用户名: 密码: 验证码:
长江以南地区春季降水的气候特征及其与青藏高原动力作用的联系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用中国气象局整编的1960-2004年的逐日降水和温度资料以及NCEP/NCAR逐日再分析数据集,揭示出长江以南地区(以下简称江南地区)春季降水的特征,分析了长江以南地区春季发生连阴雨的典型环流特征,并通过数值试验探讨了青藏高原附近地区爬坡流和绕流等地形动力作用对长江以南地区春季降水的影响。主要结论如下:
     1长江以南地区春季降水的气候特征
     比较不同持续时间的降水分布发现,江南地区以发生4天及以上的连续降水为主,其中,频数较多的站点有55个,在空间上集中在22.5°-30°N、105°-120°E的区域范围内,而时间上主要集中在13-27候。
     按照本文对江南地区连阴雨的定义,45年间江南地区春季共发生152次连阴雨,气候平均态上,分别在江南的东北和西南地区存在两个连阴雨降水强度大值中心。
     对连阴雨日和强度的线性趋势分析表明,江南地区春季连阴雨日数在1960-2004年间呈下降趋势,尤其是1995年后,但总降水量线性趋势不显著。
     分析持续性降水雨日数和强度的时空异常分布发现,降水雨日数异常的主要空间模态为全场一致型和南北反相变化型,强度异常主要的空间模态为全场一致型和东北异常型,两者的时间序列均包含了年际和年代际变化信号。
     2长江以南地区春季连阴雨的环流特征
     通过比较单日降水和连阴雨发生前后以及发生期间的环流特征发现,当有一个冷槽过境或者冷空气突然爆发,江南地区的中高空出现冷暖空气相遇,产生降水,但此类过程持续时间较短,江南地区上空很快受下沉冷空气控制,水汽含量骤减,降水随即停止。而与单日降水明显不同的是,连阴雨发生期间,连续稳定的低层较强暖湿空气与稍弱的冷空气在南岭、武夷山脉附近对峙,这也是降水之所以能持续在江南地区的重要原因之一。
     从气候和天气过程分析的角度,进一步探讨冷暖空气对峙于南岭一带的原因。通过连阴雨和连晴、江南春季降水雨日多年和少年的对比合成分析,从各层风场和温度差异配置发现,发生连阴雨时,高空存在连续的西风急流中心带,此时高原南侧有较强的低空西风绕流,遇到云贵高原后,往南绕行至中南半岛,与南海副高西端较强的南风相汇,共同作用于江南地区,使得南岭山脉地形南侧低层存在持续并且比较活跃的暖湿偏南风,同时,在南岭山脉北侧至30°N附近,低层有较活跃的偏北冷空气,冷暖空气交汇于山脉附近,并且暖湿南风较强,在中高层继续抬升至35°N附近,与偏北下沉气流相遇。
     分析位势高度场发现,当江南地区发生连阴雨时,在100hPa存在弱的极涡,较浅的东亚大槽,并且30°N以南转变成弱的高压脊,这也是中高空北风仅到35°N附近就下沉,使得江南地区中高空能够被偏南的上升气流控制的原因之一。850hPa南海副高较强,西端位置在南海上空,近地层西伯利亚冷高压较强,导致近地面低空在南岭南北两侧存在比较活跃冷暖空气。
     3青藏高原影响长江以南地区春季降水的数值试验
     青藏高原大地形的存在,使得西风气流遇到高原时发生爬坡流和绕流两个分支,同时,云贵高原作为青藏高原最东南端的大地形,虽然比青藏高原范围小,但是由于其位置偏南,对江南地区春季降水也起到一定的作用。
     通过控制试验和爬坡流试验、控制试验和绕流试验的降水差值分析,发现爬坡流和绕流均增加了青藏高原下游地区的春季降水,主要的降水差异中心位于湖南省一带,但绕流影响的范围更广,主要表现在绕流影响到长江以南地区降水。在风场差异上,爬坡流对于低层风场,尤其是高原东侧地区的影响甚微,但绕流则增强了高原东侧地区低层风场的气旋性气流,范围较广,覆盖了长江以南地区,并且高原南侧以及高原东南侧的低层风场受绕流的影响也较显著,而高原东南侧地区正是江南地区水汽输送的关键区之一。
     进一步分析江南地区局地及临近地区的地形作用发现,南岭山脉使得低层冷暖空气在此交汇,暖湿气流抬升,有利于降水产生,对江南地区降水有着直接作用。而云贵高原对江南地区的影响并不是由于地形的抬升作用,而是阻挡了高原南侧绕流,使其进一步绕行至中南半岛,加强南海副高西端的转向气流,将更多的水汽输送至江南地区。
Based on the daily precipitation and temperature data of China from the National Meteorological Information Center during the period of1960-2004and the atmospheric data from National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) reanalysis daily datasets, the features of spring rainfall over regions south to the Yangtze river (SYR), the typical circulation of spring persistent rainfall (SPR) and the mechanical effect of the climbing and detouring flow around the Tibetan Plateau (TP) have been investigated. The conclusions are as follows:
     1. The climatic features of spring rainfall over SYR
     Comparing different-persistent-days rainfalls in spring, the dominant process is4-and-more-days persistent rainfall event over SYR. Moreover, significant stations are55stations within the area of22.5°-33°N,105°-120°E, and time period is concentrated in the period of13th-27th pentad. Based on the definition of SPR over SYR, during45years,152SPR processes have been picked out, and two persistent heavy rainfall centers are located over the northeastern and southwestern part of SYR.
