用户名: 密码: 验证码:
农杆菌介导转化及原生质体融合法选育红曲菌Monacolin K高产株
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红曲菌发酵产物中含有一种胆固醇合成抑制剂-Monacolin K,它与土曲霉中发现的lovastatin系同一物质,都具有抑制生物体内胆固醇合成途径中关键酶HMG-CoA还原酶活性的作用,从而调节生物体内异常血脂,由于历史上红曲产品具有可直接食用的特性,因此含Monacolin K的红曲产品更为消费者接受和喜爱。三十年多来,已经发现紫色红曲菌(Monascus purpureus)、发白红曲菌(M. albidus)、丛毛红曲菌(M. pilosus)等可产生Monacolin K,但不同菌种产Monacolin K的性能不同。在长期的研究或生产过程中菌种由于不断的移接传代,而导致生产性能的退化,且与土曲霉发酵产Lovstatin的产率相比,红曲菌Monacolin K产率较低,因此需要持续不断地进行菌种选育获得高产Monacolin K的红曲菌株。为了解红曲菌基因组中Monacolin K合成相关基因,为红曲菌遗传改造奠定基础,并找出更为简便的高产Monacolin K红曲菌种的筛选方法,将分子克隆与原生质体融合育种技术相结合也许是一条可行的途径。
     本课题的目的是建立根癌农杆菌介导转化红曲菌的方法,将携带遗传标记的T-DNA插入红曲菌基因组中,改变红曲菌遗传信息的排列,影响其生长和代谢,筛选高产Monacolin K突变转化子;从高产Monacolin K红曲菌突变株基因组中,根据已知的T-DNA两端保守序列,扩增出T-DNA插入位点侧翼序列,从而寻找影响Monacolin K合成的带T-DNA标签的突变基因,为研究红曲菌Monacolin K合成功能基因组及代谢调控提供基础信息;通过原生质体融合的方式选育红曲菌Monacolin K高产株并研究适合于遗传改造变异株高产Monacolin K的发酵工艺,为红曲菌工业化生产Monacolin K打下基础。
     主要研究结果如下:
     (1)构建了含有gpdA启动子、潮霉素抗性基因hph和trpC终止子的双元载体pCAMBIA 3300-gpdA-hph-trpC并转入根癌农杆菌GV3101;利用根癌农杆菌介导转化技术成功将潮霉素抗性基因转入发白红曲菌(M. albidus)9901,实验优化了抗生素浓度,发白红曲菌孢子浓度,根癌农杆菌细胞密度,共培养温度和时间,以及乙酰丁香酮浓度等转化条件,最终转化效率可达520个转化子/10~6个红曲孢子。对转化子进行潮霉素抗性基因PCR鉴定,结果进一步证实外源T-DNA已整合至转化子的染色体基因组中。在诸多转化子中,通过发酵实验筛选得到了一株比出发菌株发白红曲菌9901高产Monacolin K的T-DNA插入突变转化子H1。采用反向PCR方法对发白红曲菌转化子H1基因组T-DNA插入位点侧翼序列进行克隆,获得了一段0.88 kb的DNA片段,暂命名为mkWL,对DNA片段mkWL进行测序,通过与NCBI公布的丛毛红曲菌Monacolin K合成基因簇比对分析,发现与其中mkH基因(1.46 kb)部分基因序列同源性为97%。由此推断基因mkWL包含发白红曲菌Monacolin K合成关联基因。
     (2)对烟色红曲菌(M. fumeus) 9908和发白红曲菌转化子H1原生质体制备与再生的条件进行研究,考察了菌龄、渗透压稳定剂、裂解酶组合、酶解时间和再生培养基等条件对这两株红曲菌原生质体制备和再生的影响。将携带潮霉素抗性的转化子H1的原生质体灭活后,与烟色红曲菌9908原生质体融合,以潮霉素抗性作为筛选标记,得到了多株融合子,并对融合子固态发酵产Monacolin K能力进行考察,筛选得到了固态发酵高产Monacolin K的红曲菌融合子HH1,此菌株Monacolin K的产量较亲本烟色红曲菌9908和转化子H1分别提高了404%和27%。
     (3)对影响融合子HH1固态发酵产Monacolin K的因素进行了单因素考察,根据优化得到的发酵条件,融合子HH1以小米为原料固态发酵20 d后,Monacolin K的产量可达17.50 mg/g。采用Box-Behnken响应面分析法,进一步研究了拌料水加量、拌料水pH和接种量这三个因素对Monacolin K产量的影响,并建立了模型,模型预测的理论值与实验所得的实际值无显著性差异,说明此模型能够较好的模拟发酵实验。
     本研究克隆得到了发白红曲菌Monacolin K合成相关基因的DNA片段mkWL,并采用根癌农杆菌介导转化和原生质体融合技术筛选到红曲菌Monacolin K高产株,为发白红曲菌基因遗传改造及Monacolin K工业化生产奠定良好基础。
One of cholesterol synthesis inhibitor, Monacolin K, was found in Monascus fermented products. It is the same substance as lovastatin in Aspergillus terreus. It inhibits the activity of hydroxymethyglutaryl coenzyme A reductase, which catalyzes the rate-limiting step in cholesterol biosynthesis and regulate abnormal blood liqid in organism. Over the last 30 years, many Monascus spp such as M.purpureus, M.albidus and M.pilosus were found to produce Monacolin K. Although the ability of synthesizing Monacolin K by Monascus spp degenerated with the generation passing on, and yield of Monacolin K from Monascus spp is less than A. terreus, but with its edibility, Monacolin K produced from Monascus spp seems more acceptable than from A. terreus. Constant selection and breeding of Monascus spp are necessary. In order to investigate the related gene in Monacolin K synthesis pathway and find out a simple and effective method to screen strains of Monascus spp with high Monacolin K production, the approach of combinated techniques with gene cloning and protoplast fusion may be a feasible choice.
