用户名: 密码: 验证码:
复杂近地表地震波响应特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究工作主要有两方面:任意起伏地表地震波数值模拟技术及近地表地震波场的传播特征和响应规律研究。
     在地震波的数值模拟方法中,分析和讨论了能够处理起伏地表自由边界条件的广义虚像法,构建了具有与内部介质模拟精度和阶数同步的高阶广义虚像法差分边界条件方程,分析了其在应用中的局限性,使其与地表条件充零法联合使用,使其在任意地表起伏模型中都能够应用;实现了完全弹性介质模型、粘弹性介质模型和横向各向同性介质模型的起伏地表情况下的地震波波场数值模拟。
     通过数值模拟得到了不同模型,不同介质的地震波场传播和地震合成记录,通过整理和分析得到了如下认识:在复杂近地表模型条件下,地形严重扭曲了地下波场的形态,并造成了波场的不可识别;水平自由界面情况下,面波和表层多次波是近地表干扰的主要因素,地表严重起伏情况下,二次绕射形成的侧反射波的干扰要强于面波;通过合成记录的频谱分析可以看到,地形对地震波场有一定的选频作用,突起模型的效果比较明显,对具有频率效应的介质如粘弹性介质作用的表现更加明显;地形的起伏对地震波场响应不会产生频散,也就是说地形影响不具有频散特征,同时由于地形的影响,介质类型所产生的频散特征也不是很明显。也就是说地形起伏造成的能量散射或反射都是高能量的无频散的,通过某个频带的滤波效果是不可预期的。
Modeling and understanding the effect of seismic wave propagation involving the complex near surface in West China has been one of the important issues in seismic exploration. In fact, the earth’s free surface is rugged topography at complex free surface condition areas. So based on the conditions the exact solution can not get. But this is usually the location at which seismic observations are made, topography may have a significant influence on record data. In fact at complex free surface areas, such as some classical topography model in West China, the research of the construction of recorded data is more slowly than the practice of exploration.
     Generally the complex free surface has included rugged topography and variation of velocity in lateral near free surface rock layer or soil layer. Professor Sun Jianguo has given a generally summary which included arbitrary combination three as down lines is complex free surface. And the three down lines are : (1) the earth’s free surface topography;(2) the complex geological construction near free surface;(3) the complex media and rock physical parameters distribution near free surface. For exact geological solutions from the observation seismic data, we must do the modeling of seismic wave field.
     The use of synthetic seismograms is one of most useful methods in estimating the response of media at a given receiver. Various numerical approaches have been proposed to solve the seismic wave equations. I present synthetics of seismic wave propagation near free surface topography. Based on existing direct and imaging methods of a 10th order staggered finite-difference scheme, an improved algorithm for staggered finite-difference is proposed to implement rugged topographic free boundary conditions. This method assumes that the free surface can be implemented with horizontal and vertical free surface segments and their corners. Based on the same principle, the method is adapted to elastic wave equations, visco-elastic wave equations and isotropic elastic wave equations.
     Main research contents in the article include:
     (1) The construction of mathematical physical model;
     (2) Synthetics of seismic wave propagation near free surface topography;
     (3) The influence of free surface topography through the seismic wave modeling;
     (4) The influence of the type of media through the seismic wave modeling;
     (5) The influence of the distribution of rock physical parameters near free surface through the seismic wave modeling;
     (6) The influence of some seismic parameters by the wave modeling. And by the work of this thesis, I get some conclusions in two fields about the development of modeling computation technology and some features of seismic wave propagation.
     In computation technology, I use high-order staggered grid finite difference method to solve the seismic wave equations. This is a ripe method of seismic modeling. And my key work is to develop the combination method general imaging method with zero velocity method to deal with the topography. Besides the elastic media seismic wave equations, the method is adapted to many other earth models, such as isotropic media, visco-elastic media and so on. And it can be used in 3D computations.
