用户名: 密码: 验证码:
基于社会网络理论的流感传播特征及防控措施效果评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     借助目前复杂网络及社会网络理论领域研究各种经典分析方法和指标,从动态和静态两个角度分析流感在人群接触网络中的传播特征,从微观行为与宏观结构两个层面构建基于社会网络的流感传播模型,利用计算机进行模拟和定量分析,提出预防控制措施和管理模式,从而有效地预防和控制流感在人群中的传播。
     研究方法
     1、调查学校青少年在社会网络中与其他人的接触情况和流感防控知识知晓情况。调查问卷内容主要包括:个人基本情况、日常生活中的接触行为、流感基本知识、态度、行为和需求。接触行为数据分年级和群组排列,计算不同群组活动变量的平均值(AVG)、变异系数(CV)等。本调查数据应用EPI DATA 3.1完成数据的录入和整理,运用EXCEL 2003和SPSS13.0进行统计分析。
     2、调查发生流感疫情的湖北省随州市某小学四年级某班全体学生。调查问卷主要包括两部分内容:个人基本情况和学生间的接触行为。构建一个相对封闭的班级内部学生接触的整体网络,进行计算机录入分析,获取网络特征参数。用UCINET网络分析集成软件进行整体网络分析,接触行为特征数据采用EPI DATA3.1录入并核对,用EXCEL 2003和SPSS 13.0进行统计分析。
     3、选取湖北省人口作为研究对象,构建个体和群体两个层面的模型。个体模型基于拓展后的经典SIR模型,群体模型是基于真实表现个体之间接触的社会接触网络(SCN)模型。仿真模拟开始于10万个人的社会接触网络和一个受感染的个体,使用InfluSim分析在没有提供疫苗的情况下,药物和非药物措施减轻流感大流行的效果。
     研究结果
     1、不同年级间各群组平均接触时间的分布比较均衡,没有比较大的起落变化。在列出的十个群组中,家庭群组具有最高的平均接触时间,其次是学校课堂群组。各年级级别中,小学生中接触层次比初中生和高中生高。但是各群组接触层次时间值的总和以高中年级最高,小学最低。特别是少数几个学生的接触层次时间值非常高,这些接触层次时间值很高的人有可能成为“超级传播者(super spreader)"。
     2、流感发生前后班级内学生之间接触发生了很大变化,流感发生后网络结构整体上比流感发生前要松散得多。流感发生前班级内日常接触网络比流感发生后班级内部接触网络的网络距离小,聚类系数大,网络的分散程度小,凝聚程度高。流感发生前后各节点的度和相对中心度的均值分别为9.1和6.5,大部分节点的度有不同程度的减少。流感发生后班级内部接触网络中主要接触人数下降了2个;平均接触时间由每人每天2.6小时降为1.9小时,与主要接触者的接触时间总和由流感发生前的17.2小时下降为8.4小时。
     3、没有干预措施时人群感染率为83.0%,采取药物治疗、社会距离和综合措施后感染率分别为69.0%、67.0%和54.0%。没有干预措施时流感流行引起死亡人数为111人,采取干预措施后,死亡数大大降低。不同干预措施对暴露者、隐性感染者和严重病例者人数也有一定影响。没有干预措施时流行持续时间为79天,采取治疗措施、社会距离和综合措施后,流感流行持续时间延长,增加率分别为19.0%、44.3%和75.9%。各年龄段的感染率也大大降低,分别降低到2.3%、5.7%、3.8%、3.3%、2.9%和1.8%。研究结论
     1、应用SCN理论描述人群中接触行为的特征,找出对流感传播具有重要作用的群组或个体,有助于合理设计社会接触距离措施。并且,提高流感主要侵害对象的认知,能促进防控措施的顺利实施。
     2、流感发生后班级内部整体网络结构变得松散了,个体节点的位置发生了一些变化,平均每个学生密切接触的学生人数减少,接触时间与接触层次时间值也显著下降,表明流感防控措施产生了一定效果。人群接触行为也发生了改变,有利于控制流感在人群中的快速传播。
     3、在流感高速传播时,及时应用抗病毒药物(即使是有限的药品)和快速实施减少社会接触的措施将显著延缓流行高峰的到来,并且大幅度降低其高峰期的感染人数,降低流感流行的凶险程度。
     1、应用社会接触网络(SCN)理论分析流感在人群中传播的特征,找到流感防控的重点关注对象,利于有针对性地采取防控措施,达到效益的最大化。
     2、利用整体网络分析方法分析流感疫情发生前后接触网络拓扑结构和个体接触行为的变化,为定量评价不同流感防控干预措施的效果奠定基础。3、结合SIR和SCN构建合适的流感传播模型,模拟流感在人群中传播的过程,定量评价不同的流感防控干预措施的效果。
Objectives
     In recent years, the complex network theory, as a profound tool for understanding the complex network system, analyze the qualitative and quantitative evolution to control the complex system. In this study, based on the current theory of complex networks and the field of social network, we analyzed the spreading characteristics of influenza both from the perspective of dynamic and static, constructed social behavior network model of influenza spread from micro-macro levels and evaluated quantitative effects of intervention measures.
     Methods
     1. Surveys were administered to students in an elementary, middle and high-school in Hubei Suizhou. The social contact network of a person was conceptualized as a set of groups to which they belong (e.g., households, classes). Each group composed of a sub-network of primary links representing the individuals that they contact. The size of the group, number of primary links, time spent in the group, and level of contact along each primary link (near, talking, touching) were characterized. We completed the data entry and analyzed them by EPI DATA 3.1, and used EXCEL 2003 and SPSS 13.0 for statistical analysis.
     2. Surveys were administered to students in an elementary school class in Hubei Suizhou. A total of 68 students participated in the survey. The questionnaire consisted of two main parts:basic information and personal contact behaviors between classmates. The later included before and after the influenza epidemic situation. Participations filled out the questionnaire after the investigator explained the items. The students were exposed within the overall network for evaluating characteristic parameters of the network. The network parameters and the individual location parameters were characterized, such as density, distance, clustering coefficient, the node degree and the betweenness. The size of the group, number of primary links, time spent in the group, and level of contact along each primary link (near, talking, touching) were also characterized. We completed the data entry and analyzed them by EPI DATA 3.1, and used integrated software UCINET, EXCEL 2003 and SPSS13.0 for statistical analysis.
