用户名: 密码: 验证码:
苜蓿DREB类转录因子基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要对苜蓿中的DREB类转录因子基因进行了研究。分别以4℃寒冷胁迫处理的黄花苜蓿、紫花苜蓿总RNA为模板,运用RACE技术和RT-PCR方法,扩增得到黄花苜蓿逆境胁迫诱导相关转录因子MfDREB1基因、MfDREB1s基因和紫花苜蓿逆境胁迫诱导相关转录因子MsDREB1基因全长cDNA。将以上3个基因cDNA进行克隆与序列分析,序列分析表明MfDREB1基因cDNA长952 bp,包含一个651 bp的开放阅读框,编码一条含216个氨基酸的多肽,分子量约为24.6 kDa,等电点为5.95;MfDREB1s基因cDNA长744bp,包含一个555bp的开放阅读框,编码一条含184个氨基酸的多肽,分子量约为20.8kDa,等电点为9.11;MsDREB1基因cDNA长902bp,包含一个长651 bp的开放阅读框,编码一条含216个氨基酸的多肽,分子量约为24.9 kDa,等电点为6.11。Protein Blast数据显示,以上3条多肽均属于EREBP/AP2家族DNA结合蛋白的典型成员。
     进一步分别克隆了MfDREB1、MfDREB1s和MsDREB1的基因组DNA,序列分析表明以上3个基因均无内含子。基因组Southern blot分析表明,MfDREB1和MfDREB1s基因在黄花苜蓿基因组中共有3个拷贝,MsDREB1基因在紫花苜蓿基因组中以2拷贝存在。Northern blot结果表明MfDREB1和MfOREB1s基因的表达可受低温胁迫的诱导。
     拟南芥rd29A基因的表达受干旱、高盐及低温的诱导。rd29A基因启动子区中含有与上述环境胁迫应答相关的DRE顺式作用元件,该启动子可以感受环境胁迫,启动下游报告基因的表达。本研究以拟南芥基因组DNA为模板,扩增得到长937bp的rd29A启动子片段。为下一步外源基因在转基因植物中的诱导表达奠定基础。
     为建立简便易行、费用低廉的紫花苜蓿基因转化技术,以紫花苜蓿(Medicago sativa L.)为受体材料,以含Gus基因的植物双元表达载体为外源基因供体进行了花粉管通道法转基因的研究。授粉后分别于6h、9h、12h、20h、24h、28h、32h、48h时滴加DNA溶液,待荚果成熟后收获转化种子。对T_0代植株进行PCR检测,结果显示授粉后20至48h范围内导入均可得到较高的转化频率,其中授粉后32h滴加DNA溶液所得的转化率最高(16.7%)。
     本研究对紫花苜蓿组织培养作了系统研究,建立了一套高效稳定的紫花苜蓿再生体系。运用农杆菌介导法将超表达和诱导表达MfDREB1基因的植物双元表达载体pPZP221(35S-MfDREB-nos)、pPZP221(RD29AP-MfDREB-nos)导入紫花苜蓿,PCR检测表明外源基因己整合到受体基因组中。转基因苜蓿中MfDREB1的超表达使得转基因植株的抗寒性比对照植株有所增强。
DREB transcription factors play an important role in tolerance to abiotic stress of plant.In this paper mainly we carried out researches of the DREB type transcription factors in Medicago.Three new DRE-binding protein genes MfDREB1 cDNA,MfDREB1s cDNA and MsDREB1 cDNA that encoded EREBP/AP2 type transcription factors were isolated by RACE and RT-PCR from Medicago falcata L.and Medicago sativa L.seedlings.The MfDREB1 has a open reading frame of 651bp,which coded 216 amino acid residues and the putative protein was predicted to have a molecular weight of 24.6 kDa,pl 5.95.The MfDREB1s has a open reading frame of 555bp,the putative protein is 184 amino acid long with a predicted molecular weight of 20.8 kDa,pl 9.11.The MsDREB1 has a open reading frame of 651bp, encoding 216 amino acid residues and the putative protein with a predicted molecular weight of 24.9 kDa,pl 6.11.The Protein Blast data revealed that the three proteins can be classified as typical members of the EREBP/AP2 family of DNA-binding proteins.
     The comparison of the MfDREB1 cDNA,MfDREB1s cDNA and MsDREB1 cDNA with their corresponding genes in genomic DNA showed that the size and nucleotide sequence of the cDNA were identical with that of the genomic DNA.This suggested that the genomic MfDREB gene,MfDREB1s gene and MsDREB1 gene have no introns.Southern blot analysis indicated that the MfDREB gene and MfDREB1s gene have three copies in Medicago falcate genome,the MsDREB1 is a double-copy gene in alfalfa.Northern blot analysis indicated that the MfDREB gene and MfDREB1s gene were induced by low temperature stress.
     Arabidopsis rd29A gene was induced with drought,high salt and cold treatments.There are two DRE/CRT(a DNA cis-regulatory sequence) element in the region of the rd29A promoter which was responsive to low temperature,drought and high-salt stress.The rd29A promoter has the ability to perceive abiotic stress and respond to it by activating downstream report gene.We amplified a 937bp promoter region of the rd29A gene promoter from the Arabidopsis genomic DNA by PCR.This cloned promoter region may be useful for the stress-inducible expression of foreign gene in transgenic plant.
     In order to establish a simple and practical transformation technique with a high transformation rate in alfalfa(Medicago sativa L.),the pollen-tube pathway transformation method has been developed.The alfalfa cultivar 'Algonguin' was used as recipient and the binary vector pPZP221 containing a GUS(β-glucuronidase) gene was used as the donor DNA of transgene.The donor DNA solution was applied to the stigma at 6,9, 12,20,24,28,32 and 48 hour after hand-pollination,respectively.PCR results showed that the transformation rates were high from 20h to 48h, with the highest rate of 16.7%at 32h after pollination.
     The paper established a efficient regenerative system of alfalfa tissue culture.The binary vector pPZP221(35S-MfDREB-nos) and pPZP221(RD29AP-MfDREB-nos) were transformed into alfalfa by Agrobacterium infiltration respectively.The PCR analysis suggested that the foreign gene was inserted into the recipient's genome.The over—expression of MfDREB1 activated expression of downstream genes in transgenic alfalfa, resulting in enhanced tolerance to low-temperature stress.
引文
[1]Yamaguchi- Shinozachi K,Shinozaki K.Characterization of the expression of a desiccation- responsive rd29 gene of Arabidopsis thaliana of its promoter in transgentic plants.Mol Gen Genet,1993,236:331-340
    [2]徐兆师.小麦抗逆相关DREB/ERF转录因子基因的克隆与鉴定,北京,中国农业科学院作物科学研究所,2005
    [3]Ramanjulu S,Bartels D.Drought and desiccation- induced modulation of gene expression in plant.Plant,cell and environment,2002,25:141-151
    [4]Xiong L,Schumaker K S,Zhu J K.Cell Signaling during Cold,Drought,and Salt Stress.Plant Cell,2002,(Suppl):165-183
    [5]Xiong L,Zhu J K.Molecular and genetic aspects of plant responses to osmotic stress.Plant Cell Environ,2002,25:131-139
    [6]Sanders D,Brownlee C,Harper J F.Communication with calcium.Plant Cell,1999,11:691-706
    [7]Knight H.Calcium signaling during abiotic stress in plants.Int Rev Cytol,2000,195:269-325
    [8]Pandey S,Tiwari S B,Upadhyaya K C,etc.Calcimu signaling:Linking environmental signals to cellular functions.Critical Reviews in Plant Sciences,2000,19:291-318
    [9]Liu J,Zhu J K.An Arabidopsis mutant that require increased calcium for potassium nutrition and salt tolerance.Proc Natl Acad Sci USA,1997,94:14960-14964
    [10]Guo Y,Halfter U,Ishitani M,etc.Molecular characterization of functional domains in the protein kinase that required for plant salt tolerance.Plant Cell,2001,13:1383-1399
    [11]Liu J,Ishitani M,Halfter U,etc.The Arabidopsis thalianna SOS2 gene encodes a protein kinase that is required for salt tolerance.Proc Natl Acad Sci USA,2000,97:3730-3734
    [12]Guo Y,Qiu Q,Quintero F J,etc.Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell, 2004,16:435- 449
    [13] Shi H, Ishitani M, Kim C, etc. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na~+/H~+ antiporter. Proc Natl Acad Sci USA, 2000, 97: 6896- 6901
    
