用户名: 密码: 验证码:
复杂结构输电线路接地短路及OPGW电流计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了适应现代大规模电力系统的需要,建设坚强精准的通信系统,现代电力系统中采用光纤复合架空地线(OPGW)作为一侧架空地线的现象越来越普遍。然而,在电力系统发生故障或遭受雷击过电压(持续时间短)时,OPGW中会流过比较大的电流,此电流的热效应将使导线温升过高,严重时会毁坏其内部复合的光纤,导致电力通信瘫痪。实际电力系统的输电线路结构复杂,如何提高OPGW最大故障电流的计算精度,为其热稳定校验提供依据是个亟待解决的问题。论文着重对电力系统复杂结构输电线路接地故障及此时OPGW的电流分布问题进行建模计算和相关分析,其主要工作和研究成果如下。
     论文基于相分量法进行OPGW分布电流计算模型及算法研究。
     模型研究。复杂结构输电线路的主要模型包括线路模型和终端模型两部分,其模型的建立过程如下:(1)线路模型采用的是计及相线系统和地线系统的相互影响的扩展相分量法,它是对相分量法的扩展。扩展相分量法把相线系统和地线系统合并建模,模型中的每基杆塔处,各导线都通过一个虚拟电阻与杆塔相连,若导线与杆塔直接相连虚拟电阻为零,导线与杆塔绝缘虚拟电阻为无穷大。如此,调节虚拟电阻取值可描述杆塔的各种接线方式。(2)线路终端分为电源终端与负荷终端。电源终端采用基于相分量法的多端口戴维宁等值模型。负荷终端处假设其与外部系统没有连接,为保证模型的统一性,在变电站出口至变压器中性点段补全相线系统,取该档相线的自阻抗为无穷大。(3)对于复杂结构输电线路,根据线路结构相同原则,把复杂线路分割成块,全线由多个子区间构成,每个子区间根据杆塔的数量不同分为相应的档位。对每个子区间使用基于相分量法原理扩展后的扩展相分量法进行建模计算,然后再把各块通过交接点联系起来合并计算,得到复杂网络的OPGW故障电流计算的全模型。
     算法确定。根据扩展相分量法建立的全线模型,数据量比网孔法大很多倍。为了克服这种缺点,根据系数矩阵的块三对角特性,论文采用“追赶法”化简求解,大大提高了计算速度,弥补了计算量大的不足。
     应用与实例。(1)利用论文模型对简单线路实例进行分析可知:扩展相分量法的计算结果与传统的网孔法的计算结果的曲线走势吻合良好,说明了扩展相分量法的合理性;从其计算结果的对比可发现,扩展相分量法较传统算法的OPGW故障电流值大10%左右。(2)论文采用扩展相分量法和交接点的原理,对某非洲城网进行相关分析与计算:对于某杆塔处故障,OPGW故障电流分析程序给予详细的OPGW故障电流分布情况;程序实现故障点自动循环功能,能得到OPGW最大故障电流的分布曲线,根据曲线,容易得到最严重情况下的故障电流分布。这为该城网的OPGW选型提供了参考依据。
     扩展相分量法实现了地线系统和相线系统的统一运算,避免了由于部门分工,忽略地线系统和相线系统相互影响等因素造成的OPGW最大故障电流的计算误差;扩展相分量法与交接点原理相结合,解决了复杂结构输电线路的OPGW故障电流分布计算研究;论文方法还可以得到在架空地线影响下的相线系统故障电流的分布情况;扩展相分量法较传统算法的OPGW故障电流值大,说明传统算法的计算结果偏于乐观;对于OPGW的最大故障电流计算,复杂结构输电线路接地故障程序能够自动实现各杆塔以次作为故障点的运算,最终由各杆塔故障的情况下的OPGW最大故障电流形成OPGW的最大故障电流曲线。
     总之,扩展相分量法更能直观、准确地找到OPGW的最严重情况下的故障电流,为OPGW的选型提供可靠的依据,为电力系统的可靠运行和经济建设提供有力的保证。因此,这无论是对OPGW选型校验,还是对电力系统故障分析,都有重要意义。
In order to adapt to the needs of the modern large-scale power system and build a strong and accurate communication system, Optical Fiber Composite Overhead Ground Wire (OPGW) as a phenomenon of the side of the overhead ground wire is commonly used in modern power system. However, when fault occurs in power system or power system is struck by lightning over-voltage(short duration), the relatively large current will flow through OPGW, the heating effect of current will increase the temperature of wires, even devastate its internal composite fiber, and result in paralysis of the electric power communications. The structure of actual power system transmission lines are complex, how to improve the calculation accuracy of the OPGW's maximum fault current to provide the basis for its thermal stability verification is an urgent problem. The thesis focuses on the line ground fault of the power system's complex transmission structure and the OPGW current distribution in the modeling calculations and correlation analysis, the main work and results are as follows.
