, Z. Chen, P. A. Gale, et al. Recognition by new diester and diamide-calix[4]arene diquininones and a diamide-benzo-15-crown-5-calix[4]arene. J Inclusion Phenom. Mol. Recognit. Chem., 1994, 19: 343,
    [113] S. Shinikai, K. Araki, T. Matsuda, et al. NMR determination of association constants for aqueous calixarene complexes and guest template effects on the conformational freedom. Bull, Chem. Soc. Jpn., 1989, 62: 3856.
    [114] Y. Liu, B. H. Han, Y. T. Chen. Inclusion complexation. of acridine red dye by calixarenesulfonates and cyclodextrins: opposite fluorescent behavior. J. Org. Chem., 2000,65: 6227.
    [115] T. Jin, M. Kinjo, Y. Kobayashi, H. Hirata. J. Chem. Soc., Faraday Trans. 1,1998,94:3135~3140
    [116] G. Ferguson, B. Kaitner, M. A. Mckervey, E. M. Seward, J. Chem. Soc., Chem. Commun., 1987,(8):584~585
    [117] M. A. Mckervey, E. M. Seward, G. Ferguson, B. C. Ruhl, S. J. Harris. J. Chem. Soc., Chem. Commun., 1985, (7):388~389
    [118] K. M. O' Cormor, M. Cherry, G. Svehla, S. J Harris, M. A. McKervey. Talanta, 1994, 41:1207~1211
    [119] M. Cared, A. Casnati., A Guarinoni, A. Mangia, G. Mori, A. Pochini, R. Ungaro, Anal Chem., 1993, 65:3156~3160
    [120] J. Takashi. Chem. Commun., 2000,(15): 1379.
    [121] C. J. Broan. Chem. Commun.,1996,(9): 699.
    [122] Prez-Jim nez C, Harris S, J Diamond D. J. Chem. Soc. Chem. Commun.,1993,(5):480.
    [123] Y. Kubo, S. Obara, S. Tokita. Chem. Commun., 1999, (24): 2399~2400
    [124] V. K. Gupta, A. K. Jain, U. Khurana, L. P. Singh. Sens. Actuators B, 1999, 15:201~211
    [125] R. Cacciapaglia, L. Mandolini, R. Amecke, V. Bohmer, W. Vogt. J. Chem. Soc., Perkin Trans. 2, 1998:419~424
    [126] Y. Kubo, S. Hamaguchi, A. Niimi, K. Yoshida, S. Tokita. J. Chem. Soc., Chem. Commun., 1993, (9):305~307
    [127] T. Werner, J. M. Kurner, C. Krause, O. S. Wolfbeis. Anal Chim. Acta, 2000, 421: 199~205
    [128] T. D. Chung, S. K. Kang, H. Kim, J. R. Kim, W. S. Oh, S. K. Chang. Selective electrochemical recognition of ions in solution and at self-assembled monolayers, Chem. Lett., 1998, (12):1225~1226
    [129] P. D. Beer, Z. Chen, P. P Gala. Tetrahedron, 1994, 50:931~940
    [130] T. N. Sorrell, F. C. Pigge, P. S. White, Inorg. Chem. 1994, 33: 632.
    [131] L. A. Godinez, B. G. Schulze-Fiehn, S. Patel, C. M. Criss, J. D. Evanseck, A. E. Kaifer,Supramol. Chem. 1996, 8: 17.
    [132] G. G. Talanvo, V. S. Talanov, S. H. Hong, et al. ACS. Symp. Ser 2000,757(Calixarenes for Separation), 125.
    [133] H. Ma, U. Jarzak, W. Thiemann. Synthesis and Spectroscopic Properties of New Luminol-Linked Calixarene Derivatives. Anal. Chim. Acta, 1998, 362:121
    [134] W. Xu, J. J. Vittal, R. J. Puddephatt, Synthesis and Binding Properties of iiii (4i) Stereoisomers of Phosphonato Cavitands-Cooperative Effects in Cation Complexation in Organic Solvents, J. Am. Chem. Soc., 1995, 117:8362~8371
    [135] P. D. Beer, M. P. B Drew, C. Hazlewood, D. Hesek, J. Hodacova, S. E. Stokes, J. Chem. Soc., Chem. Commun., 1993, (3):229~231
    [136] J. L. Sessler, A. Andrievsky, P. A. Gale, V. Lynch. 2-Amidopyrroles and 2, 5-diamidopyrroles as simple anion binding agents. Angew. Chem. Int. Ed. Engl., 1996, 35:2782~2785
    [137] H, Miyaji, P. A. Jr, J. L. Sessler, E. B. Bleasdale, P. A. Gale. Anthracene-linked Calix[4]pyrroles: Fluorescent Chemosensors for Anions, Chem. Commun., 1999, (17):1723~1724
    [138] P. D Beer, V. Timoshenko, M. Maestri, P. Passaniti, V. Balzani,. Anion Recognition And Luminescent Sensing By New Ruthenium(Ⅱ) And Rhenium(Ⅰ) Bipyridyl Calix[4]diquinone Receptors, Chem. Commun. 1999, (17): 1755-1756.
    [139] O. Mogck, M. Pons, V. Bohmer, W. Vogt. NMR Studies of the Reversible Dimerization and Guest Exchange Processes of Tetra Urea Calix[4]arenes Using a Derivative with Lower Symmetry, J. Am. Chem. Soc. 1997, 119, 5706-5712.
    [140] H. Murakami, S. Shinkai. "Metal-switched" molecular receptor site designed on a calix[4]arene platform, Tetrahedron lett. 1993, 34, 4237.
    [141] D. L. Dick, T. V. Rao, D. Sukumaran, D. S. Lawrence, The synthesis and characterization of a pyridine-linked cyclodextrin dimmer, J. Am. Chem. Soc. 1992, 114, 2664-2669.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700