     For the linear trend distribution of days of SPR, significant decreasing trend is found over the whole region of SYR, especially after1995. For the intensity of SPR, the trend is not significant. The dominant patterns of SPR days and intensity variations show homogeneous anomalies. The second patterns of SPR days and intensity variations are characterized by north-south dipole pattern and north anomaly pattern. Both of time serials of SPR days and intensity indicate the loading of these patterns varies on decadal and interannual timescales.
     2. The circulation features of SPR
     According to the one-day rain process, when a cold trough goes across or the cold air suddenly outbreaks, the cold and warm air meets at middle layer over SYR, which results in the precipitation. But, this process is so quick that will not persist long. However, during the SPR occurred, the continuous stable low-level warm air and cold air meet at lower layer over SYR, which is one of the important reasons that the rainfall are persistent over SYR.
     To furtherly investigate the reason for the warm and cold air sustaining over SYR, from climatic and synoptic point of view, based on composite analysis on the persistent sunny and SPR, the typical circulation features have been investigated. The coupled configuration of vertical winds and temperature differences and the global potential height field have been analyzed. In the upper levels, continuous belt of westerly jet center have been found. In the lower levels, the strong westerly flow located over the southern part of TP and encounters with the Yunnan-Guizhou Plateau (YGP), then the flow bypass to the Indo-China Peninsula. So, the strong southerly winds along the western part of South China Sea Subtropical High (SCSSH) and westerly winds around Indo-China Peninsula will join together and flow to SYR, which gives robust and sustained warm southwest winds along the southern part of Nanling Mountains. Meanwhile, stronger cold air at low level is found along the northern part of Nanling Mountains. The warm and cold air nearly intersects in the Nanling Mountains. And, the warm southerly wind is stronger than the northerly
     wind that continues rising until it reaches nearly35°N, where it meets with northerly winds. In the global geopotential height fields, when the SPR occurs, significant patterns are with a weak polar vortex at100hPa and weaker trough in East Asian. Moreover, a weak ridge of high pressure is located over south to30°N, which maybe is the reason why the north winds sinks near35°N, causing the controlling movement over SYR to be the southerly upper flow. On the low levels, under the coupled controlling of the stronger SCSH and Siberian cold high, robust warm and cold air have steadily located over the northern and southern part of Nanling Mountains.
     3. The simulations on the mechanical effect of TP on spring rainfall over SYR Because of TP, the westerly flow is divided into climbing and detouring flow crossing the Tibetan
     Plateau. Meanwhile, the Yunnan-Guizhou Plateau (YGP) locates over the southern part of China. As part of TP, the range and height is not as large as TP, but due to its location, it will largely affect the SPR. The model simulations have been used in this section for analyzing the effect of TP and YGP during SPR.
     Both of the climbing and detouring flow will increase the spring precipitation over eastern China, especially around Hunan province, while under the detouring flow, the impact regions are broader. The detouring flow has enhanced the cyclonic flow over eastern China, and the affected range is much larger than climbing flow. The detouring flow significantly increases low-level winds, especially over the southeastern part of TP, which is one of the key areas of water vapor transferring.
     Furtherly analyzing the local terrain effect on the spring rainfall over SYR, it is found that the Nanling Mountains will directly make the low-level warm and cold air intersect, which is benefit for the rising of warm air and rainfall. However, the effect of YGP is not due to topographic lifting, but forcing the flow at the south side of the Plateau bypass to the Indo-China Peninsula, increasing the southwesterly winds around the western part of South China Sea High, which brings more water vapor into SYR.
引文
[1]周自江,宋连春,李小泉.1998年长江流域特大洪水的降水分析.应用气象学报,2000,11(3):287-296.
    [2]中国气象局国家气候中心.1998中国大洪水与气候异常.北京:气象出版社,1998:1-24.
    [3]高由禧.东亚的秋高气爽.气象学报,1958,29(2):83-92.
    [4]高由禧,郭其蕴.我国的秋雨现象.气象学报,1958,29(4):264-273.
    [5]刘富明.大气环流由夏到秋的转变及其与四川秋雨形成的关系.四川气象科技,1981,(2):1-6.
    [6]任炳潭.两千年华西秋雨的初步研究.气象,1987,13(9):21-24.
    [7]何敏.我国主要秋雨区的分布及长期预报.气象,1984,10(9):10-13.
    [8]徐桂玉,林春育.华西秋雨特征及成因探讨.气象科学,1994,12(4):149-154.
    [9]鲍媛媛,阿布力米提,李峰等.2001年华西秋雨时空分布特点及其成因分析.应用气象学报,2003,14(2):215-222.
    [10]谌芸,施能.我国秋季降水、温度的时空分布特征及气候变化.南京气象学院学报,2003,26(5):622-630.
    [11]张存杰,高学杰,赵红岩.全球气候变暖对西北地区秋季降水的影响.冰川冻土,2003,25(2):157-164.
    [12]陈忠明,刘富明,赵平等.青藏高原地表热状况与华西秋雨.高原气象,2001,20(1):94-99.
    [13]白虎志,董文杰.华西秋雨的气候特征及成因分析.高原气象,2004,23(6):884-889.
    [14]尹洁,刘献耀.江西省2000年秋季异常连阴雨天气过程分析.江西气象科技,2001,24(3):14-17.