     By the modeling of seismic wave propagation, some features are drawn:
     (1) In all effect factors of complex near surface, the topography is the most one, and the second one is the distribution of rock physical parameters near free surface;
     (2) The ratio of signal/noise of cave model’s response is more better than of apophasis model;
     (3) Besides the distortion in x-axis of symmetry by the topography, it also does the distortion in z-axis of symmetry by the asymmetric topography;
     (4) The topography may be choose some frequencies to absorb;
     (5) The dispersion by topography is not obvious, so it isn’t to expect filtering the influence by topography.
引文
[1]何樵登.地震勘探[M].北京:地质出版社,1986.
    [2]特尔福德W M,吉尔达特L P,谢里夫R E,et al.应用地球物理学[M].吴荣祥译.北京:地质出版社,1982:1-682.
    [3] Fu Liyun,Wu Rushan.地形对地震数据的影响-在中国进行地震勘探的一个重要问题.北京:CPS/SEG/EDGE1998国际地球物理研讨会[C],1998:182-185.
    [4]裴正林.任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[J].石油地球物理勘探,2004,39(6):629-634.
    [5]熊翥.中国西部地区物探工作的思考[J].石油地球物理勘探.2000,35(2): 257-270.
    [6]熊翥.我国物探技术的进步及展望[J].石油地球物理勘探,2003,38(3):334-338.
    [7].熊翥.我国物探技术的进步及展望[J].石油地球物理勘探,2003,38(4):449-459.
    [8]熊翥.我国物探技术的进步及展望[J].石油地球物理勘探.2003,38(5):565-578
    [9]熊翥.我国物探技术的进步及展望[J].石油地球物理勘探,2003,38(6):701-706.
    [10]熊翥.我国物探技术的进步与展望[J].石油地球物理勘探.2004,39(1):121-126.
    [11]熊翥.我国物探技术的进步与展望[J].石油地球物理勘探.2004,39(2):237-243.
    [12]熊翥.我国物探技术的进步与展望[J].石油地球物理勘探.2004,39(3):354-358.
    [13]熊翥.我国物探技术的进步与展望[J].石油地球物理勘探.2004,39(4):488-492.
    [14]熊翥.我国物探技术的进步与展望[J].石油地球物理勘探.2004,39(5):618-623.
    [15]熊翥.我国物探技术的进步与展望[J].石油地球物理勘探.2004,39(6):745-750.
    [16]熊翥.我国物探技术的进步与展望[J].石油地球物理勘探.2005,40(1):123-125.
    [17]熊翥.隐蔽油气藏勘探-地震数据处理与解释[J].勘探地球物理学进展,2004,27(6):391-396.
    [18]熊翥.我国西部与岩盐有关构造油气勘探地震技术的几点思考[J].勘探地球物理学进展,2005,28(2):77-80,89.
    [19]熊翥.我国西部地区岩性油气藏的圈定与表征[J],勘探地球物理学进展, 2005,28(3):153-156.
    [20]邹贤华,朱培云,熊翥.准葛尔盆地南缘山地地震勘探采集方法与技术[J].天然气工业,2005,25(2):49-52.
    [21]刘光鼎,张丽莉,祝靓谊.试论复杂地质体的油气地震勘探[J].地球物理学进展,2006,21(3):683-686.
    [22]马国东,李联.复杂表层地区地震资料处理中的静校正[J].中国煤田地质, 1996,8(3):61-66.
    [23]马义忠,于更新,符力耘.复杂地表低信噪比地震数据处理研究.首届油气资源国际博士生学术论坛论文集,2007[C],487-492.
    [24]裴正林,王尚旭,狄帮让等.无组合检波采集方法的三维地震波数值模拟研究[J].石油地球物理勘探,2005,40(2):138-142.
    [25]徐伯勋,白旭滨,于常青编著.地震勘探信息技术-提取、分析和预测[M].北京:地质出版社, 2001,第一版.
    [26]杨旭明.近地表地震波散射的研究及应用[D].成都:成都理工大学,2002.
    [27]夏竹,张少华,王学军.中国西部复杂地球近地表特征与表层结构探讨[J].石油地球物理勘探,2003,38(4):414-424.