     The aim of this work was to develop the Agrobacterium tumefaciens-mediated transformation (ATMT) method in Monascus spp, and transfer the T-DNA with genetic marker into Monascus spp, expect the insertion of T-DNA would change the host DNA sequence arrangement and affect the growth and metabolism of Monascus transformants, and then the Monascus transformants with high Monanolin K could be selected and analysed. The flanking sequence of T-DNA from these transformants will be amplified to find out the related Monacolin K biosynthetic gene. Monascus fusants with enhanced Monacolin K production could be screened via proroplast fusion between parental strains with gene hph and the ability of Monacolin K production respectively, the fermentation conditions by Monascus fusants during solid-state fermentation will be optimized, and provide finally some data for industrialization of Monacolin K production.
     The related results are as following:
     (1) The binary vector pCAMBIA 3300-gpdA-hph-trpC was constructed and transformed into Agrobacterium tumefaciens GV3101. The exogenous gene gpdA-hph-trpC was transformed into M. albidus by ATMT. Various influencing factors on transformation efficiency were optimized including the concentration of antibiotics, concentration of M. albidus spores, cell density of A. tumefaciens, co-cultivation time, temperature and the concentration of acetosyringone. The highest transformation frequency was about 5.2×104 . Some of the transformants were selected for PCR analysis, and the results further confirmed that the transformants tested were arbitrarily integrated with exogenous T-DNA in genome. Among many transformants, one transformant H1 with high Monacolin K production was selected, from which the flanking sequence mkWL (0.88 kb) of T-DNA by inverse PCR was obtained. The result of homology between the gene mkWL and Monacolin K biosynthetic gene cluster from M. albidus in the Genbank was analyzed, which revealed that there was identity of 97% at DNA sequence homology. The gene mkWL was deduced to be the related gene in Monacolin K biosynthetic pathway of M. albidus.
     (2) Main factors such as mycelium age, osmotic stabilizer, different enzymatic combinations, duration of enzyme treatment and regeneration medium for efficient protoplast formation and regeneration from transformant H1 and M. fumeus 9908 were investigated. Monascus fusants HH1 with high Monacolin K production were selected via protoplast fusion between tansformant H1 and M. fumeus 9908, and the concentration of Monacolin K in fermented millet by fusant HH1 increased by 404% and 27% compared with that produced by parental Monascus spp.
     (3) The fermentation conditions for promotion Monacolin K production by solid-state fermentation were optimized, and the Monacolin K yield by fusant HH1 reached to 17.50 mg/g after fermentation for 20 d. The response surface methodology of Box-Behnken was applied to further optimize the fermentation conditions including water volume, pH of water and inoculant volume. A model was constructed, and further experiments were carried out to verify the accuracy and reliability of the model, the results showed that the predicted value was agreed well to the experimental value.
