用户名: 密码: 验证码:
基于相似理论风力机气动性能预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力机气动性能预测是风力机设计的关键之一。准确的气动预测将有益于叶片的气动设计、结构设计和系统评估等等。随着海上风电的发展,风力机大型化发展趋势日益明显,大型化使得风力机叶片更长、流动更复杂、气动性能预测的难度更大。然而现有的BEM、CFD等方法的预测精度不够;风场实验不可控因素多;风洞实验受风洞尺寸的限制,雷诺数无法达到实际风力机的量级,气动性能不能相似。因此,开展基于相似理论风力机气动性能预测的研究对快速、准确地进行大型风力机气动特性评估具有重要意义。
     本文以相似理论为基础,结合CFD计算和风洞实验来进行研究。
     首先,分别采用相似理论的量纲分析法和方程分析法推导出了一致的理论的风力机气动相似准则和相似函数关系式。理论的风力机气动相似准则是相对粗糙度准则(ε)、雷诺数准则(Rec)和尖速比准则(λ);理论的风力机气动相似函数关系式为CP/CM/CT=/(ε, Rec,λ)。并提出了保证部分相似准则条件下的分步逼近相似研究方法。
     以NREL Phase VI风力机(D=10.058m)及其缩比模型(D=1.5m和1.0m)为研究对象,借助CFD软件,对相同雷诺数和尖速比下,理想光滑叶片表面的比例模型的气动性能和流动特性进行了研究。研究发现,比例模型的功率系数(Cp)和轴向推力系数(CT)在相同雷诺数(Rec(0.75R≤7.42×105)和尖速比(λ≤10.00)下不相同,即它们的气动性能不满足理论的气动相似律。并通过比较与分析各模型的流场信息,揭示了引起气动性能差异的主要原因。
     由于风力机的几何缩比无法保证表面粗糙度的相似,因此粗糙度的影响是研究中不容忽视的一个因素。对此,本文提出了与风力机叶片设计原则相符的设计粗糙度不敏感叶片的方法来解决缩比模型表面粗糙度难以几何相似的问题,期望在性能预测中能够回避相对粗糙度准则。以目前应用居多的变速变桨型水平轴风力机为研究对象,结合BEM理论与风力机实例,确定了叶片粗糙敏感性评价指标。再以叶片主要出功部位的21%相对厚度翼型为例,提出了根据升、阻力系数对输出功率的作用大小来确定粗糙敏感性评价指标权重系数的方法,确定了其粗糙敏感性评判基准。另外,为了探讨粗糙不敏感叶片的设计方法,应用正交设计和方差分析法,研究了21%相对厚度翼型几何参数对粗糙敏感性的影响;并对已有的CAS薄翼型进行了粗糙敏感性实验和评价;且在原有CAS-W1-210翼型的基础上设计和优化出了一个粗糙敏感性更低、气动性能更优的CAS-W2-210翼型。
     在相似性研究中,缩比风力机通常运行的工况是在低雷诺数范围,因此对于翼型低雷诺数的气动特性有必要进行了解。为此,本文开展了S809翼型的低雷诺数(Re<5×105)气动性能风洞实验与分析,获得了系列低雷诺数下气动性能的数据,数据显示了其气动特性的复杂性,并填补了此翼型低雷诺数气动性能数据的空白。同时,为了进一步研究缩比风力机叶片受叶尖涡的影响,也开展了翼尖涡对翼型低雷诺数气动性能影响的风洞实验,得出了在不同雷诺数下,翼尖涡对翼型压差升、阻力系数影响的规律。另外,为研究受叶尖涡影响的叶片区段的粗糙敏感性,还开展了低雷诺数下翼尖涡对翼段粗糙表面压差升、阻力系数影响的风洞实验。综合上述实验得出了在不同雷诺数下,翼尖涡对粗糙和光滑翼段表面翼型的压差升、阻力系数的不同影响规律,以及翼尖涡涡心位置和涡量随攻角和表面粗糙状况的变化趋势。
     最后,为了弄清比例模型气动性能定量的相似关系,本文对缩比模型气动性能的相关修正进行了探讨。以2D风洞实验数据为基础,3D CFD计算结果为基准进行了比较与分析,结果显示在低雷诺数的附着流动状态,Prandtl叶尖损失修正效果不佳,而现有的四种三维效应修正方法都存在较大误差,其中Du和Selig的修正误差相对较小,但它仍然存在着许多不足,需要进一步改进才能适用于此。另外,本文采用修正入流风速的方法,探讨了缩比模型流动相似的修正,结果表明即使是将缩比模型流量修正到与原型流量理论相似的状态,它们的流管、流线和流场速度分布仍然不相似,这是由于流场流动损失的不同而引起的,因此,流动相似修正除应考虑模型的流量相似外,还应考虑流场的流动损失。
Predicting the aerodynamic performance of wind turbine is a key point to the wind turbine design. Accurately predicting it will be beneficial for the blade aerodynamic design, blade structural design, system evaluation and so on. With the development of offshore wind power, the size of wind turbine is becoming larger and larger, which induces more complicated flow around the longer blade and leads to the more difficult prediction of aerodynamic performance. However, the precision of aerodynamic performance prediction with existing methods including BEM and CFD can't meet the requirements. Wind farm test and wind tunnel test to wind turbine can't also achieve the goal, because there are a lot of uncontrolled factors during wind farm test, and the size of test model is limited by wind tunnel size so that it can't reach the same Reynolds number of real wind turbine. Therefore, it is significant to carry out a study of the wind turbine aerodynamic performance prediction based on similarity theory in order to fast and accurately evaluate the large size wind turbine aerodynamic characteristics.