    [28]孙建国.复杂地表条件下地球物理场数值模拟方法评述[J].世界地质,2007,26(3):345-362.
    [29]牟永光,裴正林著.三维复杂介质地震波数值模拟[M].北京:石油工业出版社,2005,第一版.
    [30]阎世信,刘怀山,姚雪根.山地地球物理勘探技术[M].北京:石油工业出版社,2000,第一版.
    [31]邓志文.复杂山地地震勘探[M].北京:石油工业出版社,2006:1-30.
    [32]冯西会,王中锋,朱芳香.毛乌素沙漠地震勘探历程及效果[J].中国煤炭地质,2008,20(6):30-33.
    [33]倪良健.塔中沙漠区地震勘探采集方法研究[D].武汉:中国地质大学,2006.
    [34]黄洪泽.沙漠地区地震勘探方法分析[J].石油地球物理勘探,1983,1(2):48-56.
    [35]王成彬.西部复杂山地地震勘探关键技术应用研究[D].成都:成都理工大学,2008.
    [36]梁传坤,宿建.黄土塬区天然气地震技术何综合解释[J].河南石油,1996,10(3): 12-19.
    [37]阎世信,吕其鹏编著.黄土塬地震勘探技术[M].北京:石油工业出版社,2002,第一版.
    [38]精准石油论坛,http://forum.petro-china.com/index.php?s=1c455a95b5913f86 90f3962473596d0d&showforum=13.
    [39] A.J.别尔克豪特著,马在田,张叔伦译.地震偏移波场外推法声波成像[M].北京:石油工业出版社,1983.
    [40] Alford R M, Kelly K R, Boore D.M. Accuracy of finite-difference modeling of the acoustic wave equation[J]. Geophysics, 1974, 39(6):834-842.
    [41] Kelly K R, Ward R W, Treitel S, and Alford R M. Synthetic seismograms: A finite-difference approach[J]. Geophysics, 1976,41(1):2-27.
    [42]朱力立.摄动有限差分方法及其应用[D].北京:中国科学院,2002.
    [43] Aahradnic J, Oleary P, and Sochackl J. Finite-difference schemes for waves based on the integration approach[J]. Geophysics, 1994,59(6):928-937.
    [44] Alekseev A S, Mikhailenko B G. The Solution of Dynamic Problems of Elastic Wave Propagation in Inhomogeneous Media by a Combination of partial Separation of Variables and Finite-Difference Methods[J]. Journal of Geophysics, 1980,48:167-172.
    [45] Almoga l, Abraham U, Zipora A. An improved representation of boundary in finite difference schemes for seismological problems[J]. Geophys. J. astr. Soc., 1975,43: 727-745.
    [46] Arben P. 3D elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing[J]. Bulletin of the Seismological of America,1999, 89(1):54-68.
    [47] Carcione J M. Short Note: Staggered mesh for the anisotropic and viscoelastic wave equation[J], Geophysics, 1999,64(6):1863-1866.
    [48] Fornberg B. The pseudostral method: Accurate representation of interfaces in elastic wave calculations[J]. Geophysics,1988, 53(5):625-637.
    [49] Fu L Y. Seismogram synthesis for piecewise heterpgeneous media[J]. Geophs.J.Int.,2002,150:800-808.
    [50] Graves W R. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite difference[J]. Bulletin of the Seismological of America. 1996, 86(4):1091-1106.
    [51] Hayshi K, Burns R D, and Toksoz N M. Discontinuous-Grid finite-difference seismic modeling surface topography[J]. Bulletin of the Seismological of America. 2001,91(6):1750-1764.
    [52] Jastram C, Tessmer E. Elastic modeling on a grid vertically varying spacing[J]. Geophy. Prosp. 1994,42:357-370.
    [53] Kaser M, Igel H. Numerical simulation of 2D wave propagation on unstructured grids using explicit differential operators[J]. Geophysical Prospecting, 2001,49:607-619.
