用户名: 密码: 验证码:
红壤表土团聚体稳定性特征及其对坡面侵蚀过程的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国南方红壤丘陵区水热资源丰富,在农业生产和经济发展中占有重要地位。针对该地区严重的土壤侵蚀退化,开展红壤结构特征与坡面侵蚀过程互馈机理研究,并就二者定量关系进行探讨,对合理利用红壤资源具有重要意义。本文基于团聚体破碎理论,以我国中亚热带丘陵区第四纪红粘土、花岗岩和泥质页岩等典型母质发育红壤为研究对象,通过控制土壤湿润速度、初始水分含量和降雨特征等条件,系统分析了降雨条件下红壤表土团聚体的破坏过程、机理,以及侵蚀过程响应。此外,以野外原位试验数据为基础,定量研究了红壤坡面侵蚀、入渗与团聚体稳定性关系,揭示了土壤团聚体破碎机理与坡面侵蚀过程之间的内在联系。取得的主要结论有:
     1、在采用传统湿筛法指标衡量团聚体稳定性的基础上,结合能区分降雨条件下团聚体破碎方式的LB法,从不同角度对团聚体的稳定性作了评价;运用相对消散指数(RSI)和相对机械破碎指数(RMI)区分了红壤团聚体对不同破碎机制的敏感性。同时,针对红壤独特的成土条件及理化性质,分析了坡耕地条件下影响红壤团聚体稳定性的主要因素及其作用机制,其中对粘粒、铁铝氧化物和有机质与团聚体稳定性之间关系进行了重点探讨。
     (1)红壤团聚体稳定性特征。湿筛法与LB法测定团聚体稳定性结果均表明:第四纪粘土红壤团聚体稳定性最高,花岗岩红壤次之,泥质页岩红壤团稳性最低;不同初始粒径团聚体稳定性不同,在不同处理中,总体趋势是团聚体的初始粒径越小,稳定性越高。
     (2)红壤团聚体稳定机制。不同破碎机制中,所有土壤团聚体稳定性排序均为快速湿润<预湿振荡<慢速湿润。其中,第四纪粘土红壤对消散作用较为敏感,花岗岩红壤对机械破碎作用较为敏感,泥质页岩红壤对上述两种作用均很敏感。可见,快速湿润引起的消散作用和外界应力引起的机械振荡作用,是红壤团聚体破碎的主要机制。
     (3)红壤团聚体稳定性与土壤性质关系。红壤团聚体稳定性与土壤有机质、腐殖酸含量及其组成之间相关性较低,与铁铝氧化物及粘粉粒含量之间呈显著正相关,说明在有机质含量较低的红壤中,无机胶体在保持团聚体稳定性上起主导作用;土壤中粘粒一方面作为胶结物质能增强团聚体稳定性,另一方面能增强湿润过程消散作用而降低团聚体稳定性。此外,腐殖酸含量及其组成与PAD>2mm(团聚体分散度)呈显著负相关,说明腐殖酸对较大粒径团聚体的形成及稳定机制有重要作用。
     2、基于团聚体破碎理论,通过控制湿润速度、初始粒径和降雨特征等条件,研究了降雨条件下红壤表土团聚体的破坏过程、结果和机理,探讨了团聚体稳定性及不同破碎机制对坡面侵蚀过程的影响;结合室内模拟试验结论,通过比较团聚体稳定性表征参数与坡面侵蚀过程相关性程度,首次提出针对侵蚀机理的红壤团聚体稳定性特征新指标—K_a。
     (1)快速湿润引起的消散作用对侵蚀过程影响。所有供试土壤中,径流强度随湿润速率增大而增大;不同粘粒含量土壤对湿润速率响应过程不同,粘粒含量越高,消散作用越明显,产流强度越小;粘粒含量越低,消散作用越小,产流强度越大。产沙过程中,除土壤GT2外,湿润速率对其它土壤坡面侵蚀率均有显著作用。相较于坡面产流过程,侵蚀率受团聚体稳定性与湿润速率的影响更为明显。快速湿润处理中侵蚀泥沙<0.25mm颗粒所占比例较高,平均重量直径小于慢速湿润处理,这与表土结皮层的形成有关。
     (2)雨滴打击引起的团聚体机械破坏作用对侵蚀过程的影响。在团聚体稳定性较低、对机械破碎作用敏感的红壤中,雨滴打击对径流的影响主要是由土壤表层团聚体结构的破坏引起的;而在团聚体稳定性较高、对机械破碎作用不甚敏感的红壤中,雨滴打击对径流的影响主要表现为对表层土壤的压实作用。纱网覆盖处理侵蚀量均小于裸土降雨侵蚀量,但只有在团聚体稳定性较弱的红壤中二者差异达到显著。裸土条件下侵蚀泥沙MWD显著低于纱网覆盖处理,说明即使在团聚体稳定性较高的红壤中,雨滴击溅分散对泥沙的分选作用仍然较为显著。
     (3)不同粒径团聚体坡面侵蚀过程比较。团聚体粒径与径流强度和侵蚀量有很好的相关性,<2mm团聚体的径流强度和侵蚀量均大于其它两种粒径;由于降雨过程中表土结构和排列紧实程度差异,<2mm团聚体侵蚀泥沙的平均重量直径明显大于其它两种粒径。
     (4)本文中提出的团聚体稳定性特征值K_a,与坡面侵蚀过程参数呈显著或极显著相关;此外,K_a集合了团聚体对不同破碎机制的敏感性,具备较强的物理意义。可见,K_a不仅能够表征红壤团聚体稳定性的特殊性,而且在一定层面上解释了红壤侵蚀过程机理,是衡量红壤团聚体稳定性与可蚀性的良好指标。
     3、针对红壤丘陵区域严重的季节性干旱和水土流失现状,以团聚体破碎理论和本文室内研究结论为基础,对野外坡面侵蚀过程与团聚体稳定性关系进行了较为深入的探讨。结果表明,在野外尺度上红壤团聚体稳定性依然是影响坡面侵蚀的重要因素,并与径流强度、侵蚀率、入渗率、泥沙粒径等侵蚀参数显著相关。利用Horton入渗模型和WEPP细沟间侵蚀模型为框架,建立了侵蚀预测方程,结果显示新建立方程能较为准确的预测红壤坡面入渗量和侵蚀量。在侵蚀量预测方程中,不包含径流因子的方程式D_i=0.23K_aI~2(1.05-0.85exp~(-4sinθ))计算方法简单、结果可靠,具有更强的实用性和适用性。此外,该结论也扩展了团聚体稳定性特征参数作为土壤可蚀性指标的适用范围。
