用户名: 密码: 验证码:
泸州老窖大曲的质量、微生物与香气成分关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用大曲酿造白酒是我国白酒酿造的关键和区别于世界上其它知名蒸馏酒的重要技术特征。大曲是以小麦为主的谷物原料通过生料发酵而得到,大曲是白酒酿造过程中重要的微生物、酶类、香气物质和香气物质前体物质的主要来源。大曲的质量直接关系到白酒的出酒率和品质。本文选取泸州老窖生产的中、高温大曲为研究对象,对其中的香气成分、理化指标和酶进行了分析鉴定;并从大曲中筛选能够产生香气的微生物;研究了泸州老窖中、高温大曲发酵过程中微生物种群变化与相应香气形成的关系;同时初步研究了大曲在发酵过程中的安全性问题,主要的研究内容如下:
     使用一种简便、快速、灵敏的顶空固相微萃取-气相色谱-质谱联用法(GC-MS)测定曲样中的挥发性化合物,并配合电子鼻(EN)技术,比较了仪器分析与感官判别大曲质量的关系。顶空固相微萃取-气相色谱-质谱联用法(GC-MS)能将大曲样品中的醇类、吡嗪、醛类、酮类和酯类等挥发性物质较好地萃取出来,对大曲样品中具有代表性的挥发性成分如酯类、醇类和吡嗪类等测定的结果重复性良好,同时具有较高的加标回收率。利用GC-MS对不同的大曲样品进行分析,共检测出挥发性化合物75种,包括的挥发性风味物质分别有:醇类物质、酸类物质、酯类物质、醛类物质、酮类物质、芳香族化合物、酚类物质、呋喃类物质和含氮类化合物;采用主成分分析方法分析10种大曲中的挥发性化合物,十种大曲能够被区分为三大类,发酵温度不高于60℃的中温大曲的优级大曲和普级大曲在主成分分析图上距离较为接近,而高温大曲的优级大曲和普级大曲能够明显分成两类;采用电子鼻(EN)技术分析大曲样品,不同大曲样品对电子鼻有一定的响应,从雷达图可以发现,中温优级大曲、中温普级大曲和高温普级大曲的雷达图趋势较为相似,而高温优级大曲与上述三种大曲趋势较为不同,与其它三种大曲的气味存在较大的差异;依据气相-嗅闻法(GC-O)的频率检测法(DF)和香气提取稀释分析法(AEDA)两种方法考察了中温优级大曲和高温优级大曲,依据DF值和FD值的大小判断香气物质对大曲香气的贡献程度,结果表明:中温优级大曲中的特征香气成分可能主要是由己醛、未知化合物(no.u2)、苯乙醛和4-乙基愈创木酚等化合物组成;高温优级大曲中的特征香气可能主要是由己醛、2,6-二甲基吡嗪、壬醛、1-辛烯-3-醇、苯乙醛、4-乙基愈创木酚和未知化合物(no.u2、u3、u5和u7)组成;其它挥发性化合物可能作为背景香气物质。
     从感官特征的角度,分析了不同等级的大曲在微生物组成、酶、理化成分等方面的区别,并分析了风味物质形成的外部条件。结果表明,优级大曲的“穿衣”情况要比普级大曲好且均匀,其微生物数量多,尤其是霉菌数量更为明显;优级大曲中主要酶的活力均高于普级大曲,优级大曲的酯化力高于普级大曲,而酯分解率低于普级大曲,有利于促进风味物质的形成,优级大曲的发酵力和游离氨基酸总量均高于普级大曲。对大曲在发酵期间的各项指标,包括微生物数量、理化指标、酶、风味变化和感官变化进行跟踪测定发现:随着发酵时间的延长,中、高温大曲中的水分含量和水活度都呈现下降的趋势;温度表现为先升后降;大曲中微生物的数量和种类与曲醅的温度、水分含量、水活度和pH等多种因素息息相关,中温大曲的微生物数量在发酵起始均有小幅度增加,但是随温度的增加和水活度的降低,大曲中的一些不耐热的微生物大量死亡;而高温大曲由于其特殊的工艺条件,大曲维持在一个高温高湿的环境,耐热的芽孢杆菌能够正常生长代谢;两类大曲在发酵过程中均出现一个产酸高峰期,随着微生物数量的递减,酸度也减低。使用顶空固相微萃取-质谱联用技术考察了中温大曲在发酵和贮存培菌期间的风味物质的变化,共检测出46种化合物,在大曲发酵的第5天多数风味物质含量达到最大值,而在大曲发酵的第9天含氮类化合物含量才达到最大,在大曲发酵30天时挥发性风味物质含量趋于稳定,这为优化大曲生产工艺提供了理论依据。对大曲在发酵期间的香气物质进行定量描述和分析,大曲的果香、花香和辛香等香气物质在发酵的前5天快速增加,随着发酵的进行这些香气物质在第5天后开始下降,香气变化的规律与利用气质联用方法检测到的化合物含量变化规律较为相似。
     对大曲发酵和贮存各个时期的微生物进行了分离、纯化、筛选和鉴定,对产香微生物模拟发酵产生香气成分的机理进行了探索。利用多种培养基进行微生物分离,得到霉菌93株,酵母菌112株,嗜热芽孢杆菌45株。通过初筛和复筛从中温大曲和高温大曲中分别筛选到能产香的酵母菌ZY-1和GY-3和产香芽孢杆菌ZL-1和GL-4;利用分子生物学和生理生化鉴定方法确定,ZY-1属于东方伊萨酵母,GY-3属于假丝酵母属的一种,ZL-1是枯草芽孢杆菌,GL-4是地衣芽孢杆菌。对ZL-1和GL-4菌株产香条件进行优化,考察了美拉德模式反应,ZL-1和GL-4均能促进培养基褐变物质的生成,采用小麦浸出液在37℃~55℃(37℃、45℃和55℃各2天)发酵的第6天褐变程度最高;对发酵液在发酵过程中蛋白酶活力、游离氨基酸和还原糖含量进行了跟踪测定,考察了除菌灭酶对发酵液香气的影响。利用气质联用技术测定ZL-1和GL-4发酵液,发现2,3-丁二酮、三甲基吡嗪、四甲基吡嗪和愈创木酚可能与大曲香气成分的形成有一定的关系。利用小麦浸出液培养ZY-1和GY-3两种酵母,酵母在发酵过程中主要生成一些酯类、醇类和酮类等挥发性风味物质,可见产香酵母是大曲中风味物质形成的重要原因。
     进行了大曲单独酿酒实验和大曲安全性研究,发现大曲质量与白酒产量、品质和风味有密切联系。两种温度类型大曲的优级大曲发酵产酒、总酸和总酯量均高于普级大曲,所酿白酒的品质在很大程度由大曲质量决定,四类大曲发酵所产白酒中的固形物及总醛含量差异较小,但酒精的含量却差异显著,同时在氨基酸总量也不同,高温优级大曲酒的挥发性化合物总量明显高于中温优级大曲酒,但是挥发性风味物质的总量上相差不是太大,这与检测出的高温优级大曲和中温优级大曲中的挥发性风味成分数量上的趋势一致,安琪高活性酿酒酵母组挥发性风味组分的总量与大曲酒相差不大,但是在挥发性化合物数目上相差较多,这也从一个侧面反映出,大曲在提高大曲酒风味成分上的作用。利用HPLC方法测定了大曲中4种具有代表性的真菌毒素,该方法具有很好的精密度和回收率,大曲中检测到的4种真菌毒素含量均未超过国家或国际上通用的限量标准。由于白酒酿造的后续工艺,大曲中毒素被最终带入到白酒成品的可能性极小。