    [54] Kerner C. Modeling of soft, sediments and liquid—solid interface: modified wavenumber summation method and application[J]. Geophysical Prospecting, 1990,38:111-137.
    [55] Kindelan M, Kamel A, and Sguazzero P. ShortNote: On the construction and efficiency of staggered numerical differentiators for the wave equation[J]. Geophysics, 1990,55(1):107-110.
    [56] Korn M. Computation of wavefields in vertically inhomogeneous media by a frequency domain finite-difference method and application to wave propagation in earth models with random velocity and density perturbations[J]. Geophy.J.R.astr. Soc., 1987,88:345-377.
    [57] Kosloff D, Reshef S, Loewenthal D. Elastic wave calculations by the fourier method[J]. Bulletin of the Seismological of America, 1984,74(3):875-891.
    [58] Levander A R. Fourth-order finite-difference P-SV seismograms[J]. Geophysics,1988,53(11):1425-1436.
    [59] Lgel H, Mora P, and Riollet B. Anisotropic wave propagation through finite -difference grids[J]. Geophysics, 1995, 60(4): 1203-1216.
    [60] Magnier S A, Mora P, and Tarantola A. Finite difference on minimal grids[J]. Geophysics, 1994,59(9):1435-1443.
    [61] Mikhailenko B G, Korneev V I. Calculation of synthetic seismograms for complex subsurface geometries by a combination of finite integral Fourier transforms and finite difference techniques[J]. Journal of Geophysics, 1984, 54:195-206.
    [62] Min D J, Shin C, Kwon B D and Chung S. Improved frequency-domain elastic wave modeling using weighted-averaging difference operators[J]. Geophysics, 2000,65(3): 884-895.
    [63] Mittet R. Implementation of the Kirchhoff integral for elastic waves in staggered-grid modeling schemes[J]. Geophysics, 1994,59(2):1894-1901
    [64]Narayan J P. 2.5-D Numerical Simulation of Acoustic Wave Propagation[J]. Pure and Appiled Geophysics, 1998,51:47-61.
    [65] Nielsen P,If F,Berg P,et al. Using the pseudospectral technique on curved grids for 2D acoustic forward modeling[J],Geophysical prospecting, 1994, 42(3): 321-342.
    [66] Novais A and Santos L T. 2.5-D finite-difference solution of the acoustic wave equation[R].Annual WIT report 2001:245-253.
    [67] Oprsal I and Zahradnik J. Elastic finite-difference method for irregular grids[J]. Geophysics, 1999,64(1):240-250.
    [68] Oprsal I. Hybrid modeling of seismic waves[D]. Thesis of Charles University, 2000.
    [69] Per N, Flemming I, et al. Using the pseudospectral technique on cured grids for 2D acoustic forward modeling[J]. Gepphysical prospecting, 1994,42(3):321-342.
    [70] Pitarka A. 3D elastic finite-difference modeling of seismic motion using staggered grids with non-uniform spacing[J]. Bulletin of the Seismological of America, 1999, 89(1):54-68.
    [71] Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method[J]. Geophysics, 1998,51(4):889-901
    [72] Zahradnik J, Moczo P, and Hron F. Testing four elastic finite-difference schemes for behavior at discontinuities[J]. Bulletin of the Seismological of America, 1993, 83(1):107-129.
    [73] Zang Y Q and Liu Q H. A staggered grid finite-differencd method with perfectly matched layers for poroelastic wave equation[J]. J.Acoust.Am., 2001,109(6): 2571-2580.
    [74] Zhang J F and Liu T L. P-SV-wave propagation in heterogeneous media: grid method[J]. Geophys.J.Int, 1999,136:431-438.
    [75] Zhang J F. Qudrangle-grid velocity-stress finite difference method for poroelastic wave equation].J, Geophys.J.Int,1999,139:17-182.
    [76]滕吉文等.各向异性介质中褶积微分算子法三分量地震资料的数字仿真[J].石油物探,1995,34(3):14-22.
    [77] Zhou H and Chen X F. A new approach to simulate scattering of SH waves by an irregular topography[J].Geohys.J.Int. 2006,164:449-459.