Hilly red soil region are abundant in hydrothermal resources, and play an important role in agriculture and economy development. Improper land use and soil management, however, have caused severe soil erosion by water of red soils, and is one of the most important environmental problems in China. Analysis of soil structure characteristic and soil erosion is very important for comprehensive watershed management and sustainable development. Laboratory and field experiments of rainstorm simulations with different initial condition and rainfall characteristic were conducted on typical red soils derived from Quaternary red clay, Shale and Granite, and the soil aggregate stability was determined by the wet-sieving and LB-method. The improved formulae for assessing interrill erosion rate were established by incorporating the aggregate characteristic index in the prediction evaluations for soil erodibilites of red soils. The results of this study have promoted the development of soil erosion process research and provided scientific bases for the establishment of soil and water conservation in hilly red soil region. The main results were listed as following:
     1. The aggregates of selected red soils were used to understand the stability and the breakdown mechanisms by applying wet-sieving and LB-method. The relative slaking index (RSI) and the relative mechanical breakdown index (RMI) were used to determine the resistance to slaking and the mechanical breakdown of the soils of this study. Also, the relationship between aggregate stability and some soil properties, such as different forms of Fe oxides and Al oxides, organic matters, CEC and clay content were studied in condition of cultivated land.
     (1) The results of wet-sieving and LB-method indicated that the aggregate stability was highest in soils derived from Quaternary red clay, moderate in Granite, and lowest in Shale. There was some discrepancy in aggregate stability with different initial aggregate size, however, the stability of aggregate was found to be decreased with the increase of initial size in the selected soils.
     (2) The range of MWD (mean weight diameter) values differed widely, and values did not always show the same trend across the three treatments in LB-method. Across all three treatments, the MWD ranked in the order of fast wetting (FS), Wet Stirring (WS), and slow wetting (SW). The MWD_(FW) and MWD_(WS) was more smaller than MWD_(SW), indicating that the slaking and the mechanical breakdown were the main breakdown mechanisms in red soils. However, the vulnerabilities of slaking and mechanical breakdown were different in study soils. The soils derived from Quaternary red clay showed relatively high values in RSI and low in values RMI, while the soil derived from Granite showed a low RSI value and a high RMI value. The soils derived from Shale showed both high values in RSI and RMI.