In China, using Daqu to initiate the solid fermentations for the production of Chinese liquor is the key technology which is a major difference from the other famous distilled spirits in the world. Daqu is a type of grain Qu, which is mainly made from raw wheat and by natural inoculation. Daqu is the major source of microorganisms, enzymes, flavour compounds and their precursors in Chinese liquor process. Its quality is directly related to the yield and the quality of Chinese liquor. Medium and high temperature Daqu which were produced by Luzhou Laojiao Company located in Luzhou China was studied here. Characteristic flavours, physicochemical indexes and enzymes of medium and high temperature Daqu were analyzed. Aroma-producing microorganisms were screened from Daqu and the relationship between the changes of microbial population and the aroma formation was studied. This article also preliminary study the safety problems of Daqu. The main research contents are as follows:
     Volatile compounds in Daqu samples were extracted by headspace solid phase microextraction and analyzed by gas chromatography-mass spectrum (GC-MS). Comparing volatiles with the quality of Daqu by sensory analysis, electronic noses (EN) method was adopted to analyse Daqu with GC-MS. The method is quick, simple and less sample consumption. Most volatiles of Daqu can be extracted by this method, and the repeatability and recovery of some compounds were satisfactory. A total of 75 volatile compounds were characterized by GC-MS, including alcohols, esters, acids, aromatic compounds, phenols, furans, nitrogen-containing compounds, aldehydes and ketones. By a principal component analysis (PCA), the ten Daqu samples could be classified into three groups according to their origins, and in particular, the production technologies. In this case, Daqu samples fermented by middle temperature procedure formed a clear group; Daqu samples fermented by high temperature procedure formed two different groups. Daqu also be analyzed by electronic noses (EN) method, different samples of daqu has certain response to electronic nose. As can be seen from the radar map, the trend of common and high quality of medium temperature Daqu and common quality of high temperature Daqu were similar, but the trend of high quality of high temperature Daqu was different. Odorants of Daqu extracted by solvent-assisted flavour evaporation (SAFE) were investigated by gas chromatography-olfactometry (GC-O) system with two olfactometric methods: detection frequency (DF) method and aroma extract dilution analysis (AEDA). Based on the results of the two olfactometric method (FD and DF), the aroma of medium temperature Daqu could be primarily attributed to hexanal, unknown (no.u2), phenylacetaldehyde and 4-ethyl guaiacol; the aroma of high temperature Daqu could be primarily attributed to hexanal, 2,6-dimethylpyrazine, nonanal, 1-octene-3-ol, phenylacetaldehyde, 4-ethyl guaiacol and unknown (no.u2, u3, u5 and u7).