     In this thesis, the study was carried out with CFD calculations and wind tunnel experiments based on similarity theory.
     Firstly, the theoretical similarity criteria and similitude function relationship of wind turbine aerodynamic performance have been obtained by using dimensional analysis and equation analysis of similarity theory. The three theoretical similarity criteria are relative surface roughness criterion, Reynolds number criterion and tip speed ratio criterion, and the theoretical similitude function relationship is CP/CM/CT=/(ε, Rec, λ). A successive approximation method which considers the part of similarity criteria was proposed.
     Secondly, the aerodynamic characteristics and flow behaviors of NREL Phase VI wind turbine (diameter=10.058m) and its two scaled models (diameter=1.5m and1.0m) with smooth blades were investigated by using CFD software. It was found that their power coefficients (Cp) and axial thrust coefficients (CT) were different at the same Reynolds number (Rec(0.75R)≤7.42×105) and tip speed ratio (λ≤10.00), which showed that the aerodynamic performances among the models didn't agree with the theoretical similarity law. The reasons causing the differences on the aerodynamic performances were revealed by comparing and analyzing the flow information of models.
     Thirdly, the problem that roughness on blade surface is difficult to be completely similar between the wind turbine and its scaled models is inevitable. Therefore, it needs to investigate the effects of surface roughness on the aerodynamic performance of wind turbine blade and design the roughness insensitivity blade so that the relative surface roughness principle mentioned above can be neglected in the course of aerodynamic performance prediction. In this thesis, the evaluation indicators for roughness sensitivity on wind turbine blade were obtained by analyzing the data of real variable-speed and pitch-regulated wind turbines with BEM theory. Moreover, the method that the evaluation benchmark was determined by determining the weight coefficients of the evaluation indicators for roughness sensitivity with the impacts of lift and drag coefficients on power output was proposed. At the same time, the effects of21%relative thickness airfoil geometry parameters on the evaluation indicators for roughness sensitivity were also investigated by using orthogonal design and analysis of variance as an example for the design of the roughness insensitivity wind turbine blade. In addition, the roughness sensitivity of CAS thin airfoils was evaluated by comparing with the data obtained in wind tunnel test and from XFOIL calculation. And a new CAS-W2-210airfoil which had lower roughness sensitivity and better aerodynamic performance than the original CAS-W1-210was obtained by modifying the geometry parameters.