     (3) Due to the subtropical conditions of red soil region, red soils were heavily weathered and characterized by enrichment of sesquioxide and poor in soil organic matter. Hence, the effect of soil organic matter and humus acid on aggregate stability was relatively weak, and clay content and sesquioxide were the most important bonding agents for aggregation of red soils. However, an increase in clay content in the soil might have two opposing effects on aggregate stability: (i) clay acted as a cementing material that holds particles together in aggregate and (ii) an increase in clay content could also increase slaking forces during soil wetting. Moreover, the parameter of PAD > 2 mm (percentage of aggregate disruption) was highly related to humus acid, indicating that humus acid was relatively important in formed processes of aggregates in large size.
     2. The study was designed to reveal the effects of aggregate breakdown mechanisms on interrill erosion dynamics. Based on laboratory experiments, the effects of slaking force, mechanical breakdown, and initial size of aggregate on the interrill erosion processes were discussed. A new aggregate instability index (K_a), which could reflect the main mechanisms of aggregate breakdown in interrill erosion process, was proposed to measure the erodibility of red soils.
     (1) For all soils, the runoff rates followed the order slowing wetting (2 mm/h) < medium wetting (10 mm/h) < fast wetting (60 mm/h). However, magnitude of changes in runoff rate depended on soil aggregate stability and texture. Based on runoff data, soils were divided into different groups lay on their response to wetting rate. The effect of wetting rate on runoff generation was significant in soils with high clay content while negligible in soils with low clay content. A significant effect of wetting rate on soil loss was found except soil GT2. The soil loss was affected by slaking and aggregate stability in two ways (runoff production and detachment), and was more sensitive than runoff amount to wetting rate. The content of sediment fragment in diameter of < 0.25 mm was highest in the fast wetting treatment, also, the MWD was found to be lower than that in the slow wetting treatment, which was highly related to the form of surface sealing.
     (2) In present study, the runoff rate curves of all soils departed from each other evidently, indicting that the raindrop impact affected runoff generation essentially. The soils (SH2, GT1, and GT2) showed low aggregate stabilities and high susceptibilities to mechanical breakdown, and the aggregates of these soils were easily destroyed by rainfall impact to produce considerable fine particles. The aggregates in soil QT1, QT2, and SH1 were stable and could resistant the raindrop impact, however, the soil surface also became compacted. In this respect the main effect of rain impact was to produce sealing of the surface by redistributing already-detached material, rather than causing aggregate breakdown. The soil loss without raindrop impact was higher than that with raindrop impact, however, the difference between them was merely significant in soil with low aggregate stability. The MWD of sediment was significantly lower under raindrop impact, indicating that the dispersing effect of raindrop impact was essential on selecting sediment even though in soils with high aggregate stability.
     (3) Aggregate size <2, 2 to 3, 3 to 5 mm of each soil were exposed to simulated rainfall with an intensity of 60 mm/h. There was a significant interaction between soil loss, runoff rate and aggregate size. The results showed that as clod size increased, the runoff rate decreased. The small aggregate size was likely to form a seal, consequently, the soil loss increased with decreasing aggregate size. The largest MWD of sediment materials were found in aggregate size < 2 mm of each soil.
     (4) The new aggregate stability index (K_a), reflected both the susceptibility of soil aggregates to slaking in sheet erosion as well as the detachment of soil material by raindrop impact. The simple correlation coefficients between the interrill soil loss and parameters of aggregate stability were calculated and the soil loss was found to be most strongly related to the new index, K_a. It could be thus supported that K_a was a suitable parameter to evaluate the interrill erosion in red soils with different rainfall conditions. However, all the erosion tests were accomplished in laboratory and the soil samples suffered the effect of sieving and rehandling. Therefore, the credibility of K_a to assess the interrill erosion needed to be validated in the field.
     3. Due to serious soil loss by water and seasonal drought in red soil region, this study was designed to investigate the relationship between aggregate stability and slope erosion. The result showed that the state of aggregate affected erosion process essentially, and aggregate stability was found to be highly related to runoff rate, erosion rate, and infiltration rate in the field scale. By introducing K_a into the WEPP model frame as a substitute for soil erodibility factor, statistical formulae for estimating soil loss were established with good correlation coefficient. It was concluded that these formulae based on the stability index, K_a, had the potential to improve methodology for assessing interrill erosion rates for the subtropical Chinese red soils. Considering the time-consuming and costly experimentation of runoff rate measurements, the equation without runoff rate,D_i =0.23K_aI~2(1.05 -0.85 exp~(-4sinθ)) , was the more convenient and effective one topredict interrill erosion rates on red soils of subtropical China. These results extend the validation of soil aggregation characterization as an appropriate indicator of soil susceptibility to runoff and erosion in red soils, especially in subtropical China where intense rainfall is frequent. They also confirm that simple laboratory determination can provide data closely correlated with those resulting from more expensive or time-consuming field investigations.