     The gene mkWL related to Monacolin K biosynthesis in M. albidus was amplified, and Monascus fusants with high Monacolin K production were bred via Agrobacterium -mediated transformation and protoplast fusion, these works laid a good foundation for genetic modification and industrialization of Monacolin K fermentation of M. albidus.
引文
[1]李钟庆,郭芳.红曲菌的形态与分类学[M].北京:中国轻工业出版社, 2003,3-12.
    [2] Sun B S, Zhou L P, Jia X Q, et al. Response surface modeling for gamma-aminobutyric acid production by Monascus pilosus GM100 under solid-state fermentation [J]. African Journal of Biotechnology, 2008, 7 (24):4544-4550.
    [3] Wang J J, Lee C L, Pan T M. Improvement of monacolin K, gamma-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601 [J]. Journal of Industrial Microbiology & Biotechnology, 2003, 30 (11):669-676.
    [4]郭宝禹,郝林.红曲霉产物的功能及研究进展[J].酿酒科技, 2010, (6):89-91.
    [5] de Carvalho J C, Pandey A, Oishi B O, et al. Relation between growth, respirometric analysis and biopigments production from Monascus by solid-state fermentation [J]. Biochemical Engineering Journal, 2006, 29 (3):262-269.
    [6] Endo A. Monacolin K, a new hypocholesterolemic agent produced by Monascus species [J]. Journal of Antibiotics, 1979, 32 (8):852-854.
    [7] Trenin A S , Katrukha G S. Antibiotics inhibiting the biosynthesis of cholesterol [J]. Pharmaceutical Chemistry Journal 1997, 31 (9):452-463.
    [8] Moore R, Bigan G, Chan J. Biosynthesis of hypocholesterolemic agent mevinolin by Aspergillus terreus [J]. J Am Chen Soc, 1985, 107 (12):3694-3701.
    [9] Yoshizawa Y, Witter D, Liu Y. Revision of the biosynthetic origin of oxgens in mevinolin, a hypocholesterolemic drug from Aspergillus terreus MF4845 [J]. J Am Chen Soc, 1994, 116 (6):2693-2695.
    [10]朱华.红曲霉液态发酵法生产Monacolin K的研究[D]:[硕士学位论文].无锡:江南大学,2003.
    [11] Jongrungruangchok S, Kittakoop P, Yonsmith B, et al. Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang [J]. Phytochemistry, 2004, 65 (18):2569-2575.
    [12]马相杰,杨凌.红曲米耐热耐光性研究[J].肉类工业, 2010, (351):46-49.
    [13]谢林明.红曲色素的提取及其光稳定相研究[J].食品添加剂, 2004, (3):25-29.
    [14] Vladimir B. Citrinin mycotoxin-chemical [J]. Biological and Environmental Aspects, 1989, (3):70-78.
    [15] Ciegle G. Production of patulin and citrinin from Penicillium expansum [J]. Environmental Microbiol, 1977, 33:1004-1006.
    [16]黄志兵,李燕萍,王延华.橙色红曲菌As3.4384及其诱变体发酵产物中的桔霉素和色素的高效液相色谱研究[J].分析化学, 2007, 35 (4):474-478.
    [17]产竹华,许赣荣.不产桔霉素红曲诱变菌株的选育及色素发酵条件的优化[J].食品与发酵工业, 2006, 32 (11):28-31.
    [18]周礼红.红曲霉遗传转化系统及桔霉素、Monacolin K生物合成相关PKS基因的克隆与功能鉴定[D]:[博士学位论文].无锡:江南大学,2005.
    [19] Blanc J P. Occurrence of citrinin in the production of the red pigments of Monascus [C]. International Symposium on Oriental Monascus.France: 2000.
    [20] Orozco S F B, Kilikian B V. Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802 [J]. World Journal of Microbiology & Biotechnology, 2008, 24 (2):263-268.
    [21]赖卫华,许杨,李燕萍.关于红曲霉产桔霉素规律的初步探讨[J].中国酿造, 2004, (2):12-14.
    [22] Hajjaj H. Medium-chain fatty acid affect citrinin production in the Filamentous Fungus Monascus Rubber [J]. Applied and Environmental Microbiology, 2000, (66):1120-1125.