     Fourthly, it is necessary to recognize the aerodynamic characteristics of airfoils at low Reynolds numbers during the study of wind turbine similarity, because the airfoils of a scaled model blade usually run within the low Reynolds number range. In this thesis, S809airfoil was tested in wind tunnel at less than Re=5×105and obtained a series of aerodynamic performance data which filled the data gaps. The results showed that the aerodynamic characteristics of S809airfoil were complex at those low Reynolds numbers. At the same time, the experiments about the airfoil aerodynamic performances influenced by wing tip vortex were carried out at low Reynolds numbers, in order to further study the influences of blade tip vortex on the blades of scaled models. The results about the pressure lift and drag coefficients under the effects of wing tip vortex were obtained at different Reynolds numbers. In addition, the experiments about the rough airfoil aerodynamic performances influenced by wing tip vortex were also done at low Reynolds numbers in order to further study on the roughness sensitivity of the scaled model blades under the effects of blade tip vortex. Based on the above experiments, the results about the pressure lift and drag coefficients of the rough and clean airfoils under the effects of wing tip vortex, the changes of vortex core position and vorticity with the angle of attack and airfoil surface status were obtained at different Reynolds numbers.
     Finally, the correction for the aerodynamic performances of scaled models was investigated. It showed that the result of Prandtl tip loss correction didn't well agree with the2D airfoil data tested in wind tunnel under the attached flow condition at low Reynolds numbers. It also showed that there were great differences between the3D data corrected by existing3D correction methods based on2D airfoil data tested in wind tunnel and the3D CFD results. Although Du and Selig method had a least error among those methods, it needs to be further improved for its application. On the other hand, the correction for the flow similarity of scaled models by correcting inflow velocity was also investigated. Their stream tubes, stream lines and velocity distributions were not similar because of their different flow losses in flow fields, when the flow rates were similar between prototype and its scaled models. Therefore, the flow rate and flow loss should be two factors of the correction for their flow similarity.
引文
[1]GWEC. Global Wind Report:Annual market update 2011 [R]. Global Wind Energy Council, 2011:10-15,33-35.
    [2]王仲颖,时璟丽,赵勇强,等.中国风电发展线路图2050[R].国家发展和改革委员会能源研究所,2011:15,19-20.
    [3]李俊峰,等.风光无限:中国风电发展报告2011[M].北京:中国环境科学出版社,2011.
    [4]贺德馨等.风工程与工业空气动力学[M].北京:国防工业出版社,2006.
    [5]Burton T, Sharpe D, Jenkins N, et al. Wind energy handbook[M], Wiley, New York,2001.
    [6]刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报,2005,12(6):28-32.
    [7]黄知龙,刘沛清,赵万里.某兆瓦级风力机叶片气动设计和性能预估[J].电网与清洁能源,2010,1(26):68-72.
    [8]刘强,杨科,黄宸武,等.5MW大型风力机气动特性计算及分析[J].工程热物理学报,2012,33(7):1509-1513.
    [9]Leishman J. Challenges in modelling the unsteady aerodynamics of wind turbines [J]. Wind energy,2002,5(2-3):85-132.
    [10]Jimenez A, Crespo A, Migoya E, et al. Advances in large-eddy simulation of a wind turbine wake[C]//Journal of Physics:Conference Series,2007,75:012041.
    [11]张磊.风力机钝尾缘叶片及其气动性能改进研究[D].北京:中国科学院研究生院,2011.
    [12]Chattot J J. Effects of blade tip modifications on wind turbine performance using vortex model [J]. Computers & Fluids,2009,38(7):1405-1410.
    [13]Hansen M O L著,肖劲松译.风力机空气动力学[M].第2版,北京:中国电力出版社,2009.
    [14]刘洋,李宇红,蒋洪德.基于速度势面元法的风力机风轮三维气动性能预估[J].清华大学学报(自然科学版).2011,51(12):1860-1864,1869.
    [15]Tony Burton等著,武鑫等译.风能技术[M].北京:科学出版社,2007.
    [16]Afjeh A, Keith Jr T. A vortex lifting line method for the analysis of horizontal axis wind turbines [J]. Journal of solar energy engineering,1986,108:303.