引文
1.卞正富,张国良,胡喜宽.矿区水土流失及其控制研究.土壤侵蚀与水土保持学报,1998,4(4):31-36
    2.蔡强国,陆兆熊,王贵平.黄土丘陵沟壑区典型小流域侵蚀产沙过程模拟.地理学报,1996,51(2):108-116
    3.蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟.北京:科学出版社,1998
    4.蔡强国,吴淑安,陈浩.坡耕地表土结皮对降雨径流和侵蚀产沙过程的影响.见:山西省水土保持研究所,中国科学院地理研究所和加拿大多伦多大学地理系.晋西黄土高原土壤侵蚀规律实验研究文集.北京:水利电力出版社,1990,48-57
    5.蔡强国.降雨特性对溅蚀影响的初步试验研究.中国水土保持,1986,6:41-42
    6.蔡强国.坡面细沟发生临界条件研究.泥沙研究,1998,(1):52-59
    7.陈雷.中国的水土保持.中国水土保持,2002,(4):4-6
    8.陈永宗.黄河泥砂来源及侵蚀产沙时间变化.中国水土保持,1988a,1:23-28
    9.陈永宗.黄河中游黄土丘陵地区坡地的发育.地理集刊,1976,(10):35-51
    10.陈永宗.黄土高原现代侵蚀与治理.北京:科学出版社,1988b
    11.傅积平.土壤结合态腐殖质分组的测定.土壤通报,1983,15(2):42-69
    12.高维森,王佑民.土壤抗冲性研究综述.水土保持通报,1992,12(5):59-63
    13.高学田,包忠谟.降雨特性和土壤结构对溅蚀的影响.水土保持学报,2001,15(3):24-26,47
    14.关君蔚.水土保持原理.北京:中国林业出版社,1996,16-129
    15.郭培才,王佑民.黄土高原沙棘林地土壤抗蚀性及其指标的研究.西北林学院学报,1989,4(1):80-86
    16.何小武,张光辉,刘宝元.坡面薄层水流的土壤分离实验研究.农业工程学报,2003,19(6):52-55
    17.胡良军,李锐,杨勤科.基于GIS的区域水土流失评价研究.土壤学报,2001,38(2):169-174
    18.黄秉维.陕西黄土区域土壤侵蚀的因素和方式.科学通报,1953,9:63-75
    19.黄炎和,卢程隆,付勤.闽东南土壤流失预报研究.水土保持学报,1993,7(4):13-18
    20.江忠普,李秀英.坡面流速试验研究.中国科学院西北水土保持研究所集刊,1985,(7):46-52
    21.江忠普,刘志,贾志伟.降雨因素和坡度对溅蚀影响的研究水土保持学报,1989,3(2):29-35
    22.江忠善,宋文经,李秀英.黄土地区天然降雨雨滴特性研究.中国水土保持,1983,(3):32-36
    23.江忠善,王志强,刘志.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究.见:第二届全国泥沙基本理论研究学术讨论会论文集,北京:中国建材工业出版社,1995,207-275
    24.江忠善,王志强,刘志.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究.水土保持研究,1996,3(2):84-97
    25.雷廷武,张晴雯,姚春梅,闫丽娟,刘汗,杨超.WEPP模型中细沟可蚀性参数估计方法误差的理论分析.农业工程学报,2005,21(1):9-12
    26.李朝霞,王天巍,史志华,丁树文,蔡崇法.降雨过程中红壤表土结构变化与侵蚀产沙关系.水土保持学报,2005,19(1):1-4
    27.李朝霞.降雨过程中红壤表土结构变化与侵蚀特点.[博士论文].武汉:华中农业大学图书馆,2004
    28.李矩章,景可,李凤新.黄土高原多沙区侵蚀模型探讨.地理科学进展,1999,18(1):46-53
    29.李文银,王治国,蔡继清.工矿区水土保持.北京:科学出版社,1996
    30.李勇,吴钦孝,朱显谟,田积莹.黄土高原植物根系提高土壤抗冲性能的研究:1油松人工林根系对土壤抗冲性的增效研究.水土保持学报,1990,4(1):1-5,10
    31.李裕元,邵明安.降雨条件下坡地水分转化特征实验研究.水利学报,2004,35(4):48-53
    32.刘宝元,张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用.自然资源学报,1999,14(4):345-350
    33.刘育红,裴海昆.高寒草垫植被土壤腐殖质组成及性质的研究.土壤通报,2004,35(5):562-565
    34.刘志,江忠善.雨滴打击作用对黄土结皮影响的研究.水土保持通报,1988,8(1):62-64
    35.陆兆熊,Merz W.应用盐液示踪技术测定表面流速.见:中国科学院地理研究所,加拿大多伦从大学地理系,山西省水土保持研究所.晋西黄土高原土壤侵蚀管理与地理信息系统应用研究.北京:科学出版社,1992
    36.陆兆熊,蔡强国.黄土的表土结皮强度和溅蚀试验研究.见:山西省水土保持研究所,中国科学院地理研究所和加拿大多伦多大学地理系.晋西黄土高原土壤侵蚀规律实验研究文集.北京:水利电力出版社,1990,58-67
    37.牟金泽,孟庆枚.降雨侵蚀土壤流失方程的初步研究.中国水土保持,1983a,(6):25-27
    38.牟金泽,孟庆枚.陕北部分中小流域输沙量计算.人民黄河,1983b,(4):35-37
    39.牟金泽.雨滴速度计算公式.中国水土保持,1983,3:40-41
    40.彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响.生态学报,2003,23(10):2176-2183
    41.钱正英.全国贯彻执行执行《水土保持工作条例》,为防治水土流失,根本改变山区面貌而 奋斗.水土保持通报,1982,2(5):5-13