    [14] 於丙军,刘友良. SOS基因家族与植物耐盐性. 植物生理学通讯,2004,40 (4): 409- 413
    
    [15] Ludwig A A, Romeis T, Jones J D. CDPK-mediated signaling pathways: specificity and cross-talk. J Exp Bot, 2004, 55:181- 188
    
    [16] Mrtin M L, Busconi L. A rice membrance bound calcium-dependent protein kinase is activated in response to low temperature. Plant Physiol, 2001,125:1442- 1440
    
    [17] Saijo Y, Hata S, Kyozuka J, etc. Over-expression of a single Ca~(2+) dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 2000, 23: 319- 327
    
    [18] Stefan K, Francesca C, Christine S, etc. SIMKK, a mitogen-activated protein kinase(MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell, 2000,12: 2247- 2258
    
    [19] Hoyos M E, Zhang S. Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiol, 2000,122:1355- 1363
    
    [20] Quaked F, Rozhon W, Lecourieux D, etc. A MAPK pathway mediates ethylene signaling in plants. EMBO J, 2003, 22:1282- 1288
    
    [21] Yamaguchi- Shinozachi K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Thends Plant Sci, 2005,10:88- 94
    
    [22] Haregawa P M, Bressan R A, Zhu J K, etc. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51:463- 499
    
    [23] Shinozaki K, Yamaguchi- shinozaki K. Molecular responses to dehydration an low temperature: difference and cross-talk between two stress signaling pathways.Curr Opin Plant Biol,2000,3: 217- 233
    
    [24] Thomashow M F. Plant cold acclimation: freezing tolerance gene and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571- 599
    [25]Thomashow M F.Arabidopsis thaliana as a modle for studying mechanisms of plant cold tolerance.In:Meyerowitz E,Somerville C,etc.Arabidopsis,Cold Spring Harbor,Cold Spring Harbor Laboratory Press,1994,807-834
    [26]Shinozaki K,Yamaguchi- shinozaki K.Molecular responses to drought and cold stress.Curr Opin Biotechnol,1996,7:163-167
    [27]Shinozaki K,Yamaguchi-shinozaki K.Gene expressing and signal transduction in water stress response.Plant Physiol,1997,115:327-334
    [28]Zhu J K.Salt and drought stress signal transduction in plant.Annu Rev Plant Biol,2002,53:247-273
    [29]刘强,赵南明,Yamaguchi-shinozaki K.等.DREB转录因子在提高植物抗逆性中的作用.科学通报,2000,45(1):11-16
    [30]Urao T,Yakubo B,Yamaguchi S K,etc.Stress- responsive expression of gene for twocomponent response regulator- like proteins in Arabidopsis thaliana.FEBS Letters,1998,427(2):175-178
    [31]张劲松.谢灿.刘峰,等.植物中存在的新的两组分信号系统.科学通报.1999,44(6):628-632
    [32]张劲松,谢灿,吴晓雷,等.烟草两组分信号系统 NTHK2.科学通报,2000,45(20):2190-2195
    [33]李秋莉.植物甜菜碱合成酶的分子生物学和基因工程.生物工程进展,2002,22:84-86
    [34]郭北海,张艳敏,李洪杰,等.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报,2000,42(3):279-283
    [35]Kumar S,Dhingra A,Daniell H.Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells,roots,and leaves confers enhanced salt tolerance.Plant Physiol,2004,136(1):2843-2854
    [36]周宜君,冯金朝,马文文,等.植物抗逆分子机制研究进展.中央民族大学学报(自然科学版),2006,15(2):169-176
    [37]彭志红,彭克勤.胡家金,等.渗透胁迫下植物脯氨酸积累的的研究进展.中国农学通报,2002,18(4):80-83
    [38]Kishor P B K,Hong Z,Miao G H,etc.Overexpression of △~1-pyrroline-5-caroxylase synthase increase proline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995,108:1387- 1394
    