    [23]谢晓琼,张国山,谢苗.碱处理法脱除红曲色素中桔霉素[J].广东化工, 2004, 31 (2):25-26.
    [24] Blanc P J, Laussac J P, Lebars J, et al. Characterization of Monascidin- a form Monascys as cirtinin [J]. International Journal of Food Microbiology, 1995, 27 (2):201-213.
    [25]陈晔,朱华,许赣荣.红曲霉9901发酵法生产Monacolin K的发酵条件[J].食品与发酵工业, 2004, (30):57-61.
    [26]孙嘉龙,邹晓,刘爱英.高产Monacolin K红曲菌株的复合诱变选育[J].菌物学报, 2007, 26 (4):507-516.
    [27]刘爱英,孙嘉龙,邹晓.提高红曲霉发酵产品Monacolin K含量的研究[J].贵州农业科学, 2007, 35 (6):5-7.
    [28] Suh S H, Rheem S, Mah J H, et al. Optimization of production of monacolin K from gamma-irradiated Monascus mutant by use of response surface methodology [J]. Journal of Medicinal Food, 2007, 10:408-415.
    [29] Zhi C, Wen L, Ping Y, et al. Enhancement of monacolin K production via intergeneric protoplast fusion between Aspergillus terreus and Monascus anka [J]. Progress in Natural Science, 2007, 17 (6):703-707.
    [30] Subhagar S, Aravindan R, Viruthagiri T. Response surface optimization of mixed substrate solid state fermentation for the production of lovastatin by Monascus purpureus [J]. Engineering in Life Sciences, 2009, 9 (4):303-310.
    [31] Sayyad S A, Panda B P, Javed S, et al. Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology [J]. Applied Microbiology and Biotechnology, 2007, 73:1054-1058.
    [32] Panda B, Javed S, Ali M. Statistical analysis and validation of process parameters influencing lovastatin production by Monascus purpureus MTCC 369 under solid-state fermentation [J]. Biotechnology and Bioprocess Engineering, 2009, 14 (1):123-127.
    [33] Yang S L, Zhang H, Li Y Q, et al. The ultrasonic effect on biological characteristics of Monascus sp [J]. Enzyme and Microbial Technology, 2005, 37 (1):139-144.
    [34] Tsukahara M, Shinzato N, Tamaki Y, et al. Red yeast rice fermentation by selected Monascus sp with deep-red color, Lovastatin production but no citrinin, and effect of temperature-shift cultivation on Lovastatin production [J]. Applied Biochemistry and Biotechnology, 2009, 158 (2):476-482.
    [35]周礼红.一种制备含多糖丝状真菌基因组DNA的方法[J].湖北农业科学, 2008, 47 (4):379-381.
    [36]熊勇华,许杨,赖卫华.红曲霉SAGE文库中双标签的制备研究[J].中国生态农业学报, 2004, 12 (1):19-22.
    [37] Gubler U, Hoffman B. A simple and very effient method for generating cDNA library [J]. Gene, 1983, 25:263-269.
    [38]赖卫华,许杨,熊勇华.红曲菌cDNA消减文库的构建[J].菌物系统, 2003, 22 (3):466-472.
    [39]周礼红,王正祥,诸葛健.红曲霉HMW-DNA的制备[J].食品与发酵工业, 2005, 31 (9):35-38.
    [40]李燕萍,许杨,阮琼芳.红曲菌Fosmid文库的构建和分析[J].北京师范大学学报, 2008, 44 (2):188-192.
    [41] Kim J G, Do Choi Y, Chang Y J, et al. Genetic transformation of Monascus purpureus DSM1379 [J]. Biotechnology Letters, 2003, 25 (18):1509-1514.
    [42] Zhou LH, Wang ZX, J Z. Comparison of different transformation methods for Monascus sp [J]. Yichuan, 2006, 28 (4):479-485.
    [43] Lakrod K, Chaisrisook C, Skinner D Z. Transformation of Monascus purpureus to hygromycin B resistance with cosmid pMOcosX reduces fertility [J]. Electronic Journal of Biotechnology, 2003, 6 (2):143-147.
    [44] Hamilton C M, Frary A, Lewis C, et al. Stable transfer of intact high molecular weight DNA into plant chromosomes [J]. Proc Natl Acad Sci U S A, 1996, 93 (18):9975-9979.
    [45] de Groot M J A, Bundock P, Hooykaas P J J, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi [J]. Nature Biotechnology, 1998, 16 (9):839-842.