    [17]Simoes F, Graham J. A free vortex model of the wake of a horizontal axis wind turbine[C]//Proceedings of 12th British Wind Energy Association Conference,1990:161-165.
    [18]Coton F N, Wang T, Galbraith R A McD. An examination of key aerodynamic modelling issues raised by the NREL blind comparison [J]. Wind Energy,2002,5(2-3):199-212.
    [19]Mikkelsen R. Actuator disc methods applied to wind turbines[D]. Denmark:Technical University of Denmark,2003.
    [20]Ivanell S, Sorensen J, Mikkelsen R, et al. Numerical analysis of the tip and root vortex position in the wake of a wind turbine[C]//Journal of Physics:Conference Series,2007, 75:012035.
    [21]Shen W, Sorensen J, Zhang J. Actuator surface model for wind turbine flow computations[C]//European Wind Energy Conference,2007.
    [22]Simms D, Schreck S, Hand M, et al. NREL Unsteady aerodynamics experiment in the NASA-Ames wind tunnel:a comparison of predictions to measurements [R]. NREL/TP-500-29494, Golden, Colorado:NREL,2001.
    [23]Kufeld R M, Duque E P N. Wind tunnel measurements of full scale horizontal axis wind turbine aerodynamics[C]//American Helicopter Society Aeromechanics Specialists'Meeting, Georgia Institute of Technology, Atlanta, GA,2000.
    [24]Schreck S. The NREL full-scale wind tunnel experiment [J]. Wind Energy,2002,5:77-84.
    [25]范洁川.世界风洞[M].北京:航空工业出版,1992.
    [26]Hand M M, Simms D A, Fingersh L J, et al. Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns [R]. Technical Report NREL/TP-500-29955, Golden, Colorado:NREL,2001.
    [27]Schepers J G EU projects in German Dutch wind tunnel, DNW[C]//Annual IE A symposium on the aerodynamics of wind turbines, NREL, USA,2000. (ECN-RX--01-006)
    [28]Schepers J G, Snel H. Model experiments in controlled conditions [R]. ECN-E--07-042, 2007.
    [29]Goran Ronsten. Geometry and installation in wind tunnels of a STORK5.0 WPX wind turbine blade equipped with pressure Taps[R]. Technical Report, FFAP-A1006.
    [30]中华人民共和国国家质量监督检验检疫总局.GB/T 19068.3-2003.离网型风力发电机组第3部分:风洞试验方法[S].北京:中国标准出版社,2003.
    [31]中国人民解放军总装备部.GJB 5817-2006.小型风力发电机风洞测试要求[S].[S.1.]:2006.
    [32]邱绪光著.实用相似理论[M].北京:北京航空学院出版,1988.
    [33]Fourier J B J. Analytic theory of heat[M]. New York:Dover Publications, Inc.,1955. [34] Rott N. Lord Rayleign and hydrodynamic similarity[J]. Phys. Fluids,1992,4(12):2560-2595.
    [35]Reynolds O. An experimental investigation of the circumstances which determine whether the motion of water in parallel channel shall be direct or sinuous and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc.,1883, A174:935 (Mechanical and Physical Subjects. 2228).
    [36]Buckingham E. On physically similar systems:illustrations of the use of dimensional equations [J]. Physical Review,1914,4(4):345-376.
    [37]Bridgman P W. Dimensional analysis[M]. New Haven:Yale University Press,1922.
    [38]谈庆明.量纲分析[M].合肥:中国科学技术出版社,2005.
    [39]清华大学热能工程系.流体力学(上册)[M].[S.1.]:(校内教材).
    [40]仲培泳.火箭助推发射飞机模型设计方法研究[J].南京航空航天大学学报,1994,26(5):686-691.
    [41]蔡国飙,孙冰,祖国君.固体火箭发动机动力相似准则研究[J].固体火箭技术,1997,20(1):15-20.
    [42]陈国华.相似理论在机床运动平稳性分析中的应用与研究[J].机床与液压,2005,(3):81-83,
    [43]肖亮,王中原,周卫平.外弹道相似理论应用研究[J].弹道学报,2009,21(2):4346.