     3. The model included an individual level, in which the risk of influenza virus infection and the dynamics of viral shedding were simulated according to age, treatment; and a community level, in which meetings between individuals were simulated on randomly generated graphs. We used data on real pandemics to calibrate some parameters of the model. The reference scenario assumed no vaccination, no use of antiviral drugs, and no preexisting herd immunity. We explored the impact of interventions such as treatment/prophylaxis with neuraminidase inhibitors, quarantine, and closure of schools or workplaces.
     Results
     1. Students, groups and public activity were highly heterogeneous. Groups with high potential for the transmission of influenza were households, school classes. Sports decreased and households and school classes increased in importance with grade level. Individual public activity events were also important but lost their importance when averaged over time. Students were highly assortative, interacting mainly within age class. A small number of individual students were identified as likely "super-spreaders".
     2. The contact behaviors between classmates had taken place great changes before and after influenza occurred. The whole network was much more to loose for the emergence of influenza. Compared with daily life, contact network density and overall graph clustering coefficient after influenza epidemics decreased more or less. The degree centrality after influenza epidemics was lower than before with significant differences. Primary links, contact-hours and contact-level-hours after influenza epidemics were lower than before.
     3. In the reference scenario, an explosive outbreak affected 83.0% of the population on average and lasted a mean of 79 days. Interventions aimed at reducing the number of meetings, combined with measures reducing individual transmissibility, would be partly effective. With treatment of the index patient, prophylaxis of household contacts, and confinement to home of all household members, would reduce the probability of an outbreak by 29.0%. Interventions would significantly reduce the frequency, size, and mean duration of outbreaks, but the benefit would depend markedly on the interval between identification of the first case.
     Conclusions
     1. Closing schools and keeping students at home during a pandemic would remove the transmission potential within these ages and could be effective at thwarting its spread within a community. Social contact networks characterized as groups and public activities with the time, level of contact and primary links within each, yields a comprehensive view, which if extended to all ages, would allow design of effective community containment for pandemic influenza.
     2. Compared with daily life, characteristics of contact network structure and contact behavior after influenza epidemics were in favor of controlling influenza spreading, which indicated that intervention measures were effective. We should isolate patients and cure them in the early stage of influenza epidemics and give medical observation to close contact persons according to social network characteristics. Targeted social distancing methods should also been taken instantly.
     3. When influenza spreading at high-speed, the timely application of antiviral drugs (even if limited drugs) and rapid implementation of measures to reduce social contacts would significantly delay the epidemic peak, significantly reduce the number of its peak infected person, and reduce the extent dangerous of influenza pandemic.
     Innovation
     1. It applied SCN theory to describe the spreading characteristics of influenza in the population. The result would help to find focus group, and help to take preventive and control measures targeted to reduce the impact of influenza on the population.
     2. It applied the overall network analysis method to dynamically describe a relatively closed student group network. This was the foundation for quantitative evaluation the effect of different interventions to prevent and control influenza.
     3. It builded appropriate influenza spreading models combined with SIR and the SCN theory. This helped to take quantitative evaluation the effects of different influenza control measures.
引文
[1]DL, H., Control of communicable diseases manual.2004, American Public Health Association:Washington, DC.
    [2]Dushoff J, Plotkin JB, Viboud C, et al., Mortality due to influenza in the United States-an annualized regression approach using multiple-cause mortality data. Am J Epidemiol,2006.163(2):181-7.
    [3]Ferguson NM, Fraser C, Donnelly CA, et al., Public health risk from the avian H5N1 influenza epidemic. Science,2004.304(5673):968-969.
    [4]Longini IM, Jr., Halloran ME, Nizam A, et al., Containing pandemic influenza with antiviral agents. Am J Epidemiol,2004.159(7):623-33.
    [5]Griffin BA, Jain AK, Davies-Cole J, et al., Early detection of influenza outbreaks using the DC Department of Health's syndromic surveillance system. Bmc Public Health,2009.9.
    [6]Cao B, Li XW, Mao Y, et al., Clinical Features of the Initial Cases of 2009 Pandemic Influenza A (H1N1) Virus Infection in China. New England Journal of Medicine,2009.361(26):2507-2517.
    [7]Erkoreka, A., The Spanish influenza pandemic in occidental Europe (1918-1920) and victim age. Influenza and Other Respiratory Viruses.2010. 4(2):81-89.
    [8]Mills, C.E., J.M. Robins, and M. Lipsitch, Transmissibility of 1918 pandemic influenza. Nature,2004.432(7019):904-6.
    [9]Houswort.J and A.D. Langmuir, Excess Mortality from Epidemic Influenza, 1957-1966. American Journal of Epidemiology,1974.100(1):40-48.
    [10]Jackson, C., E. Vynnycky, and P. Mangtani, Estimates of the Transmissibility of the 1968 (Hong Kong) Influenza Pandemic:Evidence of Increased Transmissibility Between Successive Waves. American Journal of Epidemiology.171(4):465-478.
    [11]Viboud C, Grais RF, Lafont BAP, et al., Multinational impact of the 1968 Hong Kong influenza pandemic:Evidence for a smoldering pandemic. Journal of Infectious Diseases,2005.192(2):233-248.
    [12]Gaydos JC, Top FH, Hodder RA, et al., Swine influenza A outbreak, Fort Dix, New Jersey,1976. Emerging Infectious Diseases,2006.12(1):23-28.
    [13]Smith, D.J., Predictability and preparedness in influenza control. Science,2006. 312(5772):392-394.
    [14]Clem, A. and S. Galwankar, Avian influenza:preparing for a pandemic. J Assoc Physicians India,2006.54:563-70.