    [39] Ramanjulu S, Bartels D, Drought- and desiccation-induced modulation of gene expression in plant. Plant, cell and environment, 2002, 25:141- 151
    
    [40] Xu D, Duan X L, Wang B Y, etc. Expression of late embryogenesis abundant protein , HVA1 ,from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant physiol, 1996,110(1): 249-257
    
    [41] Kasuga M, Liu Q, Miura S, etc. Improving Plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotechnol, 1999,17: 287- 291
    
    [42] Griffith M, Ala P, Yang D S C, etc. Antifreeze potein poduced edogenously in winter rye leaves. Plant Physiol, 1992,100: 593- 596
    
    [43] McKersie B D, Chen Y, Beus M D, etc. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol, 1993, 103: 1155- 1163
    
    [44] Xiong L, Zhu J K. Abiotic stress signal transduction in plant: molecular and genetic perspectives. Physiol Plant, 2001,112:152- 166
    
    [45] Liu Q, Li J, Zhang G Y, etc. Isolation of cDNAs encoding two distinct transcription factors binding to DRE cis- acting element involved in cold and drought-induced expression of Arabidopsis rd29A gene. Tsinghua and Technology.1999,4(3) : 1151- 1159
    
    [46] 刘强,张贵友,陈受宜. 植物转录因子的结构与调控作用. 科学通报,2000,45 (14): 1465- 1474
    
    [47] Singh K B. Transcriptional regulation in plants: the importance of combinatorial control. Plant Physiol, 1998,118:1111- 1120
    
    [48] Liu L, White M J, MacRae T H. Transcription factors and their genes in higher plants. Eur J Biochem, 1999, 262:247- 257
    
    [49] Nantel A, Quatrano R S. Characterization of three rice basic/leucine zipper factors including two inhibitors of EmBp-1 DNA binding activity. J Bio Chem, 1996, 271: 31296- 31305
    
    [50] Takatsuji H. Zinc-finger transcription factors in plant. Cell Mol Life Sci, 1998, 54: 582- 596
    
    [51] Rounsley S D, Ditta G S, Yanofsky M F. Diverse roles for MADS box gene in Arabidopsis development. Plant Cell, 1995, 7:1259- 1269
    
    [52] Abe H, Yamaguchi-Shinozaki K, Urao T, etc. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid- regulated gene expression. Plant Cell, 1997, 9: 1859- 1868
    
    [53] Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet, 1997, 13: 67-73
    
    [54] Klinge B, Uberlacker B, Korfhage C, etc. ZmHox: a noval class of maize homeobox genes. Plant Mol Biol, 1996, 30: 439- 453
    
    [55] Riechmann J L, Meyerowitz E M. The AP2/EREBP family of plant transcription factors. Biol Chem, 1998, 379: 633- 646
    
    [56]Liu L, White M J. Transcription factors and their genes in higher plants. Eur J Biochem, 1999, 262: 247- 257
    
    [57] Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem, 1994, 55 (1): 32- 58
    
    [58] Lyck R, Harmening U, Hohfeld I, etc. Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta, 1997, 202(1): 117- 125
    
    [59] Klimczak L J, Collinge M A, Farina G, etc. Reconstitution of Arabidopsis casein kinase II from recombinant subunits and phosphorylation of transcription factor GBF1. Plant Cell, 1995, 7:105- 115
    
    [60] Schultz T F, Spiker S, Quatrano R S. Histone H1 enhances the DNA binding activity of the transcription factor EmBP-1. J Biol Chem, 1996, 271: 25742- 25745
    
    [61] Nantel A, Quatrano R S. Characterization of three rice basic/leucine zipper factor, including two inhibitors of EmEBP-1 DNA binding activity. J Biol Chem, 1996, 271: 31296- 31305
    
    [62] Bevan M, Bancroft I, Bent E, etc. analysis of 1.9Mb of contiguous sequences from chromosome 4 of Arabidopsis thaliana. Nature, 1998, 391: 585- 488
    
    [63] Meissner R C, Jin H, Cominelli E, etc. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell, 1999, 25:1827- 1840
    [64] Eulgum T, Rushton P J, Robatzek S. The WRKY superfamily of plant transcrioption factors. Trend Plant Sci, 2000, 5:199- 206
    
    [65] Maleck K, Levine A, Eulgem T. The transcription of Arabdopsis during systemic acquired resistance. Nat Genet, 2000, 26:403- 410
    
    [66] Asai T, Tena G, Plotnikova J. MAP kinase signaling cascade in Arabdopsis innate immunity. Nature, 2002, 415:977- 983
    