     Based on sensory properties, the relationship of microorganisms, physicochemical indexes and enzymes of different quality of Daqu were analyzed. The results show that the numbers of microorganisms in good clothing Daqu were more than the numbers of microorganisms in poor clothing Daqu, especially the number of moulds. The activities of most enzymes and esterifying capability in commom quality Daqu were lower than those in high quality Daqu, but the esterifying power of breaking was lower in high quality Daqu than commom quality Daqu, which would be good for producing volatile compounds. Besides, fermentation ability and total free amino acids of high quality Daqu was higher than that of commom quality Daqu too. The changes of microorganisms, physicochemical indexes, enzymes, volatile compounds and sensory during Daqu fermentation and storage were studied. The water content and humidity decreased gradually during fermentation and then remained stable during storage and the temperature rose rapidly as fermentation progressed during the first 3 days and peaked on the seventh day. The evolutions of physicochemical indexes, enzymes, flavour and sensory was related to microbial growth. The total microbial population including bacillus, yeast and mould proliferated rapidly at the preliminary stage of fermentation. With the rising of temperature and declining of water content and humidity, the environment was no longer suitable for the growth of microorganisms in medium temperature Daqu. Bacillus species have a better ability than other microorganism to survive under high water content and high temperature in high temperature Daqu. There were two peak hours of producing acidity in Daqu, and the acidity decreased as the the numbers of microorganisms decreased. A total of 46 volatile compounds were identified and measured in the Daqu samples using HS-SPME-GC-MS. The sum of the nitrogen-containing compounds showed a slowly increase from the first day to the third day and followed by a sharp increase from the third day to the ninth day of fermentation, and then decreased gradually. The evolution of each group of volatile compounds during fermentation and storage of Daqu had a relationship with the change of physical index and microflora and determined the aroma intensity of Daqu. This made it possible to optimize the productive technology of Daqu on the basis of the contents of volatile compounds. The aroma intensity of fruity, flowery and clove increased on the first five days and then decreased gradually. The result was in line with the change of aroma content and showed that fermentation period had significant impacts on the aroma score.
     A total of 93 moulds, 112 yeasts and 45 bacilli were screened and identified using different culture during during Daqu fermentation and storage. After primary screening and secondary screening, ZY-1 and GY-3 were identified as Issatchenkia orientalis and Candida xylopsoci through ITS sequence analysis, ZL-1 and GL-4 were identified as Bacillus subtilis and Bacillus licheniformis through 16SrDNA sequence analysis. The aroma-producing conditions of ZL-1 and GL-4 were optimized. ZL-1 and GL-4 have a great influence in promoting brown of medium through model Maillard reaction, and the brown reached a maximum on 6th day. The changes of total free amino acid, the activity of proteases and reducing sugar during fermentation were studied. Compared with the fermentation products after sterilization and inactivation of enzyme by high temperature, the fermentation products after sterilization by membrane filtration smelled stronger sauce aroma. The volatile compounds of ZL-1 and GL-4 fermentation product were analyzed by GC-MS. 2,3-butanedione, 2,3,5-trimethyl pyrazine, 2,3,5,6-Tetramethylpyrazine and guaiacol could have a relationship with characteristic flavour of Daqu. The volatile compounds of ZY-1 and GY-3 fermentation product were esters, alcohols and ketones which could have a relationship with aroma-producing of Daqu.
     Brewing experiment was carried out using different quality of Daqu. The results indicated that the total content of esters, free amino acids and acids in liquor produced by high quality Daqu were better than those in liquor produced by common quality Daqu. The total aldehydes and solid content had little difference in the different quality Daqu, but the alcohol content had features obviously difference from each other. The volatile compounds of high quality Daqu was higher than those of common quality Daqu. Numbers of the volatile compounds producing by angel yeast were less than those producing by Daqu, which reflects the importance of Daqu in producing aroma during liquor production. Four typical toxin producing by moulds were tested by HPLC which had a satisfactory repeatability and recovery. The content of four typical toxin producing by moulds did not exceed national or international standard. Because of the complexity of the special traditional techniques of Chinese liquor, there is little chance to bring toxin producing by moulds to Chinese liquor.
引文
[1]王文芹,孔玉涵.国内外发酵食品的发展现状[J].发酵科技通讯. 2007, 36(2): 55-56.
    [2]沈怡方.白酒生产技术全书[M].中国轻工业出版社, 1998.
    [3]李大和,黄圣明.浓香型曲酒生产技术[M].轻工业出版社, 1991.
    [4]任红波.白酒中香味物质的顶空—气相色谱/质谱联用分析[J].酿酒. 2008, 35(5): 50-51.
    [5]庄名扬.中国白酒香味物质形成机理及酿酒工艺的调控[J].四川食品与发酵. 2007, 136(2): 1-6.
    [6]吴天祥,刘春朝.贵州12种代表性白酒特征性香气成分的研究[J].酿酒科技. 2005(9): 31-35.
    [7]刘玉平,黄明泉,郑福平,等.中国白酒中挥发性成分研究进展[J].食品科学. 2010, 31(21): 437-441.
    [8]黄艳梅,卢建春,李安军,等.采用气相色谱-质谱分析古井贡酒中的风味物质[J].酿酒科技. 2006, 145(7): 91-94.