    [15]Chen, K.F., C. Gaydos, and R.E. Rothman, Update on Emerging Infections: News From the Centers for Disease Control and Prevention. Annals of Emergency Medicine,2009.54(5):732-734.
    [16]Chen H, Liu Y-l, He S-h, et al., Report of the first case of influenza A(H1N1) in mainland China. Zhonghua Jiehe He Huxi Zazhi,2009.32(7):482-484.
    [17]WHO. WHO checklist for influenza pandemic preparedness planning.2005 [cited; Available from:WHO checklist for influenza pandemic preparedness planning.
    [18]WHO. Global Influenza Programme.2009 [cited; Available from: http://www.who.int/csr/disease/influenza/PIPGuidance09.pdf.
    [19]WHO. WHO global influenza preparedness plan.2005 [cited; Available from:www.who.int/entity/csr/resources/publications/influenza/WHO_CDS_CSR GIP 2005 5/en/.
    [20]李立明,流行病学.第五版.2006,北京:人民卫生出版社.
    [21]Yu HJ, Feng LZ, Peng ZB, et al., Estimates of the impact of a future influenza pandemic in China. Influenza and Other Respiratory Viruses,2009.3(5): 223-231.
    [22]Yang P, Duan W, Lv M, et al., Review of an Influenza Surveillance System, Beijing, People's Republic of China. Emerging Infectious Diseases,2009. 15(10):1603-1608.
    [23]Zeng, G and L.-J. Zhang, How does China response A/H1N1 influenza pandemic more effectively. Chin J Epidemiol,2009.30(7):653-5.
    [24]WHO. WHO Rapid Advice Guidelines on pharmacological management of humans infected with avian influenza A (H5N1) virus.2006 [cited; Available from:http://www.who.int/csr/disease/avian_influenza/guidelines/ pharmamanagement/en/index.html.
    [25]卫生部,中国流行性感冒疫苗预防接种指导意见.2005:北京.
    [26]Newman, M.E.J., The Structure and Function of Complex Networks.2003, SIAM.167-256.
    [27]汪小帆,李翔,陈关荣,复杂网络理论及其应用.第一版.2006,北京:清华大学出版社.
    [28]孙振球,医学统计学.2002,北京:人民卫生出版社.
    [29]马知恩,周义仓,王稳地等,传染病动力学的数学建模与研究.2004.8:科学出版社.
    [30]Auyang, S.Y., Foundations of Complex-system Theories.第一版.2002.10,上海:上海科技教育出版社.
    [31]马汀.奇达夫,蔡文彬,社会网络与组织.2007,北京:中国人民大学出版社.
    [32]Barabasi AL, Jeong H, Neda Z, et al., Evolution of the social network of scientific collaborations. Physica a-Statistical Mechanics and Its Applications, 2002.311(3):590-614.
    [33]Strogatz, S.H., Exploring complex networks. Nature,2001.410(6825): 268-276.
    [34]王树禾,图论.第一版.2006,北京:科学出版社.
    [35]Bollobas, B., et al., Random induced graphs. Discrete Mathematics,2002. 248(1):249-254.
    [36]Watts, D.J. and S.H. Strogatz, Collective dynamics of'small-world'networks. Nature,1998.393(6684):440-442.
    [37]Barabasi, A.L. and R. Albert, Emergence of scaling in random networks. Science,1999.286(5439):509-512.
    [38]Barabasi, A.L. and E. Bonabeau, Scale-free networks. Scientific American, 2003.288(5):60-69.
    [39]Foster, I., Small world-Uncovering nature's hidden networks. Science,2002. 297(5584):1124-1125.
    [40]Albert, R. and A.L. Barabasi, Statistical mechanics of complex networks. Reviews of Modern Physics,2002.74(1):47-97.
    [41]Leahey, E., The new political sociology of science:Institutions, networks, and power. American Journal of Sociology,2007.113(1):262-264.
    [42]Crossley, N., Review article-The new social physics and the science of small world networks. Sociological Review,2005.53(2):351-359.
    [43]Bonacich, P., Linked:The new science of networks. Social Networks,2004. 26(3):285-288.
    [44]Watts, D.J., The "new" science of networks. Annual Review of Sociology, 2004.30:243-270.
    [45]Madar, N., et al., Immunization and epidemic dynamics in complex networks. European Physical Journal B,2004.38(2):269-276.
    [46]Borgatti SP, E.M., Freeman LC., UCINET for Windows:software for social network analysis.2002:Analytic Technologies; Harvard, MA.
    [47]Eichner M, Schwehm M, Duerr HP, et al., The influenza pandemic preparedness planning tool InfluSim. BMC Infect Dis,2007.7:17.
    [48]Morrison, L.G. and L. Yardley, What infection control measures will people carry out to reduce transmission of pandemic influenza? A focus group study. Bmc Public Health,2009.9.
    [49]Timpka T, Eriksson H, Gursky EA, et al., Population-based simulations of influenza pandemics:validity and significance for public health policy. Bulletin of the World Health Organization,2009.87(4):305-311.
    [50]Hethcote, H.W., The mathematics of infectious diseases. Siam Review,2000. 42(4):599-653.
    [51]Ferguson NM, Cummings DAT, Fraser C, et al., Strategies for mitigating an influenza pandemic. Nature,2006.442(7101):448-452.
    [52]Longini IM, Nizam A, Xu SF, et al., Containing pandemic influenza at the source. Science,2005.309(5737):1083-1087.
    [53]Creswick, N. and J.I. Westbrook, Social network analysis of medication advice-seeking interactions among staff in an Australian hospital. Int J Med Inform,2008.
    [54]Beutels P, Shkedy Z, Aerts M, et al., Social mixing patterns for transmission models of close contact infections:exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiol Infect,2006.134(6): 1158-66.
    [55]Palla G, Derenyi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and society. Nature,2005.435(7043): 814-8.
    [56]Siegel JD, Rhinehart E, Jackson M, et al.,2007 Guideline for Isolation Precautions:Preventing Transmission of Infectious Agents in Health Care Settings. Am J Infect Control,2007.35(10 Suppl 2):S65-164.