    [67] Bray E A.Molecular responses to water deficit. Plant Physiol, 1993,103: 1035- 1040
    [68] Shinozaki K, Yamaguchi-shinozaki K. Molecular response to drought and cold stress. Plant Biotechnology, 1996, 7:161- 167
    
    [69] Choi H, Hong J H, Ha J, etc. ABFs a family of ABA-responsive element binding factor. J Biol Chem, 2000, 275:1723- 1730
    
    [70] Uno Y, Furihata T, Abe H, etc. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity condition. Proc Natl Acad Sci USA, 2000, 97:11632- 11637
    [71] Kang J Y, Choi H I, Im M Y, etc. Arabidopsis basic leucine zipper proteins that mediate stress- responsive abscisic acid aignaling. Plant Cell, 2002,14: 343- 357
    [72] Okamuro J K, Caster B, Villarroel, etc. The AP2 domain of APETALA2 defines a large family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA, 1997, 94: 7076- 7081
    
    [73]Allen M D, Yamasaki K, Oheme- Takagi M, etc. A novel model of DNA recognition by a B- sheet revealed by the solution structure of the GCC- box binding domain in complex with DNA. EMBO J, 1998,17(18): 5484- 5496
    
    [74] Riechmann J L, Heard J, Martin G, etc. Arabidopsis transcription factors: genome- wide comparative analysis among eukaryotes. Science, 2000, 290: 2105- 2110
    [75] Sakuma Y, Liu Q, Dubouzet J G, etc. DNA-Binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration- and cold- inducible gene expression. BBRC, 2002, 290: 998- 1009
    [76] Kitajima S, Sato F. Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function.J Biochem,1999,125:1-8
    [77]Ohme- Takagi M,Suzuki K,Shinshi H.Regulation of ethylene transcription of defense genes.Plant Cell Physiol,2000,41(11):1187-1192
    [78]李丽娟,赵奂,李艳军,等.植物中的DREB类转录因子.首都师范大学学报(自然科学版),2006,27(5):61-67
    [79]田秀红.水稻DREB转录因子基因的克隆及相关研究,北京,中国农业大学生物学院,2004
    [80]Liu Q.,Kasuga M,Sakuma Y,etc.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression respectively in Arabidopsis.Plant Cell,1998,10:1391-1406
    [81]Yamaguchi- shinozaki K,Shinozaki K,Urao S,etc.Molecular cloning and characterization of nine cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana:Sequence analysis of one cDNA clone that encodes a putative transmembrance channel protein.Plant Cell Physiol,1992,33:217-224
    [82]Yamaguchi-shinozaki K,Shinozaki K.Arabidopsis DNA encoding two desiccationresponsive rd29 genes.Plant Physiol,1993,101:1119-1120
    [83]Yamaguchi-Shinozaki K,Shinozaki K.A novel cis- acting element in an Arabidopsis gene is involved in responsiveness to drought,low- temperature,or high- salt stress.Plant Cell,1994,6:251-264
    [84]Williams J,Bulman M,Hyttly A,etc.Characterization of a cDNA from Arabidopsis thaliana enconding a potential thiol protease whose expression is induced independently by wilting and abscisic acid.Plant Mol Biol,1994,25:259-270
    [85]Nordin K,Heino P,Palva E T.Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana(L.).Plant Mol Biol,1991,16:1061-1071
    [86]Gilmour S J,Thomashow M F.Cold acclimation and cold-regulated gene expression in ABA mutant of Arabidopsis thaliana.Plant Mol Bio1,1991,17:1233-1240
    [87]Gosti F,Bertauche N,Vartanian N,etc.Abscisic acid-dependent and-independent regulation of gene expression by progressive drought in Arabidopsis thaliana.Mol Gen Genet, 1995,246: 10-18
    [88] Wang H, Datla R, Georges F, etc. Promoters form kin1 and cor6.6,two homologous Arabidopsis thaliana gene: transcriptional regulation and gene expression induced by low temperature, ABA osmoticum and dehydration. Plant Mol Biol, 1995, 28: 605- 617
    [89] Baker S S, Wilhelm K S, Thomashow M F. 5'- region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold, drought and ABA- regulated gene expression. Plant Mol Biol, 1994, 24: 701- 713
    [90] White T C, Simmonds D, Donaldson P, etc. Regulation of BN115, a low-temperature-responsive gene from winter Brassica napus. Plant Physiol, 1994,106: 917-928
    [91] Stockinger E T, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain- containing transcriptional activator that binds to the C- repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94:1035- 1040