    42.沙际德,将允静.试论初生态侵蚀性坡面薄层水流的基本特性.水土保持学报,1995,9(5):29-35
    43.史德明.中国水土流失及其对旱涝遭害的影响.自然灾害学报,1996,5(4):36-46.
    44.史学正,于东升.我国亚热带土壤侵蚀的生物工程治理.水土保持研究,1999,6(2):137-141
    45.孙虎,甘枝茂.城市周边地区侵蚀景观特征分析.土壤侵蚀与水土保持学报,1998,4(4):37-43
    46.唐克丽,张科利,雷阿林.黄土丘陵区退耕上限坡度的研究论证.科学通报,1998,40(2):200-203
    47.唐克丽.神府-东胜矿区一、二期工程环境效应考察专辑.水土保持研究,1994,1(4):18-22
    48.唐克丽.土壤侵蚀与生态环境演变研究论文集.中国科学院水利部西北水土保持研究所集刊,1993,第17集:1-10
    49.唐克丽.中国水土保持.北京:科学出版社,2004
    50.田积莹,黄义端.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究.土壤学报,1964,12(3):278-296
    51.田均良,周佩华.土壤侵蚀REE示踪法研究初报.水土保持学报,1992,6(4):23-27
    52.王贵平,曾伯庆,陆兆熊,陈浩.晋西黄土丘陵沟壑区坡面土壤侵蚀及预报研究.中国水土保持,1992,5:15-18
    53.王孟楼,张仁.陕北岔巴沟流域次暴雨产沙模型的研究.水土保持学报,1990,4(11):11-18
    54.王明珠,姚贤良,张佳宝,解美珍,谢为民,贺湘逸,琚忠和.低丘红壤区伏秋早的成因、特征及抗旱体系的研究.自然资源学报,1997,12(3):250-256
    55.王万中,焦菊英,郝小品,张宪奎,卢秀琴,陈法扬,吴素业.中国降雨侵蚀R值的计算与分布.土壤侵蚀与水土保持学报,1996,2(1):29-39
    56.王万中,焦菊英.黄土高原降雨侵蚀产沙与黄河输沙.北京:科学出版社,1996
    57.王星宇.黄土地区流域产沙数学模型.泥沙研究,1987,(3):55-60
    58.王佑民,郭培才.黄土高原土壤抗冲性的研究.水土保持学报,1994,8(4):11-16
    59.吴长文,陈法扬.坡地土壤侵蚀机理研究进展与现状.中国水土保持,1996,(11):21-24
    60.吴普特.动力水蚀实验研究.西安:科学技术出版社,1997
    61.吴钦孝,杨文治.黄土高原植被建设与持续发展.北京:科学出版社,1989
    62.谢树楠,王盂楼,张仁.黄河中游黄土沟壑区暴雨产沙模型的研究.北京:清华大学出版社,1990
    63.熊毅.土壤胶体(第二册).北京:科学出版社,1985,40-67
    64.杨玉盛,何宗明,林光耀,罗学升.不同治理模式对严重退化红壤抗蚀性影响的研究.土壤侵蚀与水土保持学报,1996,2(2):32-37
    65.杨玉盛,邱仁辉,俞新妥.不同栽植代数29年生杉木林土壤腐殖质及结合形态的研究.林业科学,1999,35(3):116-119
    66.尹国康,陈钦峦.黄土高原小流域特性指标与产沙统计模式.地理学报,1989,44(1):31-45
    67.于东升,史学正,王宁.用人工模拟降雨研究亚热带坡耕地土壤的沟蚀和沟间侵蚀.土壤学报,2001,38(2):160-166
    68.于东升,史学正.低丘红壤区旱地土壤渗透性与可蚀性定量关系的研究.土壤学报,2000,37(3):316-322
    69.张斌,张桃林.南方东部丘陵区季节性干旱成因及其对策研究.生态学报,1995,4:413-419
    70.张鼎华,翟明晋,林平,贾黎明.杨树刺槐混交林下沙质土壤腐殖物质特性.林业科学,2001,37(3):58-63
    71.张光辉.国外坡面径流分离土壤过程水动力学研究进展.水土保持学报,2000,14(3):112-115
    72.张光辉.土壤侵蚀模型研究现状与进展.水科学进展,2002,13(3):389-396
    73.张汉雄.黄土高原的暴雨特性及其分布规律.地理学报,1983,39(4):416-425
    74.张科利,唐克丽.黄土高原坡面浅沟侵蚀特征值研究.水土保持学报,1992,6(2):59-62
    75.张信宝.黄土高原小流域泥沙来源的137Cs法的研究.科学通报,1989,(3):210-213
    76.章明奎,何振立,陈国潮,黄昌勇.利用方式对土壤水稳性团聚体形成的影响.土壤学报,1997,34(4):359-366
    77.赵其国.土壤退化及其防治.土壤,1991,23(2):57-60
    78.赵其国.我国红壤退化问题.土壤,1995,6:281-285
    79.赵其国.中国东部红壤地区土壤退化的时空变化、机理及调控.北京:科学出版社,2002
    80.郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟.西安:陕西人民出版杜,2000
    81.郑粉莉,康绍忠.黄土坡面不同侵蚀带侵蚀产沙关系及其机理.地理学报,1998,53(5):422-428
    82.郑粉莉,唐克丽,周佩华.黄土高原坡耕地细沟侵蚀的发生、发展及其防治途径.水土保持学报,1987,1(1):36-48
    83.郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀影响因素的研究,土壤学报,1989,26(2):99-116
    84.郑粉莉.发生细沟侵蚀的临界坡长与坡度.中国水土保持,1989,(8):23-24
    85.郑粉莉.黄土区坡耕地细沟间侵蚀和细沟侵蚀的研究.土壤学报,1998,35(1):95-103
    86.中国大百科全书(水利卷).北京:中国大百科全书出版社,1983