    [78]胡炜.波动与碰撞非线性动力学问题的最小二乘无网格法[D].北京:清华大学,2003.
    [79]钟万勰.子域精细积分及篇微分方程数值解[J].计算结构力学及其应用,1995,12(3):253-260.
    [80]钟万勰.单点子积分与差分[J].力学学报,1996,28(2):161-166.
    [81]强士中,王孝国,唐茂林,刘民.任意差分精细积分法及数值稳定性分析[J].应用数学和力学,1999,20(3):256-262.
    [82]贾晓峰,王润秋,胡天跃.求解波动方程的任意差分精细积分法[J].中国地震,2003,19(3):236-242.
    [83]孙卫涛,杨慧珠,舒继武.非均匀介质弹性波动方程的不规则网格有限差分方法[J].计算力学学报,2004,21(2):135-143.
    [84]尧德中,阮颖铮.六角形网格波动方程数值模拟德傅氏变换算法[J].计算物理,1994,11(1):101-106.
    [85]张剑峰.弹性波数值模拟的非规则网格差分法[J].地球物理学报,1998,41[增刊]:357-366.
    [86]朱力立.摄动有限差分方法及其应用[D].北京:中国科学院,2002
    [87]赵景霞,张叔伦,孙沛勇.曲网络伪谱法二维声波模拟[J].石油物探,2003, 42(1):1-5.
    [88]杭旭登,李敬宏,袁光伟.大长宽比扭曲网格上辅助网格差分方法[J].计算物理,2007,24(3):268-275.
    [89] Ilan A, Loewenthal D. Instability of finite difference schemes due to boundary conditions in elastic media[J]. Geophysical prospecting, 1976, 24:431-453.
    [90] Ilan A, Bond I J, Spivack M. Interaction of a compressional impulse with a slot normal to the surface of an elastic half space[J]. Geophys.J.astr.Soc.,1979, 57: 463-477.
    [91] Ilan A, Ungar A, and Alterman Z. An improved representation of boundary in finite difference schemes for seismological problems[J].Geophys.J.astr.Soc. , 1975, 43:727-745.
    [92] Boore M B, Harmsen C S, and Harding T S. Wave scattering from a step change in surface topography[J]. Bulletin of the Seismological of America. 1981,71(1): 117-125.
    [93] Vidale E J, Clayton W R. A stable free-surface boundary condition for two-dimensional elastic finite-difference wave simulation[J]. Geophysics. 1986, 51(12):2247-2249.
    [94] Ohminato T, Chouet A B. A free-surface boundary condition for including 3D topography in the finite-difference method[J]. Bulletin of the Seismological of America. 1997,87(2):494-515.
    [95] Robertsson J O, Blanch J O, and Symes W. Viscoelastic finite-difference modeling[J]. Geophysics, 1994,59(9):1444-1456.
    [96] Robertson J O A.Numerical free-surface sondition for elasdtic/visielastic finite-difference modeling in the presence of topography[J].Geophysics,1996, 61:1921-1934.
    [97] Wang X M and Zhang H L. Modeling of elastic wave propagation on a curvedfree furface using an improved finite-difference algorithm[J]. Science in China Ser. G Physics, Mechanics&Astronomy,2004,47(5):633-648.
    [98]裴正林.任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[J].石油地球物理勘探,2004,39(6):629-634.
    [99] Jih R S, Keith L M,Oltan A D. Free-boundary condition of arbitrary polygonal topography in two-dimensional explicit elastic finite-difference scheme[]J. Geophesics,1988,53(8):1045-1055.
    [100] Hayshi K, Burns R D and Toksoz N M. Discontinuous-Grid finite-difference seismic modeling surface topography[J]. Bulletin of the Seismological of America. 2001,91(6):1750-1764.
    [101] Hestholm S,Moran M et al. Effects of free-surface topography on moving-seismic-soure modeling[J]. Geophysics,2006,71(6):159-166.