    [92] Gilmour S J, Zarka D G, Stockinger E J, etc. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998,16:433- 442
    [93] Mei W Q, Lei J, Xu Y, etc. Characterization of three Arabidopsis AP2/EREBP family transcription factors involved in ABA sensitivity, freeze and salt tolerance. Chinese Science Bullenit, 2007, 52(13): 1746-1753
    [94] Chinnusamy V, Ohta M, Kanrar S, etc. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Evelopment, 2003, 17: 1043-1054
    [95] Novillo F, Alonso J M, Ecker J R, etc. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and play a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2004,101(11): 3985- 3990
    [96] Zhang J Y, Broeckling C D, Blancaflor E B, etc. Overexpression of WXP1, a putative Medicago truncatula AP2 domain containing transcription factor gene, increase cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa ( Medicago sativa). Plant J, 2005,42:689-707
    [97]韩兆雪,曹墨菊,朱祯,等.DREB基因双T-DNA植物表达载体的构建及验证.分子植物育种,2004,2(1):7-12
    [98]刘录祥,赵林姝,梁欣欣,等.基因枪法获得逆境诱导转录因子DREBIA转基因小麦的研究.中国生物工程杂志,2003,23(11):53-56
    [99]Fowler S,Thomashow M F.Arabidopsis transcriptome frofiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway.Plant Cell,2002,14:"1675-1690
    [100]Choi D W,Rodriguez E M,Close T J.Barley cbf3 gene identification,expression pattern,and map location.Plant Physiol,2002,129:1781-1787
    [101]Dubouzet J G,Sakuma Y,Ito Y,etc.OsDREB genes in rice,Oryza sativa L.,encode transcription activators that function in drought-,high- salt- and cold- responsive gene expression.Plant J,2003,33:751-763
    [102]Mizuno S,Hirasawa Y,Sonoda M,etc.Isolation and characterization of three DREB/ERF- type transcription factors from melon(Cucumis melo).Plant Science,2006,170:1156-1163
    [103]Tang M J,Lu S Y,Jing YX,etc.Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea.PPB,2005,43:233-239
    [104]Gamboa M C,Rasmussen-Poblete S,Valenzuela P,etc.Isolation and characterization of a cDNA encoding a CBF transcription factor from E.globules.PPB,2007,45:1-5
    [105]Chen M,Wang Q Y,Cheng X G,etc.GmDREB2,a soybean DRE-binding transcription factor,conferred drought and high-salt tolerance in transgenic plants.BBRC,2007,353:299-305
    [106]Huang B,Jin L G,Liu J Y.Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton(Gossypium hirsutum).Journal of Plant Physiology,2008,165:2.14-223
    [1]耿华珠.中国苜蓿.北京,中国农业出版社.1995:1-5
    [2]韩清芳.不同苜蓿(Medicago Sativa)品种抗逆性、生产性能及品质特征研究,阳陵,西北农林科技大学,2003
    [3]黄文惠,刘自学.概论苜蓿的分布和发展.中国苜蓿,中国农业出版社,1999,2-7
    [4]孟昭仪.苜蓿研究工作回顾,王成章,首届中国苜蓿发展大会论文集,北京,2001,32-40
    [5]陈自胜,徐安凯.论苜蓿在优化种植业结构中的作用和对策.当代生态农业,2001,(3):117-119
    [6]翟凤林,曹鸣庆,等译.植物的耐盐性及其改良,北京:农业出版社,1989:341-355
    [7]王继和.甘肃治沙理论与实践,兰州:兰州大学出版社,1999:169-174
    [8]董平详.试述黄土丘陵沟壑区种草养畜与水土保持.国土与自然资源研究.1989(4):293-295
    [9]苏加楷.中国苜蓿育种的回顾与展望,王成章,首届中国苜蓿发展大会论文集,北京,2001,5
    [10]张健行.李鸿详,泽.美国的苜蓿产业(一),中国乳业,2002(5):35-37
    [11]张振霞,符义坤,储成才.豆科牧草基因工程研究进展.遗传,2002,24(5):607-612
    [12]Deck M,Kiss G B,Korkz C,etc.Transformation of Medicago by Agrobacterium mediated gene transfer.Plant Cell Reports,1986,5:97-100
    [13]Webb K J.Transformation of forage legumes using Agrobacterium tmuefaciens.Thero Apple Genet,1986,72:53-58
    [14]Chilton M D,Drummond M H,Merlo D J,etc.Stable incorporation of plasmid DNA into higher plant cells:the molecular basis of crown gall tumorigenesis.Cell,1977,11:263-271
    [15]周兴龙,杨青川,王凭青,等.苜蓿转基因研究进展.重庆大学学报(自然科学版),2005,28(4):126-130
    [16]Reich T J,Lyer V N,Mikib L.Efficient transformation of Alfalfa protoplasts by the intranuclear microinjection of Ti- plasmids.Bio Technology,1986,4:1001-1004
    [17]黄绍兴,吕德扬,绍嘉红,等.紫花苜蓿原生质体转基因植株再生.科学通报,1991,17:1345-1347
    [18]Pereira L.F.Erickson L.Stable transformation of alfalfa by particle bombardment.Plant Cell Reports,1995,14:290-295
    [19]Zhou G Y,Weng J,Zeng Y,etc.Introduction of exogenous DNA into cotton embryos.Meth Enzymol,1983,101:433-481.
    [20]Ohta Y.High-efficiency genetic transformation of Maize by a mixture of pollen and exogenous DNA.Proc Natl Acad Sci USA,1986,83:715-719
    [21]Dela P A,Lorz H,Schell J.Transgenic rye plants obtained by injecting DNA into young floral tillers.Nature,1987,325:274-276
    [22]曾君祉,吴有强.王东江,等.花粉管通道(或运载)法转化的植株后代遗传表现及转化机理的探讨,科学通报,1998,43(6):561-566