     The research of this OPGW thesis is on the distribution of the current computational model and algorithm, which is based on the phase component method.
     The research of model. The complex structure of the transmission line model consists of two parts, the line model and the terminal model, the building process of the model is as follows:(1)Line model adopts an extension component method which takes the mutual influence into account between the phase line system and ground system, and it is the extension of the phase component. Extension component method takes phase line systems and ground systems into modeling, in the model each wire is connected with the tower through a virtual resistor. If wire is directly connected to tower, the virtual zero resistance, and if the wire and the tower is insulation, the virtual resistance is infinite. So, adjusting the virtual resistor values can describe the variety wiring of towers.(2)The line terminal is divided into the power supply terminals and load terminals. The power supply terminal uses multi-port Thevenin equivalent model which is based on phase component. The load terminal at the assumption is not connected with the external system, in order to ensure the unity of the model, exports in the substation to transformer neutral point of fill phase line system take the file line impedance is infinite.(3) According to the same principles of the line structure, the complex structure of transmission lines are split into blocks, and across the board by multiple sub-intervals, so each subinterval according to the number of towers are divided into the appropriate gear. On each subinterval using the model based on the expansion of the phase component in the principle of expansion phase component method, and then blocks are linked together by the intersection, and the OPGW fault current calculated by the full model of the complex network.
     Algorithm to be determined. According to the extended phase components method we establish the whole line model, whose amount of data is many times greater than the method of mesh method. In order to overcome this disadvantage, according to the block tri-diagonal characteristics of the coefficient matrix, this paper uses "chasing method" to simplify and solve, which greatly improves the computational speed, and makes up the deficiency of large computational complexity.
     Applications and examples.(1) Using the proposed model to analysis the simple circuit we can learn the result curves using extended phase components method are in good agreement with the curves using the traditional mesh method, which shows the rationality of the extended phase component method; From the comparison of the calculation results we can find that, by using the extended phase component method compared to using the traditional algorithm the OPGW fault current values are bigger about10%.(2) This paper uses the extension phase component method and the principle of the junction points to analysis and calculate the Africa city network; the programs of the OPGW fault current analysis give the details of the OPGW fault current distribution; Also the programs can realize the fault points automatic circulation function, and can get OPGW maximum fault current distribution curve, according to the curve, it is easy to get the fault current distribution under the most severe case This provides the reference to the city net OPGW selection.
     The extended phase component method can achieve the unifying admittance calculation of earth wire system and phase wire system, and avoid OPGW maximum fault current calculation error caused by factors such as ignoring mutual influence of earth wire system and phase wire system when work are divided; combined with extended phase component method and the principle of junction point, we can solve the calculation problems of OPGW fault current distribution in complex structure of transmission line; Using the method proposed in this paper can also obtain the fault current distribution in the phase wire system under the influence of the overhead ground wire line; The OPGW value of fault current calculated by using expanded phase component method are bigger than the traditional algorithm, which illustrates that the calculating results of traditional algorithm are overly optimistic; for the OPGW maximum fault current calculation, grounding fault programs of the complex transmission line can automatically run the calculation for each tower in turn served as the fault point, in the end, according to the OPGW maximum fault current in the case that tower is served as the fault point, we can draw the OPGW maximum fault current curve.
     In short, the extended phase component method can visually and accurately find OPGW fault current in the most serious cases, which provides a reliable basis to the selection of the OPGW modeling, and provides a strong guarantee to the reliable operation of the power system and economic development. Therefore, it has an important significance for both OPGW type checking and fault analysis of power system.