    87.中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978
    88.中国土壤系统分类(第三版).合肥:中国科学技术大学出版社,2001,140-149
    89.周伏建,陈明华,林福兴.福建省土壤流失预报研究.水土保持通报.199S.9(1):25-30
    90.周佩华,窦葆璋,孙清芳.降雨能量试验研究初报.水土保持通报,1981,1(1):51-60
    91.周佩华,李银锄,黄义端.2000年中国水土流失趋势预测及其防治对策.中国科学院西北水土保持研究所集刊,1988,第7集:57-71
    92.周佩华,王占礼.黄土高原土壤侵蚀标准.水土保持通报,1987,7(1):38-44
    93.朱显谟.黄土高原水蚀的主要类型及其有关因素.水土保持通报,1981,3:1-9
    94.朱显谟.黄土高原水蚀的主要类型及其有关因素.水土保持通报,1982,2(3):36-41
    95.朱显谟.黄土高原土地的整治问题.水土保持通报,1984b,4(4):1-6
    96.朱显谟.黄土区土壤侵蚀的分类.土壤学报,1956,4(2):99-116
    97.朱显谟.论高原地区水土保持战略问题.水土保持通报,1984a,4(1):15-18
    98.Abrahams A D,Gang L,Parsons A J.Rill hydraulics on a semiarid hillslope,Southem Arizona.Earth Surf Process Landforms,1996,21:35-47
    99.Abu-Hamdeh N H,Abo-Qudais S A,Othman A M.Effect of soil aggregate size on infiltration and erosion characteristics.Eur J Soil Sci,2006,57:609-616
    100.Agassi M,Bradford J M.Methodologies for interrill soil erosion studies.Soil Till Res,1999,49(4):277-287
    101.Agassi M,Shainberg I,Morin J.Effect of electrolyte concentration and soil sodicity on infiltration rate and crust formation.Soil Sci Soc Am J,1981,45(5):848-851
    102.Al-Durrah M M,Bradford J M.New methods of studying soil detachment due to waterdrop impact.Soil Sci Soc Am J,1981,45(5),949-952
    103.Al-Durrah M M,Bradford J M.Parameters for describing soil detachmem due to singie waterdrop impact.Soil Sci Soc Am J,1982a,46(4):836-840
    104.Al-Durrah M M,Bradford J M.The mechanism of raindrop splash on soil surfaces.Soil Sci Soc Am J,1982b,46:1086-1090
    105.Amezketa E,Singer M J,Le Bissonnais Y.Testing a new procedure for measuring water-stable aggregation.Soil Sci Soc Am J,1996,60:888-894
    106.Asadi H,Gnadiri H,Rose C W,Rouhipour H.Interrill soil erosion processes and their interaction on low slopes.Earth Surf Process Landforms,2007,32(5):711-724
    107.Attou F,Bruand A,Le Bissonnais Y.Effect of clay content and silt-clay fabric on stability of artificial aggregates.Eur J Soil Sci,1998,49,569-577
    108.Bajracharya R M,Elliot W J,Lal R.Interrill erodibility of some Ohio soils based on field rainfall simulations.Soil Sci Soc Am J,1992,56:267-272
    109.Bajracharya R M,Lal R,Kimble J M.Soil organic carbon distribution in aggregates and primary particle fractions as influenced by erosion phases and landscape position.In:Lal R,Kimble J M,Follett R F,Stewart B A,eds.,Soil Processes and the Carbon Cycle,Boca Raton,FL,USA:CRC Press,1998,353-368
    110.Barthes B,Roose E.Aggregate stability as an indicator of soil susceptibility to runoff and erosion;validation at several levels.Catena,2002,47:133-149