    [44]张效慈.水下爆炸试验相似准则[J].船舶力学,2007,11(1):108-118.
    [45]钱学森著,徐华舫译.气体动力学诸方程[M].北京:国防工业出版社,1966.
    [46]范忠瑶.风力机定常与非定常气动问题的数值模拟[D].北京:华北电力大学,2011.
    [47]刘磊.风力机叶片非定常气动特性研究[D].北京:中国科学院研究生院,2012.
    [48]Chassapoyannis P. I., Rawlinson-Smith R., Voutsinas S. G Validation study of a wide range of aerodynamic models [C]//European Wind Energy Association Conference, Thessaloniki, Greece, EWEC,1994.
    [49]Tangier J. L. The nebulous art of using wind-tunnel airfoil data for predicting rotor performance[R]. NREL/CP-500-31243, Golden, Colorado:NREL,2002.
    [50]沈昕.水平轴风力机气动性能预测[D].上海:上海交通大学,2007.
    [51]Gupta S., Leishman J. G. Comparison of momentum and vortex methods for the aerodynamic analysis of wind turbines[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, Navada,USA,2005.
    [52]Miller R. H. The aerodynamics and dynamic analysis of horizontal-axis wind turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics,1983,15:329-340.
    [53]周文平.时间步进自由尾迹方法建模及水平轴风力机气动性能分析[D].重庆:重庆大学,2011.
    [54]仇永兴,康顺.基于面元法的水平轴风力机数值模拟[J].工程热物理学报,2012,33(2):228-231.
    [55]van Bussel G J W, van Holten T, van Kuik G A M. Aerodynamic research on tipvane wind turbines[C]//AGARD Conference Proceedings. U.K.,1982.
    [56]van Bussel G. The aerodynamics of horizontal axis wind turbine rotors explored with asymptotic expansion methods[J].[S.I.]:1995.
    [57]竺晓程,沈昕,杜朝辉.带失速延迟模型的改进型升力线法预测风力机性能[J].太阳能学报,2007,28(5):544-548.
    [58]Dumitrescu H, Cardo V. Predictions of unsteady HAWT aerodynamics by lifting line theory[J]. Mathematical and Computer Modelling,2001,33(4-5):469-481.
    [59]Serensen J N. VISCWIND:Viscous effects on wind turbine blades[M]. ET-AFM-9902, Department of Energy Engineering, Technical University of Denmark,1999.
    [60]Chaviaropoulos P K, Nikolaou IG, Aggelis K, et al. Viscous and aeroelastic effects on wind turbine blades:the viscel project[C]//European Wind Energy Conference, Copenhagen, Denmark, 2001.
    [61]Kang S, Hirsch C. Features of the 3D viscous flow around wind turbine blades based on numerical solutions[C]//European Wind Energy Conference, Copenhagen, Denmark,2001.
    [62]Johansen J, Sorensen N N, Reck M, et al. KNOW-BLADE task-3.3 report:rotor blade computations with 3D vortex generators[R]. Riso-R-1486(EN),2005.
    [63]Sorensen N N, Johansen J, Conway S, et al. KNOW-BLADE task-3.2 report:tip shape study[R]. Riso-R-1495(EN),2005.
    [64]Politis E S, Nikolaou I G, Chaviaropoulos P K, et al. KNOW-BLADE task-4 report: Navier-Stokes aeroelasticity[R]. Riso-R-1492(EN),2005.
    [65]Johansen J, Sorensen N N, Zahle F, et al. KNOW-BLADE task-2 report:aerodynamic accessories[R], Riso-R-1482(EN),2004.
    [66]Sorensen N N, Johansen J, Conway S.CFD computations of wind turbine blade loads during standstill operation KNOW-BLADE, task 3.1 report[R]. Riso-R-1465(EN),2004.
    [67]雷延生,周正贵.水平轴风力机气动性能的大涡模拟研究[J].能源研究与利用,2008,(5):15-18.
    [68]Schmitz S, Chattot J J. Characterization of three-dimensional effects for the rotating and parked NREL phase VI wind turbine[J]. Journal of Solar Energy Engineering,2006,128: 445-454.