    [15]吴宝俊.长江中下游春季连阴雨的若干问题.北京:气象出版社,1996:p2.
    [16]张汉林.气象因素与麦类赤霉病群体流行波动研究.气象学报,1987,45(3):338-345.
    [17]邓小丽,林杨.皖南山区春季连阴雨环流特征分析.陕西气象,2005,5:23-25.
    [18]韩荣青,陈丽娟,李维京等.2-5月我国低温连阴雨和南方冷害时空特征.应用气象学报,2009,20(3):312-320.
    [19]柳守煜,邹新红,陈鲍发.景德镇市2008-2009年3次低温连阴雨过程特征分析.河北农业科学,2010,14(9):135-137.
    [20]邹新红.2009年景德镇市春季连阴雨灾害天气及其对农业生产的影响.河北农业科学,2009,13(7):82-83.
    [21]包澄澜.热带天气学.北京:科技出版社,1980:p130-132.
    [22]Tian S F, Yasunari T. Climatological aspects and mechanism of Spring Persistent Rains over central China. J Meteorol Soc Jpn,1998,76(1):57-71.
    [23]Ding Y H. Monsoons over China. London:Kluwer Academic Publishers,1994:p134-136.
    [24]Lau K M, Yang S. Climatology and Interannual Variability of the Southeast Asian Summer Monsoon. Adv. Atmos. Sci.,1997,14(2):141-162.
    [25]Tao S Y, Chen L X. A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, Chang P C, Krishmurti T N, Eds. London:Oxford University Press, 1987:p60-92.
    [26]Ding Y H. Summer monsoon rainfall in China. J. Meteor. Soc. Japan,1992,70:373-396.
    [27]Tanaka M. Intraseasonal oscillation and the onset and retreat dares of the summer monsoon over east, southeast Asia and the western Pacific region using GMS high cloud amount date. J. Meteor. Soc. Japan,1992,70:613-629.
    [28]梁平德.印度夏季风与我国华北夏季降水量.气象学报,1988,46(1):75-81.
    [29]Matsumoto J. Seasonal transition of summer rainy season over Indo-China and adjacent monsoon region. Adv. Atmos. Sci.,1997,14:231-245.
    [30]赵汉光.华北的雨季.气象,1994,20(6):3-8.
    [31]王颖,施能.中国雨日的气候变化.大气科学,2006,30(1):162-170.
    [32]王大钧,陈列,丁裕国.近40年来中国降水量、雨日变化趋势及与全球温度变化的关系.热带气象学报,2006,22(3):283-289.
    [33]Zhai P M, Zhang X B, Wan H, Pan X H.Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China. Journal of Climate,2005,18(7):1096-1108.
    [34]Zhai P M, Sun A J, Reb F M, et al. Changes of climate extremes in China. Climatic change. 1999,42(1):203-218.
    [35]Zhai P M, Pan X H. Change in extreme temperature and precipitation over northern China during the second half the 20th century. Acta. Geogr. Sinica.2003,58(Suppl):1-10.
    [36]万日金,吴国雄.江南春雨的时空分布.气象学报,2008,66(3):310-319.
    [37]孙锦铨,陈永秀.长江中下游春季连阴雨天气气候分析.气象,1991,17(5):27-34
    [38]陆均天.华南等地少雨旱情持续长江中下游地区连阴雨_2002年4月.气象,2002,28(7):62-63.
    [39]林之光.中国气候.北京:气象出版社,1987,ppl59.
    [40]涂长望,牛天任.中国夏季之水早研究.中国地球物理学报,1950,2:1-20
    [41]陶诗言,徐淑英.夏季江淮流域久旱涝现象的环流特征.气象学报,1962,30:1-10.
    [42]陈烈庭,吴仁广.中国东部夏季雨带类型与前期北半球500hPa环流异常的关系.大气科学,1998,22(6):849-957.
    [43]杨广基.长江流域及其周围地区夏季持续旱涝的预报问题.大气科学,1994,18(1):54-60.
    [44]马慧,陈桢华,毛文书等.华南前汛期降水异常及其环流特征分析,热带气象学报,25(1):89-96.
    [45]吴仪芳,李麦村.江淮旱涝形成的长期天气过程.中国科学院大气物理研究所集刊.1985,13.
    [46]琚建华,邓崧.冬春500hPa高度场与中国夏季降雨场的相关分析.热带气象学报,1999,15(2):154-161.
    [47]陈丽臻,张先恭.EAA相关链与中国汛期降水.应用气象学报,1993,4(增刊):89-94.
    [48]杨秋明.长江下游旱涝与半年欧亚环流30-60天振荡的年际变化.气象学报,2001,59(3):318-326.
    [49]李桂龙,李崇银.江淮流域夏季早涝与不同时间尺度大气扰动的关系.大气科学,1999,23(1):39-50.
    [50]李曾中,钱伟海.1991年江淮暴雨与越赤道气流关系初步分析.气象学报,2000,58(5): 628-636.
    [51]朱乾根,林锦瑞,寿绍文等.天气学原理.北京:气象出版社,2000,pp 479.
    [52]陶诗言,朱福康,吴天祺.夏季中国大陆及其邻近海面副热带高压活动的天气学研究.中国夏季副热带天气学系统若干问题的研究.北京,科学出版社,1963,106-123.
    [53]陶诗言,朱福康.夏季亚洲南部100hPa流型的变化及其与太平洋副热带高压进退的关系.气象学报,1964,34(4):385-395.