    [46] Fang W G, Zhang Y J, Yang X Y, et al. Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker [J]. J Invertebr Pathol, 2004, 85 (1):18-24.
    [47] Rolland S, Jobic C, Fevre M, et al. Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences [J]. Current Genetics, 2003, 44 (3):164-171.
    [48] Malonek S, Meinhardt F. Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii [J]. Current Genetics, 2001, 40 (2):152-155.
    [49] Loppnau P, Tanguay P, Breuil C. Isolation and disruption of the melanin pathway polyketide synthase gene of the softwood deep stain fungus Ceratocystis resinifera [J]. Fungal Genet Biol, 2004, 41 (1):33-41.
    [50] Abuodeh R O, Orbach M J, Mandel M A, et al. Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens [J]. J Infect Dis, 2000, 181 (6):2106-2110.
    [51] Yamada M, Yawata K, Orino Y, et al. Agrobacterium tumefaciens-mediated transformation of antifungal lipopeptide producing fungus Coleophoma empetri F-11899 [J]. Current Genetics, 2009, 55 (6):623-630.
    [52] Covert S F, Kapoor P, Lee M H, et al. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum [J]. Mycological Research, 2001, 105:259-264.
    [53] Zhang A, Lu P, Dahl-Roshak A M, et al. Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyeasis [J]. Mol Genet Genomics, 2003, 268 (5):645-655.
    [54] Degefu Y, Hanif M. Agrobacterium tumefaciens-mediated transformation of Helminthosporium turcicum, the maize leaf-blight fungus [J]. Arch Microbiol, 2003, 180 (4):279-284.
    [55] Sullivan T D, Rooney P J, Klein B S. Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast [J]. Eukaryot Cell, 2002, 1 (6):895-905.
    [56] Bundock P, Mroczek K, Winkler A A, et al. T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis [J]. Mol Gen Genet, 1999, 261 (1):115-121.
    [57] Campoy S, Perez F, Martin J F, et al. Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer [J]. Current Genetics, 2003, 43 (6):447-452.
    [58] Zhang P Y, Xu B, Wang Y H, et al. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the fungus Penicillium marneffei [J]. Mycological Research, 2008, 112:943-949.
    [59] Christie P. Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria [J]. J Bacteriol, 1997, 179:3085-3094.
    [60] Kado C. The role of T-pilus in horizontal gene transfer and tumorigenesis [J]. Curr Opin Microbiol, 2000, 3:643-648.
    [61]刘士旺.生防绿色木霉工程菌的构建及其诱导植物抗病性研究[D]:[博士学位论文].浙江:浙江大学,2003.
    [62] Bundock P, den Dulk-Ras A, Beijersbergen A, et al. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae [J]. EMBO J, 1995, 14 (13):3206-3214.
    [63] Piers K L, Heath J D, Liang X, et al. Agrobacterium tumefaciens-mediated transformation of yeast [J]. Proc Natl Acad Sci U S A, 1996, 93 (4):1613-1618.
    [64] Godio R, Fouces R, Gudina E J, et al. Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium [J]. Current Genetics, 2004, 46 (5):287-294.
    [65] Combier J P, Melayah D, Raffier C, et al. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum [J]. Fems Microbiology Letters, 2003, 220 (1):141-148.
    [66] Meyer V, Mueller D, Strowig T, et al. Comparison of different transformation methods for Aspergillus giganteus [J]. Current Genetics, 2003, 43 (5):371-377.
    [67] Tsuji G, Fujii S, Fujihara N. Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium [J]. J Gen Plant Pathol, 2003, 69:230-239.
    [68] Takahara H, Tsuji G, Kubo Y. Agrobacterium tumefaciens-mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii [J]. J Gen Plant Pathol, 2004, 70:93-96.
    [69] Zambryski P. Basic possesses underlying Agrobacterium mediated DNA transfor to plant cells [J]. Ann Rev Genet, 1988, 22:1-30.
    [70] Chen Y P, Tseng CP, Liaw LL, et al. Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus [J]. Journal of Agricultural and Food Chemistry, 2008, 56 (14):5639-5646.
    [71]高蓝. Monascus ruber 5031洛伐他汀合成酶基因的PCR分析[J].广东药学院学报, 2006, 22 (1):82-84.