    [69]Xu G, Sankar L N. Computational study of horizontal axis wind turbines[R]. AIAA 99-0042, 1999.
    [70]Xu G Computational studies of horizontal axis wind turbines[D]. Georgia, USA:Georgia Institute of Technology,2001.
    [71]Sorensen J. N., Shen WenZhong. Numerical modeling of wind turbine wakes[J]. Journal of Fluids Engineering,2002,124(2):393-400.
    [72]Sorensen N N. CFD modelling of laminar-turbulent transition for airfoils and rotors using the y-Ree Model[J]. Wind Energy,2009,12:715-733.
    [73]Sorensen N N, Bechmann A, Zahle F.3D CFD computations of transitional flows using DES and a correlation based transition model[J]. Wind Energy,2010,14(1):77-90.
    [74]Lynch C E. Advanced CFD methods for wind turbine analysis[D]. Georgia, USA:Georgia Institute of Technology,2011.
    [75]汪仲夏.风电叶片设计中降阶模型的研究[D].北京:中国科学院研究生院,2011.
    [76]Cho U, Wood K L, Crawford R H. Novel empirical similitude method for the reliable product test with rapid prototypes[C]//Proceedings of the 1998 ASME DETC, Atlanta, GA, 1998.
    [77]Cho U. Novel empirical similarity method for rapid product testing and development[D]. Austin, USA:University of Texas at Austin,1999.
    [78]Wood J J, Wood K L, Troxell W O. Empirical analysis using advanced similarity methods[C]//Proceedings of ASME 2002 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Canada,2002. (DETC2002/DAC-34082)
    [79]Tadepalli S, Wood K L. Empirical similarity analysis using adaptive trigonometric functions[C]//Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego, California, USA,2009. (DETC09/DAC-87488)
    [80]Sardar A M. Centrifugal fans:similarty, scaling law, and fan performance[D]. Buffalo, USA: The state University of New York,2001.
    [81]Gross A, Pearman C, Kremer R, et al.1/5 Scale Model of Aeromot 200S Super Ximango for Scaled Flight Research[C]//26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, 2008. (AIAA-2008-6416-202)
    [82]Dhar S. Development and Validation of Small-scale Model to Predict Large Wind Turbine Behavior[D]. Bombay, Indian:Indian Institute of Technology,2006.
    [83]Suryanarayanan S, Dixit A. A procedure for the development of control-oriented linear models for horizontal-axis large wind turbines[J]. Journal of Dynamic Systems, Measurement, and Control,2007,129:469-479.
    [84]Park Y M, Chang B H, Cho T H. Numerical simulation of wind turbine scale effects by Using CFD[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA,2007.
    [85]陈荣盛,张礼达,任腊春.基于相似理论的风力机力特性分析[J].水力发电,2008,34(6):92-94.
    [86]郭辉,岳良明,王海文.1.5MW水平轴风力机风轮气动性能风洞试验[C]//第八界全国风能应用技术年会,无锡,2011.
    [87]肖京平,陈立,许波峰,等.1.5MW风力机气动性能研究[J].空气动力学学报,2011,9(4):529-534.
    [88]Cho T, Kim C. Wind tunnel test results for a 2/4.5 scale MEXICO rotor [J]. Renewable Energy,2011,42:152-156.
    [89]Schepers J G, Boorsma K, Bon A, et al. Results from Mexnext:analysis of detailed aerodynamic measurements on a 4.5 m diameter rotor placed in the large German Dutch wind tunnel DNW [R]. ECN-M-11-034, Energy Research Center of the Netherlands,2011.
    [90][苏]JI.H.谢多夫.力学中的相似方法与量纲理论[M].北京:科学出版社,1982.
    [91]董曾南,章梓雄.非粘性流体力学[M].北京:清华大学出版社,2003.
    [92]范忠瑶,康顺,王建录.NREL Phase VI叶片气动性能数值分析[J].工程热物理学报,2009,30(10):1665-1668.