    [54]沙万英,李克让.赤道东太平洋海温在副热带高压预报上的应用.地理研究,1991,10(2):60-67.
    [55]罗绍华,金祖辉.南海海温变化与初夏西太平洋副高活动与长江中下游汛期降水关系的分析.大气科学,1986,10:409-417.
    [56]黄荣辉,李维京.夏季热带西太平洋上空的热源异常与东亚上空副热带高压的影响及其机制.大气科学,1988,特刊:107-116.
    [57]林建,何金海,张依英.夏季东亚大气遥相关型变化特征及其与长江中下游旱涝的关系.南京气象学院学报,1999,22(3):312-320.
    [58]陈烈庭,吴仁广.中国东部的降水区划及各区旱涝变化的特征.大气科学,1994,18(5):587-595.
    [59]彭加毅,孙照渤,朱伟军.70年代末大气环流及中国旱涝分布的突变.南京气象学院学报,1999,22(3):300-304.
    [60]郭其蕴.东亚夏季风的变化与中国降水.热带气象,1987,1:44-51.
    [61]黄先香,炎利军,施能.华南前汛期旱涝影响因子和预报方法.热带气象学报,2006,22(5):431-438.
    [62]许晓林,徐海明,司东.华南6月持续性滞洪暴雨与孟加拉湾对流异常活跃的关系.南京气象学院学报,2007,30(4):463-471.
    [63]刘还珠,赵声荣,赵翠光等.2003年夏季异常天气与西太副高和南亚高压演变特征的分析.高原气象,2006,25(2):169-178.
    [64]张琼,吴国雄.长江流域大范围旱涝与南亚高压的关系.气象学报,2001,59(5):569-577.
    [65]钱永甫,张琼,张学洪.南亚高压与我国盛夏气候异常.南京大学学报(自然科学),2002,38(3):295-307
    [66]黄樱,钱永甫.南亚高压与华北夏季降水的关系.高原气象,2003,22(6):602-607.
    [67]Mason R B, Anderson C E. The development and decay of the 100 mb summer time anticyclone over Southern Asia. Mon Wea Rev,1958,91:3-12.
    [68]朱乾根,林锦瑞,寿绍文等.天气学原理.北京:气象出版社,2000,499pp.
    [69]陆龙骅,陈咸吉,朱福康.南亚高压与我国夏季降水的天气学相关分析.气象科学技术集刊(6),气象出版社,1983,18-25.
    [70]谭晶,杨辉,孙淑清.夏季南亚高压东西振荡特征研究.南京气象学院学报,2005,28(4):452-460.
    [71]罗四维,钱正安,王谦谦.夏季100hPa青藏高原与我国东部旱涝关系的天气气候研究.高原气象,1982,1(2):1-10.
    [72]黄燕燕,钱永甫.长江流域、华北降水特征与南亚高压的关系分析.高原气象,2004,23(1):68-74.
    [73]丁治英,常越,朱莉等.1958-2000年6月连续性暴雨的特征分析.热带气象学报,2008,24(2):117-126.
    [74]黄菲,姜治娜.欧亚大陆阻塞高压的统计特征及其与中国东部夏季降水的关系.青岛海洋大学学报,2002,32(2):186-192
    [75]陈希,孙照渤,沙文珏等.东亚阻塞高压对我国降水影响的诊断分析研究.南京气象学院学报,2001,24(3):330-337.
    [76]季明霞,黄建平,王绍武等.冬季中高纬地区阻塞高压活动及其气候影响.高原气象,2008,27(2):415-421.
    [77]于淑秋,林学椿.两类江淮大水的大气环流特征.气象学报,2006,64(5):605-613.
    [78]陈菊英,王玉红,王文.1998及1999年乌山阻高突变对长江中下游大暴雨过程的影响.高原气象,2001,20(4):388-394.
    [79]李春,孙照渤.中纬度阻塞高压指数与华北夏季降水的联系.南京气象学院学报,2003,26(4):458-464.
    [80]张庆云,陶诗言.亚洲中高纬度环流对东亚夏季降水的影响.气象学报,1998,56(2):199-211.
    [81]杨修群,郭艳娟,徐桂玉等.年际和年代际气候变化的全球时空特征比较.南京大学学报(自然科学),2002,38(3):308-317.
    [82]Bjerknes J. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature.1966. Tellus 18(4):820-829.
    [83]陈烈庭.东太平洋赤道地区海水温度异常对热带大气环流及我国汛期降水的影.大气科学,1977,1(1):1-12.
    [84]陈烈庭,吴仁广.太平洋各区海温异常与长江中下游地区降水异常的相关分析.大气科学,1998,22(5):717-726.
    [85]余志豪,杨修群,任黎秀.厄尔尼诺.南京.河海大学出版社,2001,pp732.
    [86]翟盘茂,李晓燕,任福民.厄尔尼诺.北京,气象出版社,2003.
    [87]符淙斌,孙翠霞,张金枝.赤道海温异常与大气的垂直环流圈.大气科学,1979,3(1):50-57.
    [88]叶笃正,黄荣辉.长江黄河流域旱涝规律和成因研究,济南:山东科技出版社,1996.
    [89]Huang R H, Wu Y. The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci.,1989,6,21-32.
    [90]陶诗言,张庆云.亚洲冬夏季风对ENSO事件的响应.1998,大气科学,22(4):399-407.