    [9] Fan W, Xu Y, Zhang Y. Characterization of pyrazines in some Chinese liquors and their approximate concentrations[J]. J Agr Food Chem. 2007, 55(24): 9956-9962.
    [10]吴建峰.中国白酒中健康功能性成分四甲基吡嗪的研究[J].酿酒科技. 2007, 151(1): 117-120.
    [11]金逐山,徐加顺.酱香型酒工艺中糠醛含量分析[J].酿酒. 1993, 20(4): 16-19.
    [12]沈怡方.试论浓香型白酒的流派[J].酿酒科技. 1993, 56(2): 84.
    [13]周恒刚. 4-乙基愈创木酚[J].酿酒. 1989, 16(6): 7-9.
    [14]刘晓光,谢和,屈直.酱香型白酒风味物质的形成与微生物关系的研究现状与进展[J].贵州农业科学. 2007, 35(2): 131-134.
    [15]范文来,徐岩.应用浸入式固相微萃取(DI-SPME)方法检测中国白酒的香味成分[J].酿酒. 2007, 34(1): 18-21.
    [16]李秋喜.汾酒的价值回归之路[J].新食品. 2011, 6(8): 33-35.
    [17]张春辉.应用PCR-DGGE分析高温制曲中细菌群落变化的研究[D].天津科技大学, 2009.
    [18] Zheng X W, Tabrizi M R, Nout M J R, et al. Daqu–A Traditional Chinese Liquor Fermentation Starter[J]. J Inst Brew. 2011, 117(1): 82-90.
    [19]敖宗华,陕小虎,沈才洪,等.国内主要大曲相关标准及研究进展[J].酿酒科技. 2010(2): 104-108.
    [20]李维青.白酒的香气与香型[J].酿酒. 2007, 34(2): 5-7.
    [21]王忠彦,胡永松.大曲生产技术的研究和发展[J].四川食品工业科技. 1994, 13(4): 1-7.
    [22]炊伟强,敖宗华,张春林,等.泸州老窖大曲感官特征与微生物,理化指标和生化性能的关联研究[J].食品与生物技术学报. 2011, 30(5): 761-766.
    [23]崔利,彭追远.高温大曲在酱香型酒酿造中的作用及标准浅说[J].酿酒. 1995(4): 8-13.
    [24]惠丰立,褚学英,冯金荣,等.大曲中可培养霉菌多样性的分子分析[J].食品与生物技术学报. 2007, 26(2): 76-79.
    [25]黄钧,周荣清.酱油曲霉的研究及应用[J].四川制糖发酵. 1992, 19(4): 4-9.
    [26]李新社,陆步诗,包绍阳,等.衡南酒厂与邵阳酒厂大曲的比较研究[J].邵阳学院学报:自然科学版. 2003, 2(5): 86-89.
    [27] Wang C, Shi D, Gong G. Microorganisms in Daqu: a starter culture of Chinese Maotai-flavor liquor[J]. World J Microb Biot. 2008, 24(10): 2183-2190.
    [28]徐军,罗惠波,崔德宝,等.大曲中酵母菌的分离及其鉴定[J].酿酒. 2008, 35(3): 95-97.
    [29]惠丰立,柯涛,褚学英,等.大曲中酵母菌种群结构及多样性分析[J].食品与生物技术学报. 2009, 28(1): 102-106.
    [30]施安辉,张文璞.徐坊大曲的微生物区系及其优势菌的鉴定[J].酿酒科技. 2001, 108(6): 26-28.
    [31]杨代永,范光先,汪地强,等.高温大曲中的微生物研究[J].酿酒科技. 2007(5): 37-38.
    [32]庄名扬,陈星国.美拉德反应与酱香型白酒[J].酿酒. 1999, 26(4): 42-47.
    [33]镇达,郭艺山,陈茂彬.浓香白酒生产中乳酸利用菌的分离鉴定及特性研究[J].酿酒科技. 2009(8): 52-54.
    [34]侯小歌,杜红阳,李学思,等.宋河大曲中醋酸菌的分离鉴定及产酸特性[J].中国酿造. 2011, 229(4): 112-115.
    [35]范文来,徐岩.大曲酶系研究的回顾与展望[J].酿酒. 2000, 138(3): 35-40.
    [36]范文来,徐岩.浓香型大曲水解酶系及测定方法的研究[J].酿酒. 2002, 29(5): 25-31.
    [37] Sharp P J, Kreis M, Shewry P R, et al. Location ofβ-amylase sequences in wheat and its relatives[J]. Theor Appl Genet. 1988, 75(2): 286-290.
    [38]胡承,邬捷锋,沈才洪,等.浓香型(泸型)大曲的研究及其应用[J].酿酒科技. 2004, 121(1): 33-36.
    [39]赖登燡.中国浓香型白酒大曲生物酶功能的研究[J].酿酒. 1999, 133(4): 92-95.
    [40]周恒刚.高温大曲酸性蛋白酶高的原因何在[J].酿酒科技. 1996, 75(3): 14-17.
    [41]庄名扬.再论美拉德反应产物与中国白酒的香和味[J].酿酒科技. 2005, 131(5): 34-38.
    [42]花井四郎.中国の白酒と香气[J].日本酿造协会志. 1994, 89(1): 53-59.