    [102] Hestholm S and Ruud B. 2D finite-difference elastic wave modeling including surface topography[J]. Geophy. Prosp. 1994,42:371-390.
    [103] Hestholm S and Ruud B. 3-D finite-difference elastic wave modeling including surface topography[J]. Geophysics,1998,63(2):613-622.
    [104] Hestholm S. Finite-Difference Seismic Wave Modeling including Surface Topography[J]. A Thesis of Rice University,USA,1999.
    [105] Jastram C, Tessmer E. Elastic modeling on a grid vertically varying spacing[J]. Geophy. Prosp. 1994,42:357-370.
    [106] Kaser M, Igel H. Numerical simulation of 2D wave propagation on unstructured grids using explicit differential operators[J]. Geophysical Prospecting, 2001,49:607-619.
    [107] Tessmer E, Kosloff D, Behle A. Elastic wave propagation simulation in the presence of surface topography[J]. Geophy. J. Internat., 1992, 108:621-632. [108Tessmer E, Kosloff D. 3-D elastic modeling with surface topography by a chebychev spectral method[J]. Geophysics.,1994,59(3):464-473.
    [109]董良国.复杂地表条件下地震波传播数值模拟[J].勘探地球物理进展,2005,28(3):187-194.
    [110] Widess M B. Effect of surface topography on seismic mapping[J]. Geophysics,1945:362-372.
    [111] Ashford S, Stitar N. Analysis of topography amplification of inclined shear waves in a steep coastal bluff[J]. Bulletin of the Seismological of America.1997, 87(3):692-700.
    [112]吴如山,安艺敬一主编.地震波的散射与衰减[M].北京:地震出版社,1993,第一版.
    [113] Ashford S A, Stitar N et al. Topographic effects on the seismic response of steep slopes[J]. Bulletin of the Seismological of America, 1997,87(3):701-709.
    [114] Bohlen T, Saenger H E. Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves[J]. Geophysics, 2006, 71(4):109-115.
    [115] Budaev V B, Bogy B D. Rayleigh wave scattering by a wedge[J]. Wave Motion, 1995,22: 239-257.
    [116] Haruo Sato. Unified Approach to Amplitude Attenuation and Code Excitation in the Randomly Inhomogeneous Lithosphere[J].PAGEOPH,1990,132(1):43-47.
    [117] Teruo Yamashita. Attenuation and Dispersion of Sh Wavea due to Scattering by Randomly Distributed Cracks[J]. PAGEOPH,1990.132(3):545-568.
    [118] Ru-Shan Wu and Keiiti Aki. Introduction:Seismic Wave Scattering in Three-dimensionally Heterogeneous Earth[j]. PAGEOPH.1988,128:1-6.
    [119] Ari Ben-Menahem. Vector-Scattering of Elastic Waves by Directional Structural Space Gradients[J]. PAGEOPH, 1998,128:133-146.
    [120] Arthur Franker, and Leif Wennerberg. Energy-flux model of seismic coda: separation of scattering and intrinsic attenuation[J]. Bulletin of Seismological Society of America,1987,77(4):1223-1251.
    [121] Toksoz M N, Dainty M A.E, Reiter E and Wu R S. Amodel for Attenuation and Scattering in the Earth’s Crust[J]. PAGEOPH,1988,128:81-100.
    [122] Wu R S. The Perturbation Method in Elastic Wave Scattering[J]. PAGEOPH. 1989,131:605-635.
    [123] Levander R A. Seismic Scattering Near the Earth’s surface[J]. PAGEOPH, 1990,132:21-47.
    [124] Dainty M.A.地震波散射对监测的影响.维普资讯:http://www.cpvip.com
    [125]董俊,赵成刚.三维半球形凹陷饱和土场地对平面P波散射问题的解析解[J].地球物理学报,2005,48(1):680-688.
    [126]董俊,赵成刚.半球形凹陷饱和土半空间对入射平面SV波三维散射问题的解析解[J].地球物理学报,2005,48(6):1412-1421.