    [91]赵振国.厄尔尼诺现象对北半球大气环流和中国降水的影响.大气科学,1996,20(4):422-428.
    [92]Fu C B,1985:Variability of summer monsoon rainfall in the east China association with ENSO, Proceedings of International Conference on Monsoon in the Fat east. Tokyo, Japan,24-27.
    [93]朱乾根,徐建军ENSO及其年代际异常对中国东部气候异常影响的观测分析.南京气象学院学报,1998,21(4):615-623.
    [94]孙旭光.大气对太平洋年际和年代际海温异常响应的观测分析和数值模拟研究.南京大学博士论文,2005.
    [95]Replewskieta C H, et al. Global and regional scale precipitation patterns associated with ENSO. Mon. Wea. Rev.,1987,115,1606-1626.
    [96]刘永强,丁一汇ENSO事件对我国季节降水和温度的影响.大气科学,1995,19(2):200-208.
    [97]江静,钱永甫.南海地区降水的时空特征.气象学报,2000,58(1):60-69.
    [98]吴国雄,孙凤英等.降水对热带海表温度异常的邻域响应-资料分析.大气科学,1995,19(6):663-676.
    [99]吴国雄,刘还珠.降水对热带海表温度异常的领域响应-数值试验.大气科学,1995,19(4):422-434.
    [100]罗绍华,金祖辉,陈烈庭.印度洋和男孩还问与长江中下游夏季降水的相关分析.大气科学,1985,9(3):314-320.
    [101]孙照渤,章基嘉.南海表面温度距平对我国夏季风和降水影响的数值试验.气象学报,1991,48(1):113-116.
    [102]邓爱军,陶诗言,陈烈庭,印度洋海表温度的时间分布特征及其与我国汛期降水的关系.大气科学,1989,13:393-399.
    [103]金祖辉,罗绍华.长江中下游梅雨期旱涝与南海海温异常关系的初步分析.气象学报,1986,44:368-372.
    [104]闵锦忠,孙照渤,曾刚.南海和印度洋海温异常对东亚大气环流及降水的影响.南京气象学院学报,2000,23(4):542-548.
    [105]张琼,刘平,吴国雄.印度洋和南海海温与长江中下游旱涝.大气科学,2003,27(6):992-1006.
    [106]王钟睿,钱永甫.印度洋、南海和东南沿海海温异常影响江淮流域6-7月降水量的分析及数值试验.应用气象学报,2005,16(4):527-538.
    [107]晏红明,肖子牛.印度洋海温异常对亚洲季风区天气气候影响的数值模拟研究.热带气象学报,2000,16(1):18-27.
    [108]Flohn H., Penndorf R. The stratification of the atmosphere. Bull. Am. Meteorol. Soc.,1950, 31:71-78.
    [109]Ye T C. The seasonal variation of Tibetan Plateau on the general circulation. Acta. Metero. Sinica,1952,23:33-47
    [110]Ye T C. Orographic and thermal impacts on the general circulation of the atmosphere of land-sea distribution. J. Geophys.,1951,23:33-47.
    [111]Flohn H. Large-scale aspects of the "summer monsoon" in South and East Asia J. Meterol. Soc. Japan,1957,75:180-186.
    [112]高由禧.高由禧院士论文集.广州:中山大学出版社.1999:1-365.
    [113]Ye T C and C C Koo. The influence of of Tibetan Plateau on the circulation over Eastern Asia and weather in China. Scientia Sinica (Science in China),1995:29-33.
    [114]Ye T C and C C Koo. Some calculations of the influence of the large-scale topography on the climate of China. Acta. Meteor. Sinica,1955,26:167-182.
    [115]赵平,陈隆勋.35年来青藏高原大气热源气候特征及其与中国降水的关系.中国科学(D辑),2001,31(4):327-331.
    [116]罗会邦,陈蓉.夏半年青藏高原东部大气热源异常对环流和降水的影响.气象科 学,1995,15(4):94-101.
    [117]汤懋苍等.下垫面能量厨房与大气变化.高原气象,1982,1(1):24-34.
    [118]汤懋苍,伊建华,蔡洁萍.冬季低温分布与春夏降水相关的统计分析,高原气象,1986,5(1):40-52.
    [119]朱乾根,白志虎.青藏高原冬季TBB特征及其与下级亚奥季风异常的联系.见:何金海主编,亚洲季风研究的新进展.北京:气象出版社,1996,143-149.
    [120]葛旭阳,朱永提.青藏高原热力状况异常特征及其与长江中下游夏季降水的关系.气象科学,2001,21(2):147-152.
    [121]葛旭阳,陶立英,朱永提等.青藏高原热力状况异常与长江中下游梅雨关系的相关分析和数值试验.应用气象学报,2001,12(2):159-165.
    [122]王安宇等.东亚加热场和大地形对大气环流季节变化影响的数值试验.高原气象,1983,2:20-38.
    [123]王谦谦等.青藏高原大地形对夏季东亚大气环流的影响.高原气象,1984,3:13-26.
    [124]简茂球,罗会邦,乔云亭.青藏高原东部和西太平洋暖池区大气热源与中国夏季降水的关系.热带气象学报,2004,20(4):355-363.
    [125]巩远发,段延扬,张菡.夏季亚洲大气热源汇的变化特征及其与江淮流域旱涝的关系.大气科学,2007,31(1):89-97.