    [43]横山直行.中国の曲微生物相と酵素活性[J].日本酿造协会志. 1994, 89(1): 72-76.
    [44]王忠彦,彭追远.高温大曲微生物区系的初步研究[J].酿酒科技. 1995, 69(3): 66-67.
    [45]唐玉明,陈靖余.泸曲外层和曲心的微生物数量生化性能及酿造效果研究[J].酿酒科技. 1995, 69(3): 73-76.
    [46]李云英,李能树.大曲酒微生物区系的初步研究[J].生物学杂志. 1996, 13(3): 19-21.
    [47]廖建民,任道琼,唐玉明,等.浓香型曲药中酵母菌的初步分类和选育[J].酿酒. 2000, 137(2): 47-48.
    [48]张晶.稻花香酿酒大曲微生物区系解析[D].湖北工业大学, 2011.
    [49]章家恩,蔡燕飞,高爱霞,等.土壤微生物多样性实验研究方法概述[J].土壤. 2004, 36(4): 346-350.
    [50] Zhang W, Qiao Z, Shigematsu T, et al. Analysis of the bacterial community in Zaopei during production of Chinese Luzhou-flavor liquor[J]. J Inst Brew. 2005, 111(2): 215-222.
    [51] Wang H Y, Zhang X J, Zhao L P, et al. Analysis and comparison of the bacterial community in fermented grains during the fermentation for two different styles of Chinese liquor[J]. J Ind Microbiol Biot. 2008, 35(6): 603-609.
    [52] Li X R, Ma E B, Yan L Z, et al. Bacterial and fungal diversity in the traditional Chinese liquor fermentation process[J]. Int J Food Microbiol. 2011, 146: 31-37.
    [53]胡佳,邓斌,张文学,等.浓香型白酒曲药中细菌组成及系统学分析[J].酿酒科技. 2007, 155(5): 17-19.
    [54]罗惠波,李浩,黄治国,等.浓香型大曲微生物群落结构的PCR—SSCP分析条件优化[J].四川理工学院学报:自然科学版. 2009, 22(4): 72-74.
    [55]高亦豹,王海燕,徐岩.利用PCR-DGGE未培养技术对中国白酒高温和中温大曲细菌群落结构的分析[J].微生物学通报. 2010, 37(7): 999-1004.
    [56] Wang H Y, Gao Y B, Fan Q W, et al. Characterization and comparison of microbial community of different typical Chinese liquor Daqus by PCR-DGGE[J]. Lett Appl Microbiol. 2011, 53: 134-140.
    [57]潘勤春,孟镇,钟其顶,等.汾酒大曲细菌群落结构的PCR—DGGE分析[J].酿酒科技. 2011, 204(6): 95-99.
    [58]廖永红,沈晗,石文娟,等.产香酵母碳源利用及发酵产香特性初步研究[J].食品与发酵工业. 2010, 266(2): 1-7.
    [59] Kusumegi K, Baba M, Yoshida H, et al. Breeding of Zygosaccharomyces rouxii producing enhanced aroma components and its application to barley miso fermentation[J]. J Ferment Bioeng. 1997, 84(4): 386-387.
    [60]艾方,胡慧磊,彭丽桃.发酵柑桔汁中产香酵母的筛选及生长特性研究[J].中国酿造. 2010, 217(4): 67-70.
    [61]赵严虎. TH——AADY在杏花村清香型大曲白酒生产中的应用研究[J].酿酒科技. 1998, 86(2): 26-27.
    [62]曹述舜.酱香型酒风味成分的探讨[J].酿酒科技. 1991, 72(4): 47-48.
    [63]王民俊.贵州麸曲酱香酒采用菌种及工艺特点[J].酿酒科技. 1989, 56(3): 14-17.
    [64]庄名扬,王仲文,孙达孟,等.酱香型习酒功能菌的选育及特征组分的研究[J].酿酒科技. 1996, 75(3): 13-16.
    [65]连宾.产香细菌的筛选及应用[J].中国酿造. 1995(2): 32-34.
    [66]连宾.嗜热芽胞杆菌在高温大曲发酵中的作用[J].酿酒科技. 1995, 71(5): 15-16.
    [67]谢和,赵维娜,秦京,等.几株产酱香细菌的分离和鉴定[J].贵州农学院学报. 1992, 11(1): 80-84.
    [68]李贤柏.郎酒高温大曲产酱香细菌的研究[J].重庆师范学院学报(自然科学版). 1997, 14(4): 20-23.
    [69]刘晓光,谢和.产酱香枯草芽孢杆菌质粒与酱香产生关系的探讨[J].中国酿造. 2007, 171(6): 21-24.
    [70]王邦坤.微生物技术在高温大曲中的应用初探[J].食品工业. 1991(3): 14-15.
    [71]赵希玉,赵丹,赵晔.应用纯种微生物提高大曲酱香酒质量工艺试验[J].酿酒. 2002, 29(3): 36-38.
    [72]云敏,邓杰,李佳勇,等.酱香型郎酒酱味来源之分析推测[J].酿酒科技. 2009,175(1): 69-71.