    [23]谢道昕,范云六,倪万潮,等.苏云金杆菌(Bacillus thuringiensis)杀虫晶体蛋白基因导入棉花获得转基因植株.中国科学(B辑),1991(4):367-373
    [24]哈斯阿古拉,牛一丁,张丽,等.花粉管通道法转基因技术在甜瓜品种河套蜜瓜上的应用.内蒙古大学学报(自然科学版),2007,38(4):419-423
    [25]金淑梅.水稻类金属硫蛋白(rgMT)基因功能解析及对苜蓿的转化,哈尔滨,东北林业大学,2006
    [26]Cobon D H,Suter G R,Connelly P T,etc.The residual effects of methionine supplementation on the wood growth performance of grazing sheep.Proc Aust Soc Anim Prod,1988,17:383
    [27]吕德扬,曹学远,唐顺学,等.紫花苜蓿外源基因共转化植株的再生.中国科学(C辑),2000,30(4):342-348
    [28]Bellucci M,Lazzari B,Viotti A.Differential expression of a-zero gene in medicago sativa,Lotus Corniculatus and Nicttiana Tabacum.Plant Science,1997,127:161-169
    [29]]Baucher M,Marie A B V,Brigitte C.Down- regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa and the effect on lignin compositon and digestibility.Plant Mol Biol.1999,39:437-477
    [30]Khoudi H,Laberge S,Ferullo J M.Production of a diagnostic monoclonal antibody in perennial alfalfa plants.Biotechnology and Bioengineering.1999,64:135-143
    [31]Santos M,Wigdorovitz A,Trono K.A novel methodology to develop a foot and mouth disease virus(FMDV) peptide- based vaccine in transgenic Plants.Vaccine,2002,20;1141-1147
    [32]Wigdorovitz A,Mozgov M,Santos M J,etc.Protective lactogenic immunity coned by an edible peptide vaccine to bovine rotavirus produced in transgenic plants.J Gen Virol,2004,85(7):1825-1832
    [33]董江丽.利用转基因苜蓿生产轮状病毒可食用疫苗研究.北京,中国农业大学生物学院,2005
    [34]Sneh B,Koncz C,Zilberstein A.A synthetic Cryl gene,encoding a Bacillus thuringiensis delta-endotoxin,confers Spodoptera resistance in alfalfa and tobacco.Proc Natl Acad Sci USA,1996,93:15012-15022
    [35]Hill K K,Jarvis-Eagan N,Halk E L,etc.The development of virus resistant alfalfa(Medicago sativa L.).Bio Technology,1991,9(4):373-377
    [36]McKersie B D,Chen Y,Beus M D,etc.Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa(Medicago sativa L.).Plant Physiol,1993,103:1155-1163
    [37]韩利芳,张玉发.烟草MnSOD基因在保定苜蓿中的转化.生物技术通报,2004,(1):39-46
    [38]Ramanjulu S,Bartels D,Drought- and desiccation-induced modulation of gene expression in plant.Plant,cell and environment,2002,25:141-151
    [39]王瑛,朱宝成,孙毅,等.外源lea3基因转化紫花苜蓿的研究.核农学报,2007,21(3):249-252
    [40]Zhang J Y,Broeckling C D,Blancaflor E B,etc.Overexpression of WXP1,a putative Medicago truncatula AP2 domain containing transcription factor gene,increase cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa(Medicago sativa).Plant J,2005,42:689-707
    [41]Winicov I,Deuteh C E.Characterization of genes for photosynthesis transcription to salt tolerance of Alfalfa cells.Plant Cell Physiol.1994,31:1155-1161
    [42]Deuteh C E,Winicov I.Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline rich cell wall protein.Plant Mole Biol,1995,27:411-418
    [43]Winicov I,Bastola D R.Salt tolerance in crop plants:new approaches throughtissue culture and gene regulation,molecular biology of plants under environmental stress,proceedings of aninternational conference.Poznan,Poland,Acta-Physiologiae-Plantarum.1997,19(4):435-449
    [44]Ginzberg I,Stein H,Kapunik Y.Isolation and characterization of two different cDNAs of delta(1)-pyrroline-5-carboxylate synthase in alfalfa,transcriptionally induced upon salt stress.Plant Mol Biol,1998,38(5):755-764
    [45]Munnik T,Ligterink W,Meskiene I,etc.Distinct osmosensing protein kinase pathways are involved in signaling moderate and severe hyper-osmotic stress.Plant J,1999,20:381-388
    [46]Kiegerl S,Cardinale F,Siligan C.SIMKK,a mitogen-activated protein kinase(M APK),is a specific activator of the salt stress-induced MAPK,SIMK.Plant Cell,2000,12(11):2247-2258
    [47]杨青川,孙彦,康俊梅.紫花苜蓿耐盐相关苜蓿克隆研究进展.草地学报,2005,13(3):253-256
    [1]Liu Q,Kasuga M,Sakuma Y,etc.Two transcription factor:DREB1 and DREB2,with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression in Arabidopsis.Plant Cell,1998,10:1391-1406
    [2]Kasuga M,Liu Q,Miura S,etc.Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor.Nature Biotechnology,1999,17:287-291
    [3]Yamaguchi-Shinozaki K,Shinozaki K,Urao S,etc.Molecular cloning and characterization of nine cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana1 Sequence analysis of one cDNA clone that encodes a putative transmembrance channel protein.Plant Cell Physiol,1992,33:217-224