    [126]田永丽,曹杰.亚洲地面气温异常对中国汛期雨带位置的影响研究.高原气象,2004,23(3):339-342.
    [127]Ye D Z,Wu G X,1998:The role of the heat source of the Tibetan Plateau in the general circulation, Meteor. Atmos. Phys.67(1-4),181-184.
    [128]张永生,吴国雄,1998:关于亚洲夏季风爆发及北半球季节突变的物理机理的诊断法分析:季风爆发的阶段性特征,气象学报,56(5):513-528.
    [129]张永生,吴国雄,1999:关于亚洲夏季风爆发及北半球季节突变的物理机理的诊断法分析:青藏高原及邻近地区地表感热加热的作用,气象学报,57(1):56-73.
    [130]Ueda H., Yasunari T.,1998:Role of warming over the Tibetan Plateau in early onset of the summer monsoon over the Bay of Bengal and the South China Sea. J. Metero. Sco. Japan., 76(1),1-12.
    [131]吴国雄,刘屹岷,刘新等.青藏高原加热如何影响亚洲夏季的气候格局.大气科学,2005,29(1):47-56.
    [132]吴国雄,毛江玉,段安民等.青藏高原影响亚洲夏季风研究的最新进展.气象学报,2004,62(5):528-540.
    [133]Hahn D G, Manabe S. The role of mountains in the South Asian monsoon circulation. J. Atmos. Sci.,1975,32:1515-1541.
    [134]Barron E J and Washington W M. The role of geographic variables in explaining paleoclimates:Results from cretaceous climate model sensitivity studies. J Geoghys Res, 1984,89:1267-1279
    [135]Kutzbach J E and Guetter P J. Sensitivity of climate to late cenozoic uplift in Southern Asia and the American West:Numerical experiments. J Geophys Res,1989,94:18393-18407.
    [136]钱永甫,颜宏,王谦谦等.行星大气中地形效应的数值研究.北京:科学出版社.1988.217
    [137]Kuo H L, Qian Yongfu. Numerical simulation of the development of mean monsoon circulation in July. Mon Wea Rev,1982,110:1879-1897.
    [138]钱永甫.A 5-layer primitive equation model with topography.高原气象.1985,4(增刊):1-28.
    [139]章基嘉,徐祥德,苗俊峰.青藏高原地面热力异常对夏季长江中下游流域持续性暴雨形成的数值试验.大气科学,1995,19(3):8-16.
    [140]张耀存,钱永甫.青藏高原隆升作用于大气临界高度的数值研究.气象学报,1999,57(2):157-167.
    [141]Broccoli. A J and S Manabe. The effects of orography on the mid-latitude northern hemisphere dry climates. J. Climate.,1992,5:1181-1201.
    [142]高由禧,徐淑英.东亚季风若干问题-东亚季风进退与雨季的起迄.北京:科学出版社,1962:p78-87.
    [143]Yoshino, M.,1965:Four stages of the rainy season in early summer over East Asia (Part Ⅰ). J. Meteor. Soc. Japan,43,231-245.
    [144]Yoshino, M.,1966:Four stages of the rainy season in early summer over East Asia (Part Ⅰ). J. Meteor. Soc. Japan,44,209-217.
    [145]Kato, K.,1989:Seasonal transition of the lower-level circulation systems around the Baiu front in China in 1979 and its relation to the Northern Summer Monsoon. J. Meteor. Soc. Japan,67,249-265.
    [146]Kato, K.,1985:On the abrupt change in the structure of the Baiu front over China continent in late May 1979. J. Meteor. Soc. Japan,63,20-36.
    [147]Kato, K.,1987:Airmass transformation over the semiarid region around North China and abrupt change in the structure of the Baiu front in early summer. J. Meteor. Soc. Japan,65, 737-750.
    [148]Kato, K. and Y. Kodama,1992:Formation of the quasi-stationary Baiu front to the south of the Japan Islands in early May of 1979. J. Meteor. Soc. Japan,70,631-647.
    [149]Hirasawa, N., K. Kato and T. Takeda,1995:Abrupt change in the characteristics of the cloud zone in subtropical East Asia around the middle of May. J. Meteor. Soc. Japan,73,221-239.
    [150]李麦村,潘菊芳,田生春等.春季连续低温阴雨天气的预报方法.北京:科学出版社,1977:p3-6.
    [151]包澄澜.中国天气学.北京:海洋出版社,1987:p269-269.
    [152]刘延英,彭治班.连晴和连阴雨前两支气流变化的一般特征.应用气象学报,1990,1(3):298-304.
    [153]程庚福等.湖南天气极其预报,气象出版社,1987.
    [154]付焕宇,邬治芸,夏洪星.江南岭北3月份连阴雨的湿度条件.气象,1989,15(10):36-42.
    [155]吴宝俊,彭治班.江南岭北春季连阴雨研究进展.科技通报,1996,12(2):65-70.
    [156]留小强,吴宝俊,陈乾金.一个用侧风资料绘制三维气流的方法,气象科学,1990,10(3):304-310.
    [157]朱光宇,吴宝俊,胡圣昌.我国南方春季双层锋区锋生过程的分析,气象学报,1993,51(1):87-94.
    [158]朱光宇,吴宝俊,胡圣昌.春季高原东侧水平稳定层分析.大气科学,1991,15(6):70-77.
    [159]施宁.长江中下游春季连阴雨及厄尔尼诺年的环流背景.气象,1990,16(12):8-14.