    [57]Glass RJ, Glass LM, Beyeler WE, et al., Targeted social distancing design for pandemic influenza. Emerging Infectious Diseases,2006.12(11):1671-1681.
    [58]Kretzschmar, M. and R.T. Mikolajczyk, Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases. Plos One,2009.4(6).
    [59]Kawaguchi, R., et al., Influenza (H1N1) 2009 Outbreak and School Closure, Osaka Prefecture, Japan. Emerging Infectious Diseases,2009.15(10): 1685-1685.
    [60]Watts, D., Six degrees:the science of a connected age.2003, New York, N.Y.: WW Norton & Company, Inc.
    [61]Neuzil, K.M., C. Hohlbein, and Y.W. Zhu, Illness among schoolchildren during influenza season-Effect on school absenteeism, parental absenteeism from work, and secondary illness in families. Archives of Pediatrics & Adolescent Medicine,2002.156(10):986-991.
    [62]Viboud C, Boelle PY, Cauchemez S, et al., Risk factors of influenza transmission in households. Br J Gen Pract,2004.54(506):684-9.
    [63]Bauch, C.T., The role of mathematical models in explaining recurrent outbreaks of infectious childhood diseases, in Mathematical Epidemiology. 2008.297-319.
    [64]Mikolajczyk RT, Akmatov MK, Rastin S, et al., Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiol Infect,2008.136(6):813-22.
    [65]Edmunds WJ, Kafatos G, Wallinga J, et al., Mixing patterns and the spread of close-contact infectious diseases. Emerg Themes Epidemiol,2006.3:10.
    [66]Wallinga, J., P. Teunis, and M. Kretzschmar, Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol,2006.164(10):936-44.
    [67]Fu, Y.-c., Measuring personal networks with daily contacts:a single-item survey question and the contact diary. Social Networks,2005.27(3):169-186.
    [68]Fu, Y.-c., Contact Diaries:Building Archives of Actual and Comprehensive Personal Networks.2007.194-217.
    [69]Brewer, D.D., Forgetting in the recall-based elicitation of personal and social networks. Social Networks,2000.22(1):29-43.
    [70]Scott, J., SOCIAL NETWORK ANALYSIS:A HANDBOOK.2ed.2000, LUNDON:Sage.
    [71]罗家德,社会网分析讲义.第一版.2005,北京:社会文献出版社.
    [72]Erdos P, R.A., On the evolution of random graphs. Math. Inst. Hung. Acad. Sci.,1960.5:17-60.
    [73]Robertson, C. and T.A. Nelson, Review of software for space-time disease surveillance. International Journal of Health Geographics,2010.9(16):8.
    [74]Davey VJ, Glass RJ, Min HJ, et al., Effective, Robust Design of Community Mitigation for Pandemic Influenza:A Systematic Examination of Proposed US Guidance. Plos One,2008.3(7).
    [75]Mikolajczyk, R.T. and M. Kretzschmar, Collecting social contact data in the context of disease transmission:Prospective and retrospective study designs. Social Networks,2008.30(2):127-135.
    [76]Mossong J, Hens N, Jit M, et al., Social contacts and mixing patterns relevant to the spread of infectious diseases. Plos Medicine,2008.5(3):381-391.
    [77]Garske, T. and C.J. Rhodes, The effect of superspreading on epidemic outbreak size distributions. Journal of Theoretical Biology,2008.253(2):228-237.
    [78]Galvani, A.P. and R.M. May, Epidemiology-Dimensions of superspreading. Nature,2005.438(7066):293-295.
    [79]Lloyd-Smith JO, Schreiber SJ, Kopp PE, et al., Superspreading and the effect of individual variation on disease emergence. Nature,2005.438(7066): 355-359.
    [80]Shen Z, Ning F, Zhou WG, et al., Superspreading SARS events, Beijing,2003. Emerging Infectious Diseases,2004.10(2):256-260.
    [81]James, A., J.W. Pitchford, and M.J. Plank, An event-based model of superspreading in epidemics. Proc Biol Sci,2007.274(1610):741-7.
    [82]Nuno M, Reichert TA, Chowell G, M., et al., Protecting residential care facilities from pandemic influenza. Proceedings of the National Academy of Sciences of the United States of America,2008.105(30):10625-10630.
    [83]Read, J.M., K.T.D. Eames, and W.J. Edmunds, Dynamic social networks and the implications for the spread of infectious disease. Journal of the Royal Society Interface,2008.5(26):1001-1007.
    [84]Stern, A.M., M.S. Cetron, and H. Markel, Closing The Schools:Lessons From The 1918-19 US Influenza Pandemic. Health Affairs,2009.28(6): W1066-W1078.
    [85]Kelso, J.K., GJ. Milne, and H. Kelly, Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza. Bmc Public Health,2009.9.
    [86]Grassly, N.C. and C. Fraser, Mathematical models of infectious disease transmission. Nature Reviews Microbiology,2008.6(6):477-487.
    [87]Hatchett, R.J., C.E. Mecher, and M. Lipsitch, Public health interventions and epidemic intensity during the 1918 influenza pandemic. Proc Natl Acad Sci U SA,2007.104(18):7582-7.
    [88]Markel H, Lipman HB, Navarro JA, et al., Nonpharmaceutical interventions implemented by US cities during the 1918-1919 influenza pandemic. Jama, 2007.298(6):644-54.
    [89]Bootsma, M.C. and N.M. Ferguson, The effect of public health measures on the 1918 influenza pandemic in U.S. cities. Proc Natl Acad Sci U S A,2007. 104(18):7588-93.
    [90]Larson, R.C., Simple models of influenza progression within a heterogeneous population. Operations Research,2007.55(3):399-412.
    [91]Merler, S. and M. Ajelli, The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proceedings of the Royal Society B-Biological Sciences.2009.277(1681):557-565.