    [4]Haregawa P M,Bressan R A,Zhu J K,etc.Plant cellular and molecular responses to high salinity.Annu Rev Plant Physiol Plant Mol Biol,2000,51:463-499
    [5]Shinozaki K,Yamaguchi-Shinozaki K.Molecular responses to dehydration an low temperature:difference and cross-talk between two stress signaling pathways.Curr Opin Plant Biol,2000,3:217-233
    [6]Thomashow M F.Plant cold acclimation:freezing tolerance gene and regulatory mechanisms.Annu Rev Plant Physiol Plant Mol Biol,1999,50:571-599
    [7]Thomashow M F.Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance.In:Meyerowitz E,Somerville C,etc.Arabidopsis,Cold Spring Harbor,Cold Spring Harbor Laboratory Press,1994:807-834
    [8]Shinozaki K,Yamaguchi-Shinozaki K.Molecular responses to drought and cold stress.Curr Opin Biotechnol,1996,7:161-167
    [9]Shinozaki K,Yamaguchi-Shinozaki K.Gene expressing and signal transduction in water stress response.Plant Physiol,1997,115:327-334
    [10]Zhu J K.Salt and drought stress signal transduction in plant.Annu Rev Plant Biol,2002,53:247-273
    [11]Fowler S,Thomashow M F.Arabidopsis transcriptome frofiling indicates that multiple regulatoey pathways are activated during cold accimation in addition to the CBF cold response pathway,Plant Ce11,2002,14:1675-1690
    [12]Yamaguchi-shinozaki K,Shinozaki K.Arabidopsis DNA encoding two desiccationresponsive rd29 genes.Plant Physiol,1993,101:1119-1120
    [13]Yamaguchi-Shinozaki K,Shinozaki K.A novel cis- acting element in an Arabidopsis gene is involved in responsiveness to drought,low- temperature,or high- salt stress.Plant Cell,1994,6:251-264
    [14]Yamaguchi Shinozaki K,Shinozaki K.Characterization of the expression of a desiccation- responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants.Mol Gen Genet,1993,236:331-340
    [15]魏群.分子生物学实验指导,北京,高等教育出版社,1999
    [16]萨姆布鲁克.拉塞尔,著.黄培堂,等译.分子克隆实验指南,第三版,科学出版社,2002
    [1]Liu Q,Kasuga M,Sakuma Y,etc.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression respectively in Arabidopsis.Plant Cell,1998,10:1391-1406
    [2]Choi D W,Rodriguez E M,Close T J.Barley cbf3 gene identification,expression pattern,and map location.Plant Physiol,2002,129:1781-1787
    [3]Dubouzet J G,Sakurna Y,Ito Y,etc.OsDREB genes in rice,Oryza sativa L.,encode transcription activators that function in drought-,high- salt- and cold- responsive gene expression.Plant J,2003,33:751-763
    [4]Mizuno S,Hirasawa Y,Sonoda M,etc.Isolation and characterization of three DREB/ERF- type transcription factors from melon(Cucumis melo).Plant Science,2006,170:1156-1163
    [5]Tang M J,Lu S Y,Jing Y X,etc.Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea.PPB,2005,43:233-239
    [6]Gamboa M C,Rasmussen-Poblete S,Valenzuela P,etc.Isolation and characterization of a cDNA encoding a CBF transcription factor from E.globules.PPB,2007,45:1-5
    [7]Chen M,Wang Q.Y,Cheng X G,etc.GmDREB2,a soybean DRE-binding transcription factor,conferred drought and high-salt tolerance in transgenic plants.BBRC,2007,353:299-305
    [8]Huang B,Jin L G,Liu J Y.Identification and characterization of the novel gene GhDBP2encoding a DRE-binding protein from cotton(Gossypium hirsutum).Journal of Plant Physiology,2008,165:214-223
    [9]Jaglo K R,Kleff S,Amundsen K L,etc.Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species.Plant Physiol,2001,127(3),910-917
    [10]萨姆布鲁克,拉塞尔.黄培棠等译,分子克隆实验指南.第三版.北京:科学出版社,2002,487-522
    [11]安宝燕.紫花苜蓿Na~+/H~+逆向转运蛋白基因的分离与鉴定,泰安,山东农业大学生命科学学院,2005
    [12]Sakuma Y,Liu Q,Dubouzet J G,etc.DNA-Binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration- and cold- inducible gene expression.BBRC,2002,290:998-1009
    [1]萨姆布鲁克,拉塞尔.黄培棠等译,分子克隆实验指南.第三版.北京:科学出版社,2002,487-522
    [2]安宝燕.紫花苜蓿Na+/H+逆向转运蛋白基因的分离与鉴定,泰安:山东农业大学生命科学学院,2005
    [3]Sakuma Y,Liu Q,Dubouzet J G,etc.DNA-Binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration- and cold- inducible gene expression.BBRC,2002,290:998-1009
    [4]Liu Q,Kasuga M,Sakuma Y,etc.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature-responsive gene expression,respectively,in Arabidopsis.Plant Cell,1998,10:1391-1406