    [160]施宁.长江中下游春季连阴雨的低纬环流及其低频振荡背景.气象科学,1991,11(1):103-111.
    [161]何财福,吴宝俊,彭治班.南岭准静止锋附近加热场特征及其对锋面维持的作用.应用气象学报,1992,3(4):438-443.
    [162]万日金,吴国雄.江南春雨的气候成因机制研究.中国科学D辑地球科学,2006,36(10):936-950.
    [163]万日金,王同美,吴国雄.江南春雨和南海副热带高压的时间演变及其与东亚夏季风环流和降水的关系.气象学报,2008,66(5):800-807.
    [164]万日金,赵兵科,侯依玲.江南春雨的年际变率及其影响因子分析.高原气象,2008,27(增刊):118-123.
    [1]韩荣青,陈丽娟,李维京等.2-5月我国低温连阴雨和南方冷害时空特征.应用气象学报,2009,20(3):312-320
    [2]张汉林.气象因素与麦类赤霉病群体流行波动研究.气象学报,1987,45(3):338-345
    [3]高由禧,徐淑英,郭其蕴等.中国的季风区域和区域气候.《东亚季风的若干问题》。北京:科学出版社,49-63
    [4]孙锦铨,陈永秀.长江中下游春季连阴雨天气气候分析.气象,1991,17(5):27-34
    [5]Tian S F, Yasunari T. Climatological aspects and mechanism of Spring Persistent Rains over central China. J Meteorol Soc Jpn,1998,76(1):57-71
    [6]王继志,郭进修.我国南方低温连阴雨天气的研究.气象科技,1981,1(1):1-9
    [7]朱盛明.长江中下游春季连阴雨、连晴天气研究.气象,1991,17(5):20-28
    [8]刘德祥,白虎志,陆登荣.甘肃省近五十年春季连阴雨的气候特征.2002,7:121
    [9]陆均天.华南等地少雨旱情持续长江中下游地区连阴雨_2002年4月.气象,2002,28(7):62-63
    [10]仇永炎,熊文全,关于辉.用综合平均法分析长江中下游春季连阴雨、连晴时期环流的若干问题.气象科学,1993,13(3):261-268
    [11]万日金,吴国雄.江南春雨的时空分布.气象学报,2008,66(3):310-319
    [12]陈绍东,王谦谦,钱永甫.江南汛期降水基本气候特征及其与海温异常关系初探.热带气象学报,2003,19(3):260-268
    [13]王谦谦,陈绍东.江南地区汛期降水与热带海温关系的SVD分析.干旱气象,2004,22(3):11-16
    [14]魏凤英.现代气候诊断统计与预测技术.北京:气象出版社,2007,PP296
    [15]Torrence, C., and G. P. Compo, A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc.,79,61-78,1998
    [16]万日金,吴国雄.江南春雨的气候成因机制研究.中国科学D(地球科学),2006,36(1):939-950
    [1]高由禧,徐淑英,1962:东亚季风进退与雨季的起迄.《东亚季风若干问题》,北京:科学出版社,78-87.
    [2]Yoshino, M.,1965:Four stages of the rainy season in early summer over East Asia (Part Ⅰ). J. Meteor. Soc. Japan,43,231-245.
    [3]Yoshino, M.,1966:Four stages of the rainy season in early summer over East Asia (Part Ⅰ). J. Meteor. Soc. Japan,44,209-217.
    [4]Kato, K.,1989:Seasonal transition of the lower-level circulation systems around the Baiu front in China in 1979 and its relation to the Northern Summer Monsoon. J. Meteor. Soc. Japan,67,249-265.
    [5]Kato, K.,1985:On the abrupt change in the structure of the Baiu front over China continent in late May 1979. J. Meteor. Soc. Japan,63,20-36.
    [6]Kato, K.,1987:Airmass transformation over the semiarid region around North China and abrupt change in the structure of the Baiu front in early summer. J. Meteor. Soc. Japan,65, 737-750.
    [7]Kato, K. and Y. Kodama,1992:Formation of the quasi-stationary Baiu front to the south of the Japan Islands in early May of 1979. J. Meteor. Soc. Japan,70,631-647.
    [8]Hirasawa, N., K. Kato and T. Takeda,1995:Abrupt change in the characteristics of the cloud zone in subtropical East Asia around the middle of May. J. Meteor. Soc. Japan,73,221-239.
    [9]李麦村,潘菊芳,田生春等,1977:《春季连续低温阴雨天气的预报方法》.北京:科学出版社,3-6.
    [10]包澄澜,1987:《中国天气学》,北京:海洋出版社,269-269.
    [11]施宁.长江中下游春季连阴雨及厄尔尼诺年的环流背景.气象,1990,16(12):8-14.
    [12]施宁,1991:长江中下游春季连阴雨的低纬环流及其低频振荡背景.气象科学,11(1):103-111.
    [13]朱光宇,吴宝俊,胡圣昌,1991:春季高原东侧水平稳定层分析.大气科学,15(6):70-77.
    [14]何财福,吴宝俊,彭治班,1992:南岭准静止锋附近加热场特征及其对锋面维持的作用.应用气象学报,3(4):438-443.
    [15]吴宝俊,彭治班.1996:江南岭北春季连阴雨研究进展.科技通报,12(2):65-70.
    [16]Tian S F, Yasunari T.,1998:Climatological aspects and mechanism of Spring Persistent Rains over central China. J Meteorol Soc Jpn,76(1):57-71.