    [72] Sakai K, Kinoshita H, Nihira T. Identification of mokB involved in monacolin K biosynthesis in Monascus pilosus [J]. Biotechnol Lett, 2009, 31 (12):1911-1916.
    [73] Shimizu T, Kinoshita H, Ishihara S, et al. Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus [J]. Applied and Environmental Microbiology, 2005, 71 (7):3453-3457.
    [74] Shimizu T, Kinoshita H, Nihira T. Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus [J]. Applied and Environmental Microbiology, 2007, 73 (16):5097-5103.
    [75] Fu G M, Xu Y, Li Y P, et al. Construction of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin biosynthesis in Monascus aurantiacus and maintain food red pigment production [J]. Asia Pacific Journal of Clinical Nutrition, 2007, 16:137-142.
    [76] Vianey O M, Carlos C P, Alfredo H. Three decades of fungal transformation: key concepts and applications [J]. Methods Mol Biol, 2004, 267:297-313.
    [77] Dmytruk K V, Voronovsky A Y, Sibirny A A. Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments [J]. Current Genetics, 2006, 50 (3):183-191.
    [78] Sandhu S S, Kinghorn J R, Rajak R C, et al. Transformation system of Beauveria bassiana and Metarhizium anisopliae using nitrate reductase gene of Aspergillus nidulans [J]. Indian J Exp Biol, 2001, 39 (7):650-653.
    [79]黄卫,汪天虹,吴志红.丝状真菌遗传转化系统的研究进展[J].微生物学杂志, 2000, 20 (3):40-44.
    [80] Hill T W, Loprete D M, Momany M, et al. Isolation of cell wall mutants in Aspergillus nidulans by screening for hypersensitivity to Calcofluor White [J]. Mycologia, 2006, 98 (3):399-409.
    [81]任文斌.淡紫拟青霉E2-4生防效果分析及其根癌农杆菌介导的遗传转化[D]:[博士学位论文].广州:华南热带农业大学,2007.
    [82]姚婷婷.糖化酶生产菌的遗传改良[D]:[硕士学位论文].无锡:江南大学,2006.
    [83]精编分子生物学实验指南[M].第一版.颜子颖等译。北京:科学出版社,1998.
    [84] Susanne Z. Gene disruption in Trichoderma atroviride via Agrobavterium-mediated trasformation [J]. Curr Genet, 2004, 45 (1):54-60.
    [85] Caroline B, Paul J. Agrobacterium-mediated transformation as a tool for functional genomics in fungi [J]. Curr Genet, 2005, 48:1-17.
    [86] Fullner K, Nester E. Temperature affects the T-DNA transfermachinery of Agrobacterium tumefaciens [J]. J Bacteriol, 1996, 178:1498-1504.
    [87] Duarte R T, Staats C C, Fungaro M H, et al. Development of a simple and rapid Agrobacterium tumefaciens-mediated transformation system for the entomopathogenic fungus Metarhizium anisopliae var. acridum [J]. Lett Appl Microbiol, 2007, 44 (3):248-254.
    [88] Sriskandarajah S, Frello S, Jorgensen K, et al. Agrobacterium tumefaciens-mediated transformation of Campanula carpatica: factors affecting transformation and regeneration of transgenic shoots [J]. Plant Cell Rep, 2004, 23 (1-2):59-63.
    [89]王汝毅.根癌农杆菌介导红曲霉转化库的构建及转化子性质研究[D]:[硕士学位论文].武汉:华中农业大学,2005.
    [90]张君胜.根癌农杆菌介导产假丝酵母转化研究[D]:[硕士学位论文].无锡:江南大学,2006.
    [91] Pilian M M, Venkataraman G M. Intergration site analysis in transgenic mice by thermal asymmetric interlaced (TAIL) PCR [J]. Transgenic Res, 2007, 12:18-22.
    [92] Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking [J]. Genomics, 1995, 25 (3):674-681.
    [93] Walden R. T-DNA tagging in a genomics era [J]. Plant Sciences, 2002, 21 (3):143-165.
    [94] Ochman H, Gerber A S, Hartl D L. Genetic applications of an inverse polymerase chain reaction [J]. Genetics, 1988, 120 (3):621-623.
    [95] Macgregor G R, Oerbeek P A. Use of a simplified single-site PCR to facilitate cloing of genomic DNA sequences flanking a transgene integration site [J]. PCR Methods Appl, 1991, 1 (2):129-135.