    [93]Sorensen N N, Michelsen JA, Schreck S. Navier-Stokes Predictions of the NREL Phase VI Rotor in the NASAAmes 80 ftx120 ft Wind Tunnel[J]. Wind Energy,2002,5:151-69.
    [94]Benjanirat S, Sankar LN, XU G. Evaluation of Turbulence Models for the Prediction of Wind Turbine Aerodynamics [J]. AIAA-2003-0517.
    [95]Schreck S J. Rotationally Augmented Flow Structures and Time Varying Loads on Turbine Blades[C]//Conference Paper NREL/CP-500-40982, NREL,2007.
    [96]Snel H, Houwink R, Bosschers J, et al. Sectional prediction of lift coefficients on rotating wind turbine blades in stall[R]. ECN-C-93-052,1993.
    [97]Schreck S, Robinson M. Rotational augmentation of horizontal axis wind turbine blade aerodynamic response[J]. AIAA-2002-0029,2002.
    [98]Du Z, Selig M. A 3-D stall-delay model for horizontal axis wind turbine performance prediction[C]//Proceedings of the 1998 ASME Wind Energy Symposium, Reno, NV.,1998.
    [99]Spalart P R,Allmaras S R. A one-equation turbulence model for aerodynamic flows[R]. AIAA-92-0439,1992.
    [100]Fluent User Manual[M]. Fluent Inc,2003.
    [101]隋建华.水平轴风力机数值模拟研究[D].哈尔滨:哈尔滨工程大学,2009.
    [102]刘磊,徐建中.湍流模型对风力机叶片气动性能预估的影响[J].工程热物理学报,2009,30(7):1136-1139.
    [103]范忠瑶,康顺,王建录.风力机叶片三维数值计算方法确认研究[J].太阳能学报,2010,(3):279-285.
    [104]王琦峰,陈伯君,安亦然.大型风力机三维空气动力学数值模拟[J].空气动力学学报,2011,29(6):810-814.
    [105]Bak C, Johansen J, Andersen P B. Three-dimensional corrections of airfoil characteristics based on pressure distributions [C]//European Wind Energy Conference & Exhibition (EWEC), Athens, Greece,2006.
    [106]Bruining A, van Bussel G J W, Corten C P,et al. Pressure distributions from a wind turbine blade; field measurements compared to 2-dimensional wind tunnel data[R]. DUT-IvW-93065R, Delft University of Technology,1993.
    [107]Johansen J, Sorensen N N. Aerofoil characteristics from 3D CFD rotor computations [J]. Wind Energy,2004,7:283-294.
    [108]Shen W Z, Hansen M O L, S(?)rensen J N. Determination of the angle of attack on rotor blades [J]. Wind Energy,2009,12:91-98.
    [109]Schepers J G, Brand A J, Bruining A, et al. Final report of IE A Annex ⅩⅥ:Field rotor aerodynamics[R]. ECN-C-97-027,1997.
    [110]Shipley D E, Miller M S, Robinson M C, et al. Techniques for the determination of local dynamic pressure and angle of attack on a horizontal axis wind turbine[R]. NREL/TP-442-7393, Golden, Colorado,1995.
    [111]Molly J P. Wind Energy--Theory, Application, Measuring[M].2nd ed. Karlsrube:Verlag C F M,1996.
    [112]Corten G P, Veldkamp H F. Insects can halve wind-turbine power[J]. Nature,2001,412: 42-43.
    [113]Corten G P, Veldkamp H F. Insects cause double stall[C]//European Wind Energy Conference, Copenhagen, Denmark,2001.
    [114]Khalfallaha M G, Koliub A M. Effect of dust on the performance of wind turbines[J]. Desalination,2007,209:209-220.
    [115]Dalili N,Edrisy A,Carriveau R. A review of surface engineering issues critical to wind turbine performance[J]. Renewable and Sustainable Energy Rev,2009,13:428-438.
    [116]van Rooij R P J O M, Timmer W A. Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils [J]. Journal of Solar Energy Engineering.2003,125(4):468-478.