    [92]Ajelli, M. and S. Merler, The Impact of the Unstructured Contacts Component in Influenza Pandemic Modeling. Plos One,2008.3(1).
    [93]Herbert, W.H., The Mathematics of Infectious Diseases.2000, Society for Industrial and Applied Mathematics.599-653.
    [94]汪小帆,李翔,陈关荣,复杂网络理论机器应用.2006,北京:清华大学出版社.
    [95]Watts, D.J., Small Worlds.1999, Princeton:Princeton University Press.
    [96]刘涛,陈忠,陈晓,复杂网络理论及其应用研究概述.系统工程,2005.6(23):1-7.
    [97]刘军,社会网络分析导论.2004,北京:社会科学文献出版社.
    [98]Eubank S, Kumar VSA, Marathe MV, et al., Structure of social contact networks and their impact on epidemics, in Discrete Methods in Epidemiology, J. Abello and G. Cormode, Editors.2006.181-214.
    [99]Hawe, P. and L. Ghali, Use of social network analysis to map the social relationships of staff and teachers at school. Health Educ Res,2008.23(1): 62-9.
    [100]Friedman SR, Neaigus A, Jose B, et al., Sociometric risk networks and risk for HIV infection. Am J Public Health,1997.87(8):1289-96.
    [101]Corner, L.A., D.U. Pfeiffer, and R.S. Morris, Social-network analysis of Mycobacterium bovis transmission among captive brushtail possums (Trichosurus vulpecula). Prev Vet Med,2003.59(3):147-67.
    [102]Lipparini A, L.A., Inter organizational relations in the Modena biomedical industry:A case study in local economic development.2005, Beijing:China Remin University Press.
    [103]Ueno, T. and N. Masuda, Controlling nosocomial infection based on structure of hospital social networks. J Theor Biol,2008.254(3):655-66.
    [104]Christley RM, Pinchbeck GL, Bowers RG, et al., Infection in social networks: using network analysis to identify high-risk individuals. Am J Epidemiol,2005. 162(10):1024-31.
    [105]曾光,中国应对流感大流行的对策分析.国外医学·流行病学传染病学分册,2005.32(6):321-323.
    [106]Aledort JE, Lurie N, Wasserman J, et al., Non-pharmaceutical public health interventions for pandemic influenza:an evaluation of the evidence base. BMC Public Health,2007.7:208.
    [107]Inglesby TV, Nuzzo JB, O'Toole T, et al., Disease mitigation measures in the control of pandemic influenza. Biosecur Bioterror,2006.4(4):366-75.
    [108]Bell, D.M., Non-pharmaceutical interventions for pandemic influenza, international measures. Emerg Infect Dis,2006.12(1):81-7.
    [109]Ferguson NM, Cummings DAT, Cauchemez S, et al., Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature,2005.437(7056): 209-214.
    [110]Davey VJ, Glass RJ, Min HJ, et al., Effective, robust design of community mitigation for pandemic influenza:a systematic examination of proposed US guidance. PLoS One,2008.3(7):e2606.
    [111]Glass, L.M. and R.J. Glass, Social contact networks for the spread of pandemic influenza in children and teenagers. BMC Public Health,2008.8:61.
    [112]Meltzer, M.I., N.J. Cox, and K. Fukuda, The economic impact of pandemic influenza in the United States:priorities for intervention. Emerg Infect Dis, 1999.5(5):659-71.
    [113]Germann TC, Kadau K, Longini IM, Jr., et al., Mitigation strategies for pandemic influenza in the United States. Proc Natl Acad Sci U S A,2006. 103(15):5935-40.
    [114]Ma, Z. and J.Q. Li, Basic knowledge and developing tendencies in epidemic dynamics, in Mathematics for Life Science and Medicine, Y. Takeuchi, Y. Iwasa, and K. Sato, Editors.2007.5-49.
    [115]Gomez S, Arenas A, Borge-Holthoefer J, et al., Discrete-time Markov chain approach to contact-based disease spreading in complex networks.2010, Epl. 89(3).
    [116]Inaba, H., Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete and Continuous Dynamical Systems-Series B,2006.6(1):69-96.
    [117]Barabasi, A.L. and R. Albert, Emergence of scaling in random networks. Science,1999.286(5439):509-12.
    [118]Barabasi, A.-L.A., R.;Jeong, H, Mean-Field Theory for Scale-Free Random Networks. Physica A 1999.272:173-187.
    [119]Chowell, G., H. Nishiura, and L.M. Bettencourt, Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. J R Soc Interface,2007.4(12):155-66.
    [120]Carrat F, Sahler C, Rogez S, et al., Influenza burden of illness:estimates from a national prospective survey of household contacts in France. Arch Intern Med, 2002.162(16):1842-8.
    [121]Glezen, W.P., Emerging infections:pandemic influenza. Epidemiol Rev,1996. 18(1):64-76.
    [122]Bell, D.M., Non-pharmaceutical interventions for pandemic influenza, national and community measures. Emerg Infect Dis,2006.12(1):88-94.
    [123]Piercy M, M.A. The Economic Impact of Influenza in Switzerland-Interpandemic Situation.[cited; Available from:http://www.bag.admin.ch/ themen/medizin/00682/00686/02314/index.html?lang=de#.
    [124]Kaiser L, Wat C, Mills T, et al., Impact of oseltamivir treatment on influenza-related lower respiratory tract complications and hospitalizations. Arch Intern Med,2003.163(14):1667-72.
    [125]Webby, R.J. and R.G. Webster, Are we ready for pandemic influenza? Science, 2003.302(5650):1519-22.
    [126]Eichner, M., Case isolation and contact tracing can prevent the spread of smallpox. Am J Epidemiol,2003.158(2):118-28.
    [127]Shortridge, K.F., Influenza pandemic preparedness:gauging from EU plans. Lancet,2006.367(9520):1374-5.
    [128]Julien Arino, F.B., P van den Driessche, James Watmough and Jianhong Wu, Simple models for containment of a pandemic. Journal of the Royal Society Interface,2006.3(8):453-457.