    [17]万日金,吴国雄,2006:江南春雨的气候成因机制研究.中国科学D辑地球科学,36(10):936-950.
    [18]张庆云,陶诗言.夏季东亚热带和副热带季风与中国东部汛期降水.应用气象学报,1998, 9(增刊):16-23.
    [19]孙淑清,马淑杰.西太平洋副热带高压异常及其与1998年长江流域洪涝过程关系的研究.气象学报,2001,59(5):719-729.
    [20]张庆云,陶诗言.亚洲中高纬度环流对东亚夏季降水的影响.气象学报,1998,56(2):199-211.
    [21]陈桂英,廖荃孙.100hPa南亚高压位置特征与我国盛夏降水.高原气象,1990,9(4):432-438.
    [22]罗四维,钱正安,王谦谦.夏季100毫巴青藏高压与我国东部旱涝关系的天气气候研究.高原气象,1982,1(2):1-10.
    [23]陈菊英.中国旱涝的分析和长期预报研究.北京:中国农业出版社,1991.148-156,321.
    [24]况雪源,张耀存.东亚副热带西风急流位置异常对长江中下游夏季降水的影响.高原气象,2006,25(3):382-389.
    [25]况雪源,张耀存,刘健.对流层上层副热带西风急流与东亚冬季风的关系.高原气象,2008,27(4):701-712.
    [26]万日金,赵兵科,侯依玲.江南春雨的年际变率及其影响因子分析.高原气象,2008,27(增刊):118-123.
    [27]万日金,吴国雄.江南春雨的时空分布.气象学报,66(3):310-319.
    [28]吴国雄,刘屹岷,刘平.空间非均匀加热对副热带高压带形成和变异的影响.Ⅰ.尺度分析.气象学报,1999,57(3):257-263.
    [1]Wu Guoxiong, and Zhang Yongsheng. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev.,1997,126:917-927.
    [2]叶笃正.西藏高原对大气环流影响的季节变化.气象学报,1952,23:33-47.
    [3]叶笃正,顾震潮.西藏高原对于东亚大气环流及中国天气的影响.科学通报,1955,6:30-33.
    [4]叶笃正,罗四维,朱抱真.西藏高原及其附近的流场结构和对流层大气的热量平衡.气象学报,1957,28:249-263.
    [5]吴国雄,李伟平.青藏高原感热气泵和亚洲季风.见:叶笃正等编.赵九章文集.北京:科学出版社,1997.116-126.
    [6]张耀存,钱永甫.青藏高原隆升作用于大气临界高度的数值研究.气象学报,1999,57(2):157-167.
    [7]梁潇云,刘屹岷,吴国雄.青藏高原隆升对春、夏季亚洲大气环流的影响.高原气象,24(6):837-845.
    [8]朱抱真.大尺度热源、热汇和地形对西风带的定常扰动.气象学报,1957,28:122-140.
    [9]巢纪平.斜压西风带中大地行有限扰动的动力学.气象学报,1957,28:303-313.
    [10]王谦谦.青藏高原大地形对夏季东亚环流的影响.高原气象,1983,2(1):14-25.
    [11]王安宇,王谦谦.青藏高原大地形对冬季东亚环流的影响.高原气象,1984,2(2):110-120.
    [12]瞿章,王谦谦,钱永甫,等.青藏高原对冬季东亚大气环流动力效应的数值试验.青藏高原会议论文集,1981:18-32.
    [13]万日金,吴国雄.江南春雨的气候成因机制研究.中国科学(D辑地球科学),2006,36(10):936-950.
    [14]万日金,吴国雄.江南春雨的时空分布.气象学报,2008,66(3):310-319.
    [15]钱永甫,颜宏,骆启仁.一个有大地形影响的初始方程数值预报模式.大气科学,1978,2(2):91-102.
    [16]Kuo H. L, Qian Yongfu. Influence of the Tibetan Plateau on cumulative and diurnal changes of weather and climate in summer. Mon. Wea. Rev.,1981,109:2337-2356
    [17]Kuo H. L, Qian Yongfu. Numerical simulation of the development of mean monsoon circulation in July. Mon. Wea. Rev.,1982,110:1879-1897.
    [18]钱永甫.一个考虑地形的五层原始方程模式.高原气象,1985,4(2):1-28.
    [19]Zhang Qiong, Qian Yongfu. Effects of boundary layer parameterization on the monthly mean simulation. Acta Meteor. Sinica,1999,13:73-85.
    [20]刘华强,钱永甫.P-σ坐标系区域气候模式对冬夏季月平均场的模拟试验.南京大学学报(自然科学),1999,35(3):337-345.
    [21]王世玉,钱永甫.P-σ区域气候模式的垂直分辨率对模拟结果的影响.高原气象,2001,20(1):28-35.
    [22]Anthes R. A. A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev.,1977,105(3),270-286.
    [23]钱永甫.地表热平衡温度的一种计算方法.气象科学,1988,4:14-27.
    [24]Qian Yongfu. The effects of different sea surface temperature distributions over the western Pacific on the summer monsoon properties. Acta Oceano. Sinica,1993,12 (4):535-547.
    [25]Reynolds R W, Smith T M. Improved global sea surface temperature analyses using optimum interpolation. J.Climate,1994,7 (6):929-948.
    [26]钱永甫,颜宏,王谦谦等.行星大气中地形效应的数值研究.北京:科学出版社,1988.P63-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700