    [5]Choi D W,Rodriguez E M,Close T J.Barley cbf3 gene identification,expression pattern,and map location.Plant Physiol,2002,129:1781-1787
    [6]刘录祥,赵林姝,梁欣欣,等.基因枪法获得逆境诱导转录因子 DREB1A 转基因小麦的研究.中国生物工程杂志,2003,23(11):53-56
    [7]韩兆雪,曹墨菊,朱祯,等.DREB基因双T-DNA植物表达载体的构建及验证.分子植物育种,2004,2(1):7-12
    [8]阳文龙,刘敬梅,刘强,等.高羊茅DREB类转录因子基因的分离及鉴定分析.核农学报,2006,20(3):187-192
    [1]马晖玲,卢欣石,曹志中,等.紫花苜蓿基因转化的影响因素分析.草业学报,2006,15(5):94-102
    [2]耿华珠.中国苜蓿.北京:中国农业出版社,1995
    [3]危晓微,蔡丽娟,李仁敬.紫花苜蓿组织培养及其再生植株.新疆农业科学,1999,(2):46-48
    [4]杨起简,周禾,孙彦,等.紫花苜蓿的愈伤组织诱导及组织培养.北京农学院学报,2004,19(2):28-30
    [5]梁慧敏,夏阳,王太明.植物抗寒冻、抗旱、耐盐基因工程研究进展.草业学报,2003,12(3):1-7
    [6]吕德扬,范云六,俞梅敏,等.苜蓿高含硫氨基酸蛋白转基因植株再生.遗传学报,2000,27(4):331-337
    [7]吕德扬,曹学远,唐顺学,等.紫花苜蓿外源基因共转化植株的再生.中国科学(C辑),2000,30(4):342-348
    [8]胡张华,陈火庆,吴关庭,等.高羊茅悬浮细胞系的建立及绿色植株的高频再生.草业学报.2003.12(3):95-99
    [9]李望丰,吕德扬,刘艳芝等.诱导苜蓿胚性愈伤组织分化和再生,吉林农业科学,2002,27(2):15-16
    [10]黄绍兴,吕德扬.紫花苜蓿原生质体转基因植株再生.科学通报,1991,36(17):1345-1348
    [11]张万军,王涛.紫花苜蓿愈伤成苗高频再生体系的建立及其影响因子的研究.中国农业科学,2002,35(12):1579-1583
    [12]王凭青,周兴龙,杨青川,等.紫花苜蓿高频再生组织培养体系建立.重庆大学学报,2005,28(2):132-136
    [13]Dudits D,Bogre L,Guoryey J.Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro.Journal of Cell Science,1991,99:475-484
    [14]葛军.紫花苜蓿组织培养再生体系的研究,北京,北京林业大学,2004
    [15]黄远新,玉永雄,胡艳.南方紫花苜蓿不同外植体离体培养的研究.中国草地,2003,25(3):42-47
    [16]金淑梅,管清杰,罗秋香,等.苜蓿愈伤组织高频再生遗传和转化体系的建立.分子植物育种,2006,4(4):571-578
    [17]Margareta D.Donor tissue and culture condition effects on mesophyll protoplasts of Medicago sativa.Plant Cell,Tissue and Organ Culture,1987,9:217-228
    [1]Potrykus.I.Gene-transfer methods for plants and cell-cultures.Ciba Foundation Symposia,1990,154:198-212
    [2]Zhou G Y,Weng J,Zeng Y,etc.Introduction of exogenous DNA into cotton embryos.Meth Enzymol,1983,101:433-481
    [3]龚蓁蓁,沈慰芳,周光宇,等.受粉后外源DNA导入植物技术--DNA 通过花粉管通道进入胚囊.中国科学(B辑),1988(6):611-614
    [4]Luo Z X,Wu R.A simple method for the transformation of rice via the pollen-tube pathway.Plant Mol Bio Rep,1988,6(3):165-174
    [5]曾君祉,吴有强,王东江,等.花粉管通道(或运载)法转化的植株后代遗传表现及转化机理的探讨.科学通报,1998,43(6):561-566
    [6]谢道昕,范云六,倪万潮,等.苏云金杆菌(Bacillus thuringiensis)杀虫晶体蛋白基因导入棉花获得转基因植株.中国科学(B辑),1991(4):367-373
    [7]哈斯阿古拉,牛一丁,张丽,等.花粉管通道法转基因技术在甜瓜品种河套蜜瓜上的应用.内蒙古大学学报(自然科学版),2007,38(4):419-423
    [8]黄文惠,刘自学.概论苜蓿的分布和发展.中国苜蓿,1995,2-7
    [9]顾垒,毕玉芬.转基因苜蓿研究的现状和前景.草原与草坪.2004,(1):17-21
    [10]Hajdukiewicz P,Svab Z,Maliga R The small,versatile pPZP family of agrobacterium binary vectors for plant transformation.Plant Mol Bio,1994,25:989-994
    [11]萨姆布鲁克,拉塞尔.分子克隆实验指南.黄培堂等译.第三版.北京:科学出版社,2002.26-35
    [12]安宝燕.紫花苜蓿Na~+/H~+逆向转运蛋白基因的分离与鉴定.泰安:山东农业大学生命科学学院,2005
    [13]耿华珠,吴永敷,曹致中,等.中国苜蓿.北京:中国农业出版社,1995.25-37
    [1]金淑梅.水稻类金属硫蛋白(rgMT)基因功能解析及对苜蓿的转化,哈尔滨,东北林业大学,2006
    [2]Liu Q,Kasuga M,Sakuma Y,etc.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression respectively in Arabidopsis.Plant Cell,1998,10:1391-1406
    [3]刘强,赵南明,Yamaguchi-shinozaki K,等.DREB转录因子在提高植物抗逆性中的作用.科学通报,2000,45(1):11-16
    [4]Hajdukiewicz P,Svab Z,Maliga P.The small,versatile pPZP family of agrobacterium binary vectors for plant transformation.Plant Mol Bio,1994,25:989-994
    [5]王关林,方宏筠.植物基因工程(第二版),北京,科学出版社,2002,776-777
    [6]安宝燕.紫花苜蓿Na~+/H~+逆向转运蛋白基因的分离与鉴定,泰安,山东农业大学生命科学学院.2005 AP2 domain-containin8 transcriptional activator that binds to the C-repeat/DRE,a cis-actinG DNA regulatory element that stimulates transcription in response to low temperature and water deficit.Proc Natl Acad Sci USA,1997,94:1035-1040
    [8]Gilmour S J,Zarka D G,Stockinser E J,etc.Low temperature resulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression.Plant J,1998,16:433-442
    [9]Kasusa M,Liu O.,Miura S,etc.Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor.Nature Biotechnology,1999,17:287-291
    [10]Choi D W,Rodriguez E M,Close T J.Barley cbf3 gene identification,expression pattern,and map location.Plant Physiol,2002,129:1781-1787
    [11]刘录祥,赵林姝,梁欣欣,等.基因枪法获得逆境诱导转录因子DREB1A转基因小麦的研究.中国生物工程杂志,2003,23(11):53-56
    [12]韩兆雪,曹墨菊,朱祯,等.DREB基因双T-DNA植物表达载体的构建及验证.分子植物育种,2004,2(1):7-12
    [13]阳文龙,刘敬梅,刘强,等.高羊茅DREB类转录因子基因的分离及鉴定分析.核农学报,2006,20(3):187-192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700