    [73]马荣山,刘婷,郭威.麸曲酱香酒醅中酵母菌的分离、筛选及应用[J].中国酿造. 2008, 178(1): 17-25.
    [74]张荣.产酱香功能细菌的筛选及其特征风味化合物的研究[D].江南大学, 2009.
    [75]郭文杰,卢建春.古井贡酒特征香味成分的研究[J].酿酒科技. 2008, 107(5): 83-85.
    [76]赵东,李扬华,向双全,等.顶空固相微萃取气相色谱质谱法测定曲药中的香味成分[J].酿酒科技. 2006, 143(5): 92-94.
    [77] Fan W, Qian M C. Headspace solid phase microextraction and gas chromatography-olfactometry dilution analysis of young and aged Chinese“Yanghe Daqu”liquors[J]. J Agr Food Chem. 2005, 53(20): 7931-7938.
    [78] Fan W, Qian M C. Identification of aroma compounds in Chinese“Yanghe Daqu”liquor by normal phase chromatography fractionation followed by gas chromatography -olfactometry[J]. Flavour Frag J. 2006, 21(2): 333-342.
    [79] Fan W, Qian M C. Characterization of aroma compounds of Chinese“Wuliangye”and“Jiannanchun”liquors by aroma extract dilution analysis[J]. J Agr Food Chem. 2006, 54(7): 2695-2704.
    [80] Zhu S, Lu X, Ji K, et al. Characterization of flavor compounds in Chinese liquor Moutai by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry[J]. Anal Chim Acta. 2007, 597(2): 340-348.
    [81]范文来,张艳红,徐岩.应用HS—SPME和GC—MS分析白酒大曲中微量挥发性成分[J].酿酒科技. 2007, 162(12): 74-78.
    [82]郭兆阳,高洪波,钟其顶,等.顶空-固相微萃取测定大曲香气组分的条件优化[J].酿酒科技. 2011, 202(4): 99-102.
    [83]许德富,沈才萍,程鹏,等.试论“天下第一曲,原产泸州城”——“久香”牌泸州老窖曲药原产地标记注册通过国家质检总局专家评审组审查[J].酿酒. 2004, 31(1): 18-20.
    [84]许德富,沈才萍,程鹏,等.天下第一曲,原产泸州城[J].酿酒科技. 2004, 122(2): 101-104.
    [85] Plutowska B, Wardencki W. Application of gas chromatography-olfactometry (GC-O) in analysis and quality assessment of alcoholic beverages-A review[J]. Food chem. 2008, 107(1): 449-463.
    [86]王俊,胡桂仙,于勇,等.电子鼻与电子舌在食品检测中的应用研究进展[J].农业工程学报. 2004, 20(2): 292-295.
    [87]柳军.口子窖和剑南春白酒香气物质研究[D].江南大学, 2008.
    [88]严留俊,张艳芳,陶文沂,等.顶空固相微萃取-气相色谱-质谱法快速测定酱油中的挥发性风味成分[J].色谱. 2008, 26(3): 285-291.
    [89] Luo T, Fan W, Xu Y. Characterization of volatile and semi-volatile compounds in chinese rice wines by headspace solid phase microextraction followed by gas chromatography-mass spectrometry[J]. J Inst Brew. 2008, 114(2): 172-179.
    [90] Gao X L, Cui C, Zhao H F, et al. Changes in volatile aroma compounds of traditional Chinese-type soy sauce during moromi fermentation and heat treatment[J]. Food Sci Biotechnol. 2010, 19(4): 889-898.
    [91]田怀香,孙宗宇.电子鼻在金华火腿香精识别中的应用[J].中国调味品. 2008, 357(11): 61-64.
    [92] Popp P, Keil P, Moder M, et al. Application of accelerated solvent extraction followed by gas chromatography, high-performance liquid chromatography and gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons, chlorinated pesticides and polychlorinated dibenzo-p-dioxins and dibenzofurans in solid wastes[J]. J Chromatogr A. 1997, 774(1): 203-211.
    [93] Adams A, Borrelli R C, Fogliano V, et al. Thermal degradation studies of food melanoidins[J]. J Agr Food Chem. 2005, 53(10): 4136-4142.
    [94] Mauricio J C, Moreno J, Zea L, et al. The effects of grape must fermentation conditions on volatile alcohols and esters formed by Saccharomyces cerevisiae[J]. J Sci Food Agr. 1997, 75(2): 155-160.
    [95] Xu Y, Fan W, Qian M C. Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction[J]. J Agr Food Chem. 2007, 55(8): 3051-3057.
    [96] Chen S, Xu Y. The Influence of yeast strains on the volatile flavour compounds of Chinese rice wine[J]. J Inst Brew. 2010, 116(2): 190-196.
    [97] Mo X, Xu Y, Fan W. Characterization of aroma compounds in Chinese rice wine qu by solvent-assisted flavor evaporation and headspace solid-phase microextraction[J]. J Agr Food Chem. 2010, 58(4): 2462-2469.
    [98] Mo X, Fan W, Xu Y. Changes in volatile compounds of Chinese rice wine wheat Qu during fermentation and storage[J]. J Inst Brew. 2009, 115(4): 300-307.