    [117]Ramsay R R, Hoffmann M J, Gregorek G M. Effects of Grit Roughness and Pitch Oscillations on the S809 Airfoil[R]. Technical Report NREL/TP-442-7817, National Renewable Energy Laboratory, Golden,1995.
    [118]Dahl K S, Fuglsang P. Design of The Wind Turbine Airfoil Family RIS(?)-A-ⅩⅩ[R]. Ris(?)-R-1024(EN), Ris(?) National Laboratory, Roskilde,1998.
    [119]刘吉辉.水平轴变速变桨风力发电机的控制系统[J].装备机械,2010,4:65-68.
    [120]黎明.风力发电机控制策略研究与应用[D].重庆:重庆大学,2008.
    [121]杨科,王会社,徐建中,等.基于CFD技术的高性能风力机翼型最优化设计方法[J].工程热物理学报,2007,20(4):586-588.
    [122]李宏利.水平轴风力机专用翼型族的设计及其气动性能研究[D].北京:中国科学院 研究生院,2009.
    [123]白井艳.水平轴风力机专用翼型族试验分析及优化设计[D].北京:中国科学院研究生院,2010.
    [124]Bergey K. The lanchester-betz limit[J]. Journal of Energy.1979,3:382-384.
    [125]Glauert H. The analysis of experimental results in the windmill brake and vortex ring states of an airscrew[J].[S.I.]:1926.
    [126]陈坤,贺德馨,戴有羽,等.1.5MW/40.3m叶片气动外形优化设计[C]//第七届全国风能应用技术年会暨青海省等高原地区风能开发利用研讨会,西宁,青海,2010.
    [127]于寅.高等工程数学[M].武汉:华中理工大学出版社,1995.
    [128]Bjork A. Coordinates and Calculations for the FFA-W1-xxx, FFA-W2-xxx, FFA-W3-xxx Series of Airfoils for HAWTS [R]. FFATN1990-15, Stockholm, Sweden,1990.
    [129]西北工业大学翼型研究中心.风力机先进翼型族风洞试验报告[R].[S.I.]:2009.
    [130]胡凤兰.互换性与技术测量基础[M].北京:高等教出版社,2005.
    [131]Butterfield C P, Musial W P, Simms D A. Combined experiment phase I final report[R]. NREL/TP-257-4655, Golden, Colorado:NREL,1992.
    [132]Rae W H, Pope A. Low-speed wind tunnel testing[M]. New York:John Wiley & Sons, Inc., 1984.
    [133]王铁城,吴志成,肖人熙,等.空气动力学实验技术[M].北京:航空工业出版社,1995.
    [134]Snel H, Houwink R, Bosschers J, et al. Sectional prediction of lift coefficients on rotating wind turbine blades in stall[R]. ECN-C-93-052,1994.
    [135]Snel H, Houwink R, van Bussel G J W, et al. Sectional prediction of 3D effects for stalled flow on rotating blades and comparison with measurement[C]//Proc. European Community Wind Energy Conference, Lubeck-Travemunde, Germany,1993.
    [136]Lindenburg C. Modelling of rotational augmentation based on engineering considerations and measurements[C]//European Wind Energy Conference, London, UK,2004.
    [137]Du Z, Selig M S. A 3-D stall-delay model for horizontal axis wind turbine performance prediction[C]//36t AIAA Aerospace Sciences Meeting and Exhibit,1998 ASME Wind Energy Symposium, Reno, NV, USA,1998.
    [138]Chaviaropoulos P K, Hansen M O L. Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier Stokes solver[J]. J. Fluids Engineering, 2000,122:330-336.
    [139]Jung S N, No T S, Ryu K W. Aerodynamic performance prediction of a 30 kW counter-rotating wind turbine system[J]. Renewable Energy,2005,30:631-644.
    [140]Neff D E, Meroney R N. Mean wind and turbulence characteristics due to induction effects near wind turbine rotors[J]. J Wind Eng Ind Aerodyn 1997,69-71:413-22.
    [141]Chen T Y, Liou L R. Blockage corrections in wind tunnel tests of small horizontal-axis wind turbines [J]. Experimental Thermal and Fluid Science,2011,35(3):565-569.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700