    [129]Meng B, Wang J, Liu J, et al., Understanding the spatial diffusion process of severe acute respiratory syndrome in Beijing. Public Health,2005.119(12): 1080-7.
    [130]Ball, F. and P. Neal, A general model for stochastic SIR epidemics with two levels of mixing. Math Biosci,2002.180:73-102.
    [131]Becker, N.G. and K. Dietz, The effect of household distribution on transmission and control of highly infectious diseases. Math Biosci,1995. 127(2):207-19.
    [132]Duerr HP, Schwehm M, Leary CC, et al., The impact of contact structure on infectious disease control:influenza and antiviral agents. Epidemiol Infect, 2007.135(7):1124-32.
    [133]Wu JT, Riley S, Fraser C, et al., Reducing the impact of the next influenza pandemic using household-based public health interventions. PLoS Med,2006. 3(9):e361.
    [134]Galvani, A.P. and R.M. May, Epidemiology:dimensions of superspreading. Nature,2005.438(7066):293-5.
    [135]Meyers LA, Pourbohloul B, Newman ME. et al., Network theory and SARS: predicting outbreak diversity. J Theor Biol,2005.232(1):71-81.
    [136]Clancy, D. and N. Green, Optimal intervention for an epidemic model under parameter uncertainty. Math Biosci,2007.205(2):297-314.
    [137]Kanaan, M.N. and C.P.A. Farrington, Matrix models for childhood infections: a Bayesian approach with applications to rubella and mumps. Epidemiology and Infection,2005.133(6):1009-1021.
    [138]Colizza V, Barrat A, Barthelemy M, et al., The modeling of global epidemics: stochastic dynamics and predictability. Bull Math Biol,2006.68(8):1893-921.
    [139]WHO. WHO Guidelines on the Use of Vaccines and Antivirals during Influenza Pandemics.2005 [cited; Available from:http://www.who. int/vaccine research/diseases/influenza/WHO_guidelines_on_the_use_of_vaccines_ and_ antivirals.pdf.
    [140]Hayden FG, Fritz R, Lobo MC, et al., Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J Clin Invest,1998.101(3):643-9.
    [141]Fraser C, Riley S, Anderson RM, et al., Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci U S A,2004.101(16):6146-51.
    [142]Wallinga, J. and P. Teunis, Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol,2004.160(6):509-16.
    [143]PandemicPlan_US. U.S. Department of Health & Human Services Pandemic Influenza Plan. [cited; Available from:[http://www.hhs.gov/pandemicflu/ plan/.
    [1]Miller, J.C., Spread of infectious disease through clustered populations. Journal of the Royal Society Interface,2009.6(41):1121-1134.
    [2]Reis, B.Y., I.S. Kohane, and K.D. Mandl, An epidemiological network model for disease outbreak detection. Plos Medicine,2007.4(6):1019-1031.
    [3]Lee, A.M., et al., Stress and psychological distress among SARS survivors 1 year after the outbreak. Canadian Journal of Psychiatry-Revue Canadienne De Psychiatrie,2007.52(4):233-240.
    [4]李立明,流行病学.第五版.2006,北京:人民卫生出版社.
    [5]Griffiths, S. and J. Lau, The influence of SARS on perceptions of risk and reality. Journal of Public Health,2009.31(4):466-467.
    [6]WHO, An integrated approach to communicable disease surveillance, in W ER. 2000.
    [7]Schutkowski, H., Infectious Disease Ecology, Effects of Ecosystems in Disease and of Disease on Ecosystems. Journal of Archaeological Science,2009.36(12): 2882-2883.
    [8]Ince, J. and A. McNally, Development of rapid, automated diagnostics for infectious disease:advances and challenges. Expert Review of Medical Devices, 2009.6(6):641-651.
    [9]WHO. Public health response to biological and chemical weapons:WHO guidance (2004).2004 [cited; Available from: http://www.who.int/csr/delibepidemics/biochemguide/en/index.html.
    [10]CDC, Rapid health response, assessment, and surveillance after a tsunami -Thailand,2004-2005.2005.
    [11]WHO. WHO Recommended surveillance standards, second edition:8.2004 [cited http://www.who.int/csr/resources/publications/en/].
    [12]Stroup DF, T.S., A Bayesian approach to the detection of aderrations in public health surveillance data. Epidemiology,1993.4(5):435-443.
    [13]WHO. Early warning systems. [cited http://www. who. int/csr/labepidemiology/ projects/ewarn/en].
    [14]Castillo-Riquelme, M. Chalabi, Z. Lord, J., et al., Modelling geographic variation in the cost-effectiveness of control policies for infectious vector diseases:The example of Chagas disease. Journal of Health Economics,2008. 27(2):405-426.
    [15]卫生部,《突发公共卫生事件应急条例》.2004:中国.
    [16]卫生部,《传染病信息报告管理规范》.2006:北京.
    [17]卫生部,《国家突发公共卫生事件相关信息报告管理工作规范(试行)》.2006:北京.
    [18]卫生部,《中华人民共和国传染病防治法》.2004:中国.
    [19]卫生部,《突发公共卫生事件与传染病监测信息报告管理办法》.2003:北京.
    [20]Tsui, F.C., et al., Data, network, and application:Technical description of the Utah RODS winter Olympic biosurveillance system, in Amia 2002 Symposium, Proceedings-Biomedical Informatics:One Discipline, I.S. Kohane, Editor.2002, Hanley & Belfus Inc Med Publishers:Philadelphia.815-819.
    [21]卫生部,《传染病监测信息网络直报工作与技术指南》.2009:北京.
    [22]Richards DB, C.C., Brown CK,et al, Geographic Information systems and public health:Mapping the future. Public Health Reports,1999(114):359-373.
    [23]Porco, T.C. and S.M. Blower, Quantifying the intrinsic transmission dynamics of tuberculosis. Theor Popul Biol,1998.54(2):117-32.
    [24]中国疾病预防控制中心,重点传染病监测自动预警信息系统建设与应用项目试点工作实施方案.2004:北京.