    111. Baver L D, Gardner W H, Gardner, W R. Soil physics. New York: John Wiley & Sons Inc, 1972
    112. Bouraoui F, Dillaha T A. ANSWERS-2000: Runoff and sediment transport model. J Environmental Eng, 1996, 122(6): 493-502
    113. Bradford J M. Foster G R. Interrill soil erosion and slope steepness factors. Soil Sci. Soc. Am. J, 1996,60:909-915
    114. Bradford J M, Huang C. Mechanisms of crust formation: physical components. In: Sumner M E. Stewart B A eds., Soil Crusting: Physical and Chemical Processes. Florida: Lewis. Boca Raton, 1992.55-72
    115. Braunack M, Hewitt V, Dexter R. Battle facture of soil aggregates and the compaction of aggregate beds. J Soil Sci. 1979, 30: 653-667
    116. Bronick C J, Lal R. Soil structure and management: a review. Geoderma, 2005, 124:3-22
    117. Bryan R B. Soil erodibility and processes of water erosion on hillslopes. Geomorphology, 2000, 32:385-415
    118. Chenu C, Le Bissonnais Y, Arrouays D. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci Soc Am J, 2000, 64: 1479-1486
    119. Coote D R, Malcolm-McGovern C A, Wall G J, Dickinson W T, Rudra R P. Seasonal variation of erodibility indices based on shear strength and aggregate stability in some Ontario soils. Can J Soil Sci, 1988, 68 (2): 405-416
    120. De Noni G, Blavet D, Laurent J Y, Le Bissonnais Y, Asseline J. Proposal of soil indicators for spatial analysis of carbon stocks evolution, 17th World Congress of Soil Science: Confronting New Realities in the 21st Century. International Union of Soil Sciences, Vienna, Bangkok, Thailand, 2002
    121. De Roo A P J, Jetten V G. Calibrating and validating the LISEM Model for two data sets from the Netherlands and South Africa. Catena, 1999, 37 (3-4): 477-493
    122. Dexter A R. Advances in characterization of soil structure. Soil Till Res, 1988, 11: 199-23 8
    123. Diaz-Zorita M, Perfect E, Grove J H. Disruptive methods for assessing soil structure. Soil Till Res, 2002,64:3-22
    124. Diaz-Zorita M, Perfect E, Grove J H. Disruptive methods for assessing soil structure. Soil & Till Res, 2002, 64 (1-2): 3-22
    125. Dimoyiannis D, Tsadilas C D, Valmis, S. Factors affecting aggregate instability of Greek agricultural soils. Commun Soil Sci Plant Anal, 1998, 29:1239-1251
    126. Dimoyiannis D, Valmis S, Danalatos N G Interrill erosion on cultivated Greek soils: modelling sediment delivery. Earth Surf Process Landforms, 2006,31 (8): 940-949
    127. Duiker S W, Flanagan D C, Lal R. Erodibility and infiltration characteristics of five major soils of southwest Spain. Catena, 2001,45: 103-121