    [127]李灿苹,刘学伟,王祥春,杨丽.地震波的散射理论和散射特征及其应用[J].勘探地球物理进展,2005,28(2):81-89.
    [128]李山有,廖振鹏.地震体波斜入射情形下台阶地形引起的波型转换[J].地震工程与工程振动,2002,22(4):9-15.
    [129]宋玉平,金奎励,陈德行.槽波地震勘探震源和检波器的优化布置[J].煤田地质与勘探,1994,22(4):49-50.
    [130]王东.有限差分方法研究随机介质的声波传播特性[D].北京:中国科学院, 2003.
    [131]肖伯勋.高模式瑞雷面波及其正反演研究[D].长沙:中南大学博士学位论文,2000.
    [132]周红,陈晓菲.不同尺度地形的SH波频率响应特性研究[J].地球物理学报,2006,49(1):205-211.
    [133]徐常练.兰姆问题有限元法数值解及其在地震勘探中的意义[J].石油地球物理勘探,1988,23(2):163-170.
    [134]张贵霞.随机噪声的形成机制及其特征表述的数学物理模拟研究[D].长春:长春科技大学,2000.
    [135]安艺敬一,理查兹P G著.定量地震学[M].北京:地震出版社,1986,第一版.
    [136]瑞克N H.粘弹性介质中的地震波[M].北京:地质出版社,1981,第一版.
    [137]牛滨华,孙春岩编著.半空间介质与地震波传播[M].北京:石油工业出版社,2002,第一版.
    [138]奚先,姚姚.二维随机介质及波动方程正演模拟[J].石油地球物理勘探,2001, 36(5):546-552.
    [139]姚姚,奚先.随机介质模型正演模拟及其地震波场分析[J].石油物探,2002,41(1):3136.
    [140]奚先,姚姚.二维弹性随机介质中的波场特征[J].石油地球物理勘探,2004,39(6):679-685.
    [141]尹军杰.地震散射波场特征的数值模拟研究(D).北京:中国地质大学,2005.
    [142]程昌钧,朱正佑.关于粘弹性力学的一些进展[J].自然杂志,25(3):125-130.
    [143]范家参.粘弹性介质中的地震波[J].地震研究,2001,24(4):358-362.
    [144]凌云.大地吸收衰减分析[J].石油地球物理勘探,2001,36(1):1-8.
    [145]刘财,张智,邵志刚等.线性粘弹体中地震波场伪谱法模拟技术[J].地球物理学进展,2005,20(3):640-644.
    [146]卢秀丽.海底地震仪观测的粘弹性地层地震波正演模拟[D].吉林大学硕士学位论文,2004.
    [147]何樵登,张中杰编著.横向各向同性介质中地震波及其数值模拟[J].吉林大学出版社,长春,1996,第一版.
    [148]董敏煜编著.多波多分量地震勘探[J].北京:石油工业出版社,2002,第一版.
    [149]卢明,杨顶辉.改进的近似解析离散化方法及其横向各向同性波场模拟[J].中国科学D辑,2005,35(1):72-78.
    [150]董良国.弹性波数值模拟中的吸收边界条件[J].石油地球物理勘探,1999, 34(1):45-56.
    [151]李永明,俞集辉,黄键.时域有限差分法中的吸收边界条件与角点处理[J].重庆大学学报(自然科学版),2001,24(3):68-71.
    [152] Clayton W R, Engquist B.Absorbing boundary conditions for wave-equation migration[J]. Geophysics, 1980, 45(5):895-904.
    [153] Cerjan C, Kosloff D et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations[J]. Geophysics, 1985,50(4):705-708.
    [154]李宁.完美匹配层理论及其在地震波模拟中的应用[D].哈尔滨:中国地震局工程力学研究所,2006.
    [155] Furumura T. and Takenaka H. 2.5-D modeling of elastic waves using the seudo -spectral method[J]. Geophys.J.Int 1996,124:820-832.
    [156]孙建国.2.5维地震波数值模拟评述:声波模型[J].地球物理学进展,2009,24(1):20-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700