    [25]马家奇,王.,戚晓鹏,施晓明,杨功焕,基于网络直报的传染病监测自动预警信息系统概念模型.疾病监测,2006.21(12):679-681.
    [26]Gensheimer KF. Searching eyes:privacy, the state, and disease surveillance in America [book review]. Emerg Infect Dis [serial on the Internet].2008 Nov [date cited]. Available from http://www.cdc.gov/EID/content/14/11/1826b.htm
    [27]Maugein, J., Dailloux, M., Carbonnelle, B., et al., Sentinel-site surveillance of Mycobacterium avium complex pulmonary disease. European Respiratory Journal,2005.26(6):1092-1096.
    [28]Hsu, K., Pelton, S., Karumuri, S., et al., Population-based surveillance for childhood invasive pneumococcal disease in the era of conjugate vaccine. Pediatric Infectious Disease Journal,2005.24(1):17-23.
    [29]Jeremy Sueker, J., Blazes, David L., Johns, Matthew C., et al., Influenza and respiratory disease surveillance:the US military's global laboratory-based network. Influenza Other Respi Viruses.2010.4(3):155-61.
    [30]Mounchili, A., J.J. Wichtel, and J. Sanchez, Geographical and temporal aspects of an outbreak of off-flavours in bulk-tank milk in Prince Edward Island, Canada. Preventive Veterinary Medicine,2006.74(2):154-161.
    [31]Brunham, R.C., Infectious Disease Prevention and Control:Remembering 1908 and Imagining 2108. Canadian Journal of Public Health-Revue Canadienne De Sante Publique,2009.100(1):5-8.
    [32]D'Ambrosio, L., Centis, R., Spanevello, A., et al., Improving tuberculosis surveillance in Europe is key to controlling the disease. Euro Surveill.2010. 15(11).
    [33]Guglielmetti, P., Coulombier, D., Thinus, G., et al., The early warning and response system for communicable diseases in the EU:an overview from 1999 to 2005. Euro Surveill,2006.11(12):215-20.
    [34]Hao, H., H. Feng, and C. Li, Methods for infectious disease forecasting. MEDINFO 89. Proceedings of the Sixth Conference on Medical Informatics|MEDINFO 89. Proceedings of the Sixth Conference on Medical Informatics,1989:1024-8|2 vol. (xlix+xxiv+1262).
    [35]Hochberg, M.E., Nonlinear Transmission Rates and the Dynamics of Infectious-Disease. Journal of Theoretical Biology,1991.153(3):301-321.
    [36]Ogunjimi, B., Hens, N., Goeyvaerts, N., et al., Using empirical social contact data to model person to person infectious disease transmission:An illustration for varicella. Mathematical Biosciences,2009.218(2):80-87.
    [37]Yang, Y. and P.M. Atkinson, Individual space-time activity-based model:a model for the simulation of airborne infectious-disease transmission by activity-bundle simulation. Environment and Planning B-Planning & Design,2008.35(1): 80-99.
    [38]Yan, Wei-Rong, Shi, Lv-Yuan, Zhang, Hui-Juan, et al., Introduction on a forecasting model for infectious disease incidence rate based on radial basis function network.Chin J Epidemiol,2007.28(12):1219-22.
    [39]Cai, Q. C., Xu, Q. F., Xu, J. M., et al., Refined estimate of the incubation period of severe acute respiratory syndrome and related influencing factors. American Journal of Epidemiology,2006.163(3):211-216.
    [40]马知恩,周义仓,王稳地,传染病动力学的数学建模与研究.2004,北京:科学出版社.
    [41]孙振球,医学统计学.2002,北京:人民卫生出版社.
    [42]Hohle, M. and M. Paul, Count data regression charts for the monitoring of surveillance time series. Computational Statistics & Data Analysis,2008.52(9): 4357-4368.
    [43]漆莉,李革,李勤,Arima模型在流行性感冒预测中的应用.第三军医大学学报,2007(03).
    [44]胡明,赵春暖,灰色模型在传染病预测中的应用.铁道医学,1991.19(3):167-168.
    [45]吴晓清,丁筱竹,应用灰色模型预测流脑发病率.江苏预防医学,2000.11(3):35-36.
    [46]U, H., Box-Jenkins modelling in medical research. MethodsMed Res,1996.5(1): 3-22.
    [47]P.Jack, Interacrive Comparision of Forecasting Method. Time Series Analysis, 1984:444-459.
    [48]丁守銮,康家琦,ARIMA模型在发病率预测中的应用.中国医院统计,2003.10(1):23-26.
    [49]DanielsM L, D.F., Samet J M, et al., Estimating particulate matter mortality dose response curves and threshold levels:an analysis of daily time series for the 20 largest US cities. Am J Epidemiol,2000.152(5):397-406.
    [50]CardinalM, R.R., Lamber J, On the application of integer-valued time seriesmodels for the analysis of disease incidence. StatMed,1999.18(1):2025-2039.
    [51]Yuan, L., Wavelet analysis is for change points and nonlinear wavelet estimates in time siries. China statistics press,2002.
    [52]徐国祥,统计预测和决策.1998,上海:上海海财经大学出版社.
    [53]陈广,陈景武,Logistic回归分析的判别预测功能及其应用.数理医药学杂志,2007(3):280-281.
    [54]黄德生,关鹏,周宝森,Logistic回归模型拟合SABS发病及流行特征.中国公共卫生,2003(6):T001-T002.
    [55]孙振球,医学统计学.2005,北京:人民卫生出版社.
    [56]B, K., Neural networks and fuzzy systems a dyhamical systems approach to machine intelligence. N J Prentice Hall Inc 2006.
    [57]Wise R, C.F., Hadar U,et al. Distribution of cortical neural networks comprehension and word retrieval IEEE Brain,2005.114:1803-1817.
    [58]Real, L.A. and R. Biek, Infectious disease modeling and the dynamics of transmission. Wildlife and Emerging Zoonotic Diseases:the Biology, Circumstances and Consequences of Cross-Species Transmission,2007.315: 33-49.