    128. Edwards A P, Bremer J M. Micro-aggregate in soils. J. Soil Sci, 1967, 33: 141-163.
    129. Elliot W J, Laflen J M. A process-based rill erosion model. Trans ASAE, 1993, 36: 65-72
    130. Elliott E T, Coleman D C. Let the soil work for us. Ecol Bull, 1988,39:23-32
    131.Ellison W D.Soil Erosion Study-Part Ⅱ:Soil detachment hazard by raindrop splash.Aric Eng.1947,28:197-201
    132.Ellison W D.Studies of raindrop erosion.Aric Eng.1944,25:131-136
    133.Emerson W W,Greenland D J.Soil aggregates formation and stability.In:Boo& de M F,Hayes M H B,Herbillon A eds.,Soil colloids and their associations in aggregates.New York:Plenum Press,1990,485-511
    134.Emerson W W.A classification of soil aggregates based on their coherence in water.Aust J Soil Res,1967,(5):47-57
    135.Emerson W W.Physical properties and structure,p.78-104.In:Russell J S,Greacen E Led.,Soil factors in crop production in a semi-arid environment.Queensland:University of Queensland Press,1977
    136.Farres P J.Some observations on the stability of soil aggregates to raindrop impact.Catena,1980,7:223-231
    137.Farres P J.The dynamics of rain splash erosion and the role of soil aggregate stability.Catena,1987,14:119-130
    138.Flanagan D C,Foster G R,Moldenhauer W C.Storm pattern effect on infiltration,runoff,and erosion.Tram ASAE,1988,31(2):414-420
    139.Flanagan D C,Nearing M A.USDA-water erosion prediction project:Hillslope profile and Watershed model documentation.NSERL Report No.10.USDA-ARS National Soil Erosion Res.Lab.,1995,West Lafayette,USA
    140.Forster D L,Riehards R P,Baker D B,Blue E N.EPIC modeling of the effects of farming practice changes on water quality in two lake Erie watersheds.J Soil Water Conserv,2000,55(1):85-90
    141.Foster G R,Huggins L F,Meyer L D.A laboratory study of rill hydraulics:Ⅰ.Velocity relationships.Trans ASAE,1984a,27:790-796
    142.Foster G R,Hnggins L F,Meyer L D.A laboratory study of rill hydraulics:Ⅱ.Shear stress relationships.Trans ASAE,1984b,27:797-804
    143.Foster G R,Lane L J,Nowlin J D.A model to estimate sediment yield from field-sized areas:Development of model.In:W.G.Knisel(ed.) CREAM S:A field scale model for Chemicals,Runoff,and Erosion from Agricultural Management Systems.USDA,Sci.and Educ.Admin Conser Rep No.26,1980,36-64
    144.Foster G R,Meyer L D,Onstad C A.An erosion equation derived from basic erosion principles.Trans ASAE,1977,20(4):678-682
    145.Foster G R,Meyer L D.A closed form soil erosion equation for upland areas.In:Shen H W,Symposium of Sedimentation.Colorado,1972,12.1-12.7
    146.Foster G R.Modeling the erosion process.Hydrologic Modeling of Small Watershed ASAE monograph,1982a,5
    147.Foster G R.Modeling the erosion process.In:Haan C T.Hydrologic modeling of small watershed. ed.Haan C T,ASAE Monograph No 5 St 1982b,297-360
    148.Fox D M,Le Bissonnais Y.Process-based analysis of aggregate stability effects on sealing,infiltration,and interrill erosion.Soil Sci Soc Am J,1998,62:717-724
    149.Gilley J E,Finkner S C.Effect of water depth on soil detachment caused by raindrop impact.Am Soc Agricultural Engineering,1984,84:2587
    150.Gilley J E,Kittwitz E R,Simanton J R.Hydraulic characteristics of rills.Tram ASAE,1990,33:1900-1906
    151.Gimenez D,Dirksen C,Miedema R.Eppink L,Schoonderbeek D.Surface sealing and hydraulic conductances under varying-intensity rains.Soil Sci Soc Am J,1992,56(1):234-242
    152.Goldberg S.Interaction of aluminum and iron oxides and clay minerals and their effect on soil physical properties:A review.Commu in Soil Sci Plant Anal,1989,20:1181-1207
    153.Guy B T,Dickinson W T,Rudra R P.The roles of rainfall and runoff in the sediment transport capacity of interrill flow.Trans ASAE,1987,30(5):1378-1386
    154.Hairsine P B,Rose C W.Rainfall detachment and deposition:Sediment transport in the absence of flow-driven processes.Soil Sci Soc Am J,1991,55:320-324
    155.Hallett P,Dexter A,Baumgartl T,Seville J,Horn R.Changes to pore water pressure caused by indirect and direct tensile loading