    [99] Mo X, Xu Y. Ferulic Acid Release and 4-Vinylguaiacol Formation during Chinese Rice Wine Brewing and Fermentation[J]. J Inst Brew. 2010, 116(3): 304-311.
    [100] Delgado F J, González-Crespo J, Cava R, et al. Characterisation by SPME–GC–MSof the volatile profile of a Spanish soft cheese PDO Torta del Casar during ripening[J]. Food Chem. 2010, 118(1): 182-189.
    [101] Rosillo L, Salinas M, Garijo J, et al. Study of volatiles in grapes by dynamic headspace analysis:: Application to the differentiation of some Vitis vinifera varieties[J]. J Chromatogr A. 1999, 847(1-2): 155-159.
    [102] Alonso-Salces R M, Herrero C, Barranco A, et al. Classification of apple fruits according to their maturity state by the pattern recognition analysis of their polyphenolic compositions[J]. Food Chem. 2005, 93(1): 113-123.
    [103]罗涛.清爽型黄酒香气特征及麦曲对其香气的影响[D].江南大学, 2008.
    [104]党亚丽.金华火腿和巴马火腿风味的研究[D].江南大学, 2009.
    [105]石志标,左春怪,张学军.新颖的仿生检测技术——电子鼻[J].测试技术学报. 2004, 18(1): 50-55.
    [106]李琴,朱科学,周惠明.利用电子鼻分析熬制时间对3种食用菌汤风味的影响[J].食品科学. 2010, 31(16): 151-155.
    [107]张青,王锡昌,刘源. GC-O法在食品风味分析中的应用[J].食品科学. 2009, 30(3): 284-287.
    [108] Yu H Z, Chen S S. Identification of characteristic aroma-active compounds in steamed mangrove crab (Scylla serrata)[J]. Food Res Int. 2010, 43(8): 2081-2086.
    [109] Maraval I, Mestres C, Pernin K, et al. Odor-Active Compounds in Cooked Rice Cultivars from Camargue (France) Analyzed by GC? O and GC? MS[J]. J Agr Food Chem. 2008, 56(13): 5291-5298.
    [110] Takahashi M, Isogai A, Utsunomiya H, et al. GC? Olfactometry analysis of the aroma components in sake koji[J]. J Inst Brew Japan. 2006, 101(12): 957-963.
    [111] Rosazza J, Huang Z, Dostal L, et al. Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product[J]. J Ind Microbiol Biotechnol. 1995, 15(6): 457-471.
    [112]罗涛,范文来,徐岩,等.我国江浙沪黄酒中特征挥发性物质香气活力研究[J].中国酿造. 2009, 203(2): 14-19.
    [113]沈才洪,许德富.中国白酒必将步入制曲专业化道路[J].酿酒. 2003, 30(4): 5-6.
    [114]张肖克,黄平,姜萤.制曲行业呼唤大曲质量统一标准[J].酿酒科技. 2006, 137(11): 25-29.
    [115]沈才洪,许德富,沈才萍,等.大曲质量标准的研究第一报:大曲“酒化力”的探讨[J].酿酒. 2004, 31(2): 29-30.
    [116]沈才洪,应鸿,许德富,等.大曲质量标准的研究(第二报):大曲“酯化力”的探讨[J].酿酒科技. 2005, 137(3).
    [117]沈才洪,应鸿,许德富,等.大曲质量标准的研究(第三报):大曲生香力的特征指标探讨[J].酿酒科技. 2005, 137(8): 20-22.
    [118]沈才洪,应鸿,许德富,等.大曲质量标准的研究(第四报):大曲的理化特征指标探讨[J].酿酒科技. 2005, 137(9): 20-22.
    [119]沈才洪,张良,应鸿,等.大曲质量标准体系设置的探讨[J].酿酒科技. 2005, 137(11).
    [120]张荣,徐岩,范文来,等.酱香大曲中地衣芽孢杆菌及其特征风味代谢产物的分析研究[J].工业微生物. 2010, 40(3): 7-12.
    [121]唐玉明,姚万春.浓香型大曲发酵力测定条件探讨[J].酿酒科技. 1996, 78(6): 67-69.
    [122]范文来,徐岩.浓香型大曲的酯化力与酯分解率研究[J].酿酒. 2003, 30(1): 10-12.
    [123]朱旗,童京汉. HPLC检测分析速溶绿茶游离氨基酸[J].茶叶科学. 2001, 21(2): 134-136.
    [124] Steinhaus P, Schieberle P. Characterization of the key aroma compounds in soy sauce using approaches of molecular sensory science[J]. J Agr Food Chem. 2007, 55(15): 6262-6269.
    [125]李祖明,王德良,马美荣,等.不同酒曲酶系与发酵性能的比较研究[J].酿酒科技. 2010, 187(1): 17-19.
    [126]周恒刚.试论根霉菌在制曲上的特征[J].酿酒. 2001, 28(6): 23-26.
    [127]武化新.大曲发酵力,酯化力检测与曲质综合分析[J].酿酒. 1997, 24(4): 19-20.
    [128]刘洪晃,冯树仙.几种酒曲中游离氨基酸的测定[J].酿酒. 1991, 18(5): 16-18.
    [129]王怀能,王辉.生淀粉糖化酶的研究[J].酿酒科技. 2000, 99(3): 32-34.