引文
[1]西南电管局试验所.高压电气设备试验方法[Z].北京:水利电力出版社,1984
    [2]黄志明.输电线路建设与展望[J].中国电力,1999,32(10):34-37
    [3]中岛立生.输电技术的发展现状和展望[J].国际电力,1998,2(3):38-44
    [4]王守礼等.电力系统光纤通信线路设计[M].北京:中国电力出版社,2003
    [5]张殿生.电力工程高压送电线路设计手册[Z].能源部东北电力设计院编,中国电力出版社
    [6]国家电力公司东北电力设计院.电力工程高压送电线路设计手册(第二版)[Z].中国电力出版社,2003
    [7]中华人民共和国电力行业标准DL/T5092-1999.110-500KV架空送电线路设计技术规程[Z].1999
    [8]罗勇,缪伯轩.光纤复合架空地线(OPGW)架空敷设技术探讨[J].网络电信,2001,5(18):18—20
    [9]苏柏青.复合架空地线光缆的设计及施工注意事项[J].江西电力职业技术学院学报,2003,26(4)
    [10]P. Nichols, D. Spoor, R. Gangopadhyay, T. Summers. A Practical Comparison of a 132kV Cable Energisation with ATP Modelling Techniques.2007, AUPEC07
    [11]Alternative Transients Program Rule Book. Leuven EMTP Center, July 1987
    [12]Australian/New Zealand Standard,'Lightning Protection',2007, AS/NZS1768,2007
    [13]J. Hyndman.Integral Energy Company Policy 9.2.2:Network Protection. Integral Energy. NSW Australia,2008
    [14]王俊.OPGW光纤衰减的产生与控制.电力系统通信[J].2006,27(1):74-77.
    [15]林秀钦,付华军.光纤复合架空地线(OPGW)短路电流试验.光通信研究[J],2004,2:59-60
    [16]刘永花.电力架空光缆(ADSS和OPGW)蠕变性能的试验研究[D].[硕士论文].北京:北京邮电大学,2007
    [17]IEEE Standard Construction of Composite Fiber Optic Overhead Ground Wire (OPGW) for Use on Electric Utility Power Lines,1994. IEEE Standard 1138
    [18]IEEE Guide for Protective Grounding of Power Lines,2003. IEEE Standard 1048
    [19]Z. Yamayee, J. Bala. Electromechanical Energy Devices and Power Systems. John Wiley & Sons, USA,1994,396-400
    [20]张烈金.用目标规划选择输电线路路径[J].电力建设,1993,14(9):61-67
    [21]林凤羽.输电线路的风荷载[J].中国电力,1995,1:54-56,73
    [22]张相庭.工程结构风荷载理论和抗风计算手册[M].上海:同济大学出版社,1990
    [23]邢宁哲,吕述望.光纤复合架空地线断股分析和研究[J].光通信技术,2005,29(12): 51-53
    [24]钱冠军,王晓瑜.500 kV输电线路典型雷害事故调查研究[J].高电压技术,1997,2:72-74
    [25]黄俊华.我国电力光缆应用和市场的发展及问题[J].电力系统通信,2003,11:1-4,25
    [26]R. Kimata, K. Yoshida, T. A. Schehade. Development of an application program to calculate shout—circuit temperature rise in OPGW. Furukawa Review, 1999, 18
    [27]R. C. adge, S. Barrrtt, H. Grad. Performance of optical ground wires during fault current tests. IEEE Transactions on Power Delivery,1989,4 (3)
    [28]L. Varga, O. Guntner, L. Pekanovics. Computer Program for the Calculation of Short-Circuit Temperature Rise on Optical Ground Wires. International Conference on Electric Power Engineering, Budapest,1999,148-153
    [29]D. Spoor, J. Zhu. Intercircuit Faults and Distance Relaying of Dual-Circuit Lines. IEEE Trans. Power Delivery, July 2005,20 (3):1846-1852
    [30]R. Zeng, J. He, J. Lee, Y. Tu, Y. Gao, J. Zou, Z. Guan. Influence of Overhead Transmission Line on Grounding Impedance Measurement of Substation. IEEE Trans. Power Delivery, April 2005,20 (9):1219-1225
    [31]IEEE Recommended Practice for Determining the Electric Power Station Ground Potential Rise and Induced Voltage from a Power Fault.1987, IEEE Standard 367
    [32]汪涛.220 kV梧岗变一向塘变线路设计及有关问题研究[D].[硕士论文].南昌:南昌大学,2007,12
    [33]方森华.OPGW复合光缆的最大允许电流计算.中国电力[J].1995,11:56-58
    [34]陈洪波,邹军等.复合光缆地线(OPGW)设计选型中的最大短路电流计算[J].华北电力大学学报,2002,29(增刊):88-91
    [35]杜天苍,张尧,夏文波.利用短路电流热效应的OPGW分流地线选型[J].高电压技术,2007,33(9):110-119
    [36]詹宗东.短路电流在OPGW及地线网络中的分布计算[J].四川电力技术,2004,3:44-49.