    [96] Ochman H, Gerber A S, Hartl D L. Genetic application of an inverse polymerase chain reaction [J]. Genetics, 1988, 120:621-623.
    [97]陈蕴,许赣荣,虞慧玲.红曲桔霉素高效液相色谱测定条件的优化[J].食品与发酵工业, 2004, 30 (1):118-123.
    [98]洪登峰,万丽丽,杨光圣.侧翼序列克隆方法评价[J].分子植物育种, 2006, (4):280-288.
    [99]韩志勇,王新其,沈革志.反向PCR克隆转基因水稻的外源基因旁侧序列[J].上海农业学报, 2001, 17 (2):27-32.
    [100] Jeon J, Park S, Chi M H, et al. Genome wide functional analysis of pathogenicity genes in the rice blast fungus [J]. Nat Genet, 2007, 39 (4):561-565.
    [101] Bundock P, Attikum H, Dulk R A, et al. Insertional mutagenesis in yeasts using T-DNA from Agrobacterium tumefaciens [J]. Yeast, 2002, 19:529-536.
    [102] Peberdy J F. Presidential address: fungi without coats-protoplasts as tools for mycilogical research [J]. Mycol Res, 1989, 93:1-12.
    [103]张志光,李东屏,邹寿长.丝状真菌原生质体技术的研究-渗透压稳定剂对原生质体的影响[J].湖南大学自然科学学报, 1998, 21:67-71.
    [104] Xiao Y, Morrell J J. Production of protoplasts from cultures of Ophiostoma picea [J]. Journal of Wood Science, 2004, 50 (5):445-449.
    [105] Farina J I, Molina O E, Figueroa L I C. Formation and regeneration of protoplasts in Sclerotium rolfsii ATCC 201126 [J]. Journal of Applied Microbiology, 2004, 96 (2):254-262.
    [106]彭帮柱,岳田利,袁亚宏等.酵母菌原生质体融合技术[J].西北农业学报, 2004, 13 (1):101.
    [107]孙剑秋,周东坡.微生物原生质体技术[J].生物学通报, 2002, 37 (7):9-11.
    [108]陈洪章,徐建.现代固态发酵原理及应用[M].北京:化学工业出版社, 2004,1-5.
    [109]许赣荣,胡文峰.固态发酵原理、设备与应用[M].北京:化学工业出版社, 2009,1-5.
    [110] Miyake T, Uchitomi K, Zhang MY, et al. Effects of the principal nutrients on lovastatin production by Monascus pilosus [J]. Bioscience Biotechnology and Biochemistry, 2006, 70 (5):1154-1159.
    [111] Lee C L, Wang J J, Kuo S L, et al. Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent - monacolin K and antiinflammation agent - monascin [J]. Applied Microbiology and Biotechnology, 2006, 72 (6):1254-1262.
    [112] Xu BJ, Wang QJ, Jia XQ, et al. Enhanced Lovastatin production by solid state fermentation of Monascus ruber [J]. Biotechnology and Bioprocess Engineering, 2005, 10 (1):78-84.
    [113] Jia XQ, Mo EK, Sun BS, et al. Solid-state fermentation for production of monacolin K on soybean by Monascus ruber GM011 [J]. Food Science and Biotechnology, 2006, 15 (5):814-816.
    [114]郭淑春,钱丽燕,张凤清.荞麦、小米营养成分的开发和利用[J].粮油食品科技, 1998, (1):12-13.
    [115] Krishna C. Solid-state fermentation systems - An overview [J]. Crit Rev Biotechnol, 2005, 25 (1-2):1-30.
    [116] Montiel-Gonzalez A M, Viniegra-Gonzalez G, Fernandez F J, et al. Effect of water activity on invertase production in solid state fermentation by improved diploid strains of Aspergillus niger [J]. Process Biochemistry, 2004, 39 (12): 2085-2090.
    [117]吴振强.固态发酵技术与应用[M].北京:化学工艺出版社, 2006: 77-79.
    [118]俞俊堂,唐孝宣.生物工艺学[M].广州:华东理工大学出版社, 1991: 3-10.
    [119] Raghavarao K, Ranganathan TV, NG K. Some engineering aspects of solid-state fermentation [J]. Biochemical Engineering Journal, 2003, 13 (2-3):127-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700