    [130]唐玉明,沈才洪,任道群,等.酒曲理化品质指标相关性探讨[J].酿酒科技. 2006, 145(7): 37-41.
    [131]万自然.大曲培养过程中微生物及酶的变化[J].酿酒科技. 2004, 124(4): 25-26.
    [132]任道群,唐玉明,姚万春,等.浓香型酒酯化酶工程的研究及其应用[J].酿酒. 2009, 36(4): 36-37.
    [133] Curioni P, Bosset J O. Key odorants in various cheese types as determined by gas chromatography-olfactometry[J]. Int Dairy J. 2002, 12(12): 959-984.
    [134] Cramer A C J, Mattinson D S, Fellman J K, et al. Analysis of volatile compounds fromvarious types of barley cultivars[J]. J Agr Food Chem. 2005, 53(19): 7526-7531.
    [135]王憬,崔巍伟,王莉娜,等.采用固相微萃取-气相色谱-质谱法分析啤酒中醛类化合物[J].食品与发酵工业. 2009, 35(6): 170-176.
    [136] Ordó?ez J A, Hierro E M, Bruna J M, et al. Changes in the components of dry-fermented sausages during ripening[J]. Crit Rev Food Sci. 1999, 39(4): 329-367.
    [137] Ugliano M, Moio L. Changes in the concentration of yeast-derived volatile compounds of red wine during malolactic fermentation with four commercial starter cultures of Oenococcus oeni[J]. J Agr Food Chem. 2005, 53(26): 10134-10139.
    [138]赵维娜,谢和.嗜热芽孢杆菌制曲的美拉德反应与褐变产酱香研究[J].贵州农学院学报. 1992, 11(2): 83-89.
    [139]马志玲,王延平.模式美拉德反应产物抗氧化性能的研究[J].中国油脂. 2002, 27(4): 68-71.
    [140]曹敬华,方尚玲,陈茂彬,等.嗜热芽孢杆菌对美拉德反应的作用初探[J].酿酒. 2010, 37(6): 55-58.
    [141]魏景超.真菌鉴定手册[M].上海科学技术出版社, 1979.
    [142]张纪忠,微生物分类学研究者,黄静娟.微生物分类学[M].复旦大学出版社, 1990.
    [143]编写组中国科学院微生物研究所常见与常用真菌.常见与常用真菌[M].北京:科技出版社, 1973.
    [144]曹敬华.产香风味菌筛选及对美拉德反应作用的研究[D].湖北工业大学, 2011.
    [145] Hesseltine C W, Wang H L. Indigenous fermented food of non-Western origin[M]. 1986.
    [146] Steinkraus K H. Handbook of indigenous fermented foods[M]. CRC, 1996.
    [147]王治国,夏明星,管清先,等.应用产酯酵母提高浓香型白酒质量的研究[J].酿酒科技. 1994, 64(4): 13-15.
    [148] Zhu B F, Xu Y. A feeding strategy for tetramethylpyrazine production by Bacillus subtilis based on the stimulating effect of ammonium phosphate[J]. Bioproc Biosyst Eng. 2010, 33(8): 953-959.
    [149] Zhu B F, Xu Y, Fan W L. High-yield fermentative preparation of tetramethylpyrazine by Bacillus sp. using an endogenous precursor approach[J]. J Ind Microbiol Biot. 2010, 37(2): 179-186.
    [150] Kim K, Lee H, Shon D, et al. Optimum conditions for the production of tetramethylpyrazine flavor compound by aerobic fed-batch culture of Lactococcus lactissubsp. lactis biovar. diacetylactis FC1[J]. J Microbiol Biotechn. 1994, 4(4): 327-332.
    [151]史静霞.配制酒总酯的测定[J].酿酒. 2001, 28(4): 95-96.
    [152]叶雪珠,王小骊,赵燕申,等.黄曲霉毒素B1检测方法的分析[J].食品与发酵工业. 2003, 29(10): 90-92.
    [153]褚庆华,郭德华,王敏,等.谷物和酒类中赭曲霉毒素A的测定[J].中国国境卫生检疫杂志. 2006, 29(2): 109-112.
    [154]朱孟丽.高效液相色谱法对谷物中呕吐毒素的测定[J].粮食与饲料工业. 2005(8): 42-43.
    [155]许赣荣.红曲桔霉素的检测及发酵控制技术[D].江南大学, 2005.
    [156]彭帮柱,龙明华,岳田利,等.傅立叶变换近红外光谱法检测白酒总酸和总酯[J].农业工程学报. 2007, 22(12): 216-219.
    [157] Turner N W, Subrahmanyam S, Piletsky S A. Analytical methods for determination of mycotoxins: a review[J]. Anal Chim Acta. 2009, 632(2): 168-180.
    [158] Horowitz W. Official methods of analysis of AOAC International[M]. Aoac Int, 2003.
    [159] Pohland A E, Nesheim S, Friedman L. Ochratoxin A: a review[J]. Pure Appl Chem. 1992, 64(7): 1029-1046.
    [160] Pestka J J, Smolinski A T. Deoxynivalenol: toxicology and potential effects on humans.[J]. J Toxicol Env Heal B. 2005, 8(1): 39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700