    [37]方森华.复合光缆(OPGW)选择设计探讨[J].电力建设,1997,7:38-41
    [38]张家倩.光纤复合架空地线(OPGW)设计及相关计算探讨[J].安徽电力,2004,21(3):12-15
    [39]许正涛.OPGW及其分流线的短路返回电流计算和选型校验.中南七省电力系统专业委员会第二十二届联合学术年会.2007,11
    [40]陈岑.架空地线短路电流分析及其热稳定计算[J].黑龙江电力技术,1998,20(1):12-16
    [41]商威,陈清美.OPGW立用问题的探讨[J].电力系统通信,2003,24(5):16-21
    [42]减剑欣.光纤复合架空地线(OPGW)热稳定计算分析[J].电力系统通信,2004,25(5):12-14
    [43]张晓东,张栋.高压架空输电线路的热稳定的计算[J].高电压技术,2005,31(5):81-82
    [44]程慕尧.OPGW的温升及允许短路电流的计算方法[J].电力建设.1997,1:15-18
    [45]李杰,陈希,林卫铭.光纤复合架空地线(OPGW)热性能的研究[J].电网技术,2006,30(1):59-93
    [46]常立智.分流系数对架空避雷线热稳定校验的影响[J].供用电,2005,22(3):22-24
    [47]黄展鸿,杜天苍. OPGW分流地线的选型设计[J].光纤光缆传输技术,2005,3:13-16
    [48]曹佩荣,曹锦,孟涛.光纤复合架空地线断股与结构设计[J].电力系统通信,2006,27(3):42-47
    [49]王旭锋,张志强,陈立斌等.光纤复合架空地线的防振设计及试验[J].电力建设,2005,26(12):48-50,54
    [50]强玉平OPGW的选型及有关问题的探讨[J].电力系统通信,2006,27(9):1-5
    [51]吴飞龙.一起电网事故引发OPGW中断的原因分析[J].电力系统通信,2005,26(12):73-75
    [52]汪立峰,胡维维.输电线路OPGW的结构特点及设计选择[J].浙江电力,2000(4):27-30
    [53]肖猛.光纤复合架空地线基本特性及相关对策[J].四川电力技术,2005,28(5):54-56
    [54]胡江涛.光纤复合架空地线在高压送电线路中的设计应用[J].陕西电力,2006,34(3):30-33
    [55]张伯明,陈寿孙.高等电力网络分析[M].北京:清华大学出版社,1996
    [56]邹军,袁建生,李昊,等.架空线路短路电流分布及地线屏蔽系数的计算[J].电网技术,2000,10(24):27-30
    [57]邹军,袁建生,李吴,等.考虑杆塔影响时架空短线阻抗的计算[J].清华大学学报,2001,41(3):39-42
    [58]邹军等.统一广义双侧消去法与架空线路-地下电缆混合输电系统故障电流分布的计算.中国电机工程学报[J].2002,22(10):112-115
    [59]姜彤,郭志忠,陈学允,白雪峰.多态相分量法及其在电力系统三相不对称分析中的应用.中国电机工程学报[J].2002,22(5):70-74
    [60]Dawalibi F. Ground fault current distribution between soil and neutral conductors[J]. IEEE Trans. on Power Apparatus and Systems,1980, PAS-99 (2):452-461
    [61]Dawalibi F, Niles G B. Measurements and computations of fault current distribution on overhead transmission line[J]. IEEE transaction on Power APParatus and System,1984, PAS-103 (3):553-560
    [62]王安宁.基于相分量法的电力系统故障计算方法研究[D].[博士论文].山东:山东大学,2009,4
    [63]宫野,龙永兴,王友年,邓新绿.块三对角矩阵的追赶法及其应用.大连理工大学学报[J],1997,37(4):406-409

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700