    [59]马知恩,周义仓,王稳地等,传染病动力学的数学建模与研究.2004.8:科学出版社.
    [60]Hollingsworth, T.D., Controlling infectious disease outbreaks:Lessons from mathematical modelling. Journal of Public Health Policy,2009.30(3):328-341.
    [61]Volz, E., SIR dynamics in random networks with heterogeneous connectivity. Journal of Mathematical Biology,2008.56(3):293-310.
    [62]Taylor, M.L. and T.W. Carr, An SIR epidemic model with partial temporary immunity modeled with delay. Journal of Mathematical Biology,2009.59(6): 841-880.
    [63]Wallinga, J., P. Teunis, and M. Kretzschmar, Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. American Journal of Epidemiology,2006.164(10):936-944.
    [64]Khan, H., Mohapatra, R. N., Vajravelu, K., et al., The explicit series solution of SIR and SIS epidemic models. Applied Mathematics and Computation,2009. 215(2):653-669.
    [65]Kulldorff, M., Heffernan, R., Hartman, J., et al., A space-time permutation scan statistic for disease outbreak detection. Plos Medicine,2005.2(3):216-224.
    [66]Sonesson, C., A CUSUM framework for detection of space-time disease clusters using scan statistics. Statistics in Medicine,2007.26(26):4770-4789.
    [67]Yang, Y, P. Atkinson, and D. Ettema, Individual space-time activity-based modelling of infectious disease transmission within a city. Journal of the Royal Society Interface,2008.5(24):759-772.
    [68]Riley, S., Large-scale spatial-transmission models of infectious disease. Science, 2007.316(5829):1298-1301.
    [69]Zhou, T., Z.Q. Fu, and B.H. Wang, Epidemic dynamics on complex networks. Progress in Natural Science,2006.16(5):452-457.
    [70]Jiang, X. and G.F. Cooper, A real-time temporal Bayesian architecture for event surveillance and its application to patient-specific multiple disease outbreak detection. Data Mining and Knowledge Discovery.20(3):328-360.
    [71]Assuncao, R., Tavares, A., Correa, T., et al., Space-time cluster identification in point processes. Canadian Journal of Statistics-Revue Canadienne De Statistique, 2007.35(1):9-25.
    [72]Kulldorff, M., Prospective Time Periodic Geographical Disease Surveillance Using a Scan Statistic. Journal of the Royal Statistical Society. Series A (Statistics in Society),2001.164(1):61-72.
    [73]Robertson, C. and T.A. Nelson, Review of software for space-time disease surveillance. International Journal of Health Geographics.2010.9:8.
    [74]Onozuka D, Hagihara A. Geographic prediction of tuberculosis clusters in Fukuoka, Japan, using the space-time scan statistic. Bmc Infectious Diseases, 2007,7.
    [75]Ni, S.J., W.G Weng, and W.C. Fan, Spread dynamics of infectious disease in growing scale-free networks. Acta Physica Sinica,2009.58(6):3707-3713.
    [76]Ni SJ, Weng WG, Shen SF, et al. Epidemic outbreaks in growing scale-free networks with local structure. Physica a-Statistical Mechanics and Its Applications,2008,387(21):5295-5302.
    [77]Aschwanden, C., Spatial simulation model for infectious viral diseases with focus on SARS and the common flu. Proceedings of the 37th Annual Hawaii International Conference on System Sciences,2004:5
    [78]Kiss, I.Z., D.M. Green, and R.R. Kao, Infectious disease control using contact tracing in random and scale-free networks. Journal of the Royal Society Interface, 2006.3(6):55-62.
    [79]Madar, N.; Kalisky, T.; Cohen, R.; Ben-Avraham, et al., Immunization and epidemic dynamics in complex networks. European Physical Journal B,2004. 38(2):269-276.
    [80]Yamada, I., P.A. Rogerson, and G Lee, GeoSurveillance:a GIS-based system for the detection and monitoring of spatial clusters. Journal of Geographical Systems, 2009.11(2):155-173.
    [81]Takahashi, K., Kulldorff, M., Tango, T., et al., A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring. International Journal of Health Geographics,2008.7(1):14.
    [82]Conley, J., M. Gahegan, and J. Macgill, A genetic approach to detecting clusters in point data sets. Geographical Analysis,2005.37(3):286-314.
    [83]Jackson, M. L., Baer, A., Painter, I., et al., A simulation study comparing aberration detection algorithms for syndromic surveillance. Bmc Medical Informatics and Decision Making,2007.7.
    [84]Yan, P. and D. Zeng, Syndromic surveillance systems. Annual Review of Information Science and Technology,2008.42:425-495.
    [85]Mandl, K.D., et al., Implementing syndromic surveillance:A practical guide informed by the early experience. Journal of the American Medical Informatics Association,2004.11(2):141-150.
    [86]WHO. GIS and public health mapping. cited http://www. who. int/csr/ mapping/gisandphm/en.
    [87]B., B., Delph i P rocess:a Methodology Using for the Elicitation of Opinions of Experts. The Rand Corporation,1987(9):3925.
    [88]Carrat F, T.A., Housset B,Valleron A J,Rouzioux C Influenza and influenza-like illness in general practice:drawing lessons for surveillance from a pilot study in Paris, France. Br J Gen Pract,1997(47):(417)217-220.
    [89]Kao J J, H.S.S., Forecasts using neural network versus Box-Jenkins methodology for ambient air quality monitoring data. J AirWaste Manag Assoc,2002.50(2): 219-226.
    [90]KB, J., Surveillance detection and response:managing emerging diseases at national and international levels. Rev Sci Tech,2004.23:709-715.
    [91]马家奇,杨功焕,施晓明,基于IT技术平台的中国疾病监测.疾病监测,2006.21(1):1-3.
    [92]Mostashari F, K., Hartman JJ, et al, Dead bird clusters as an early warning system for West Nile virus activity. Emerg Infect Dis,2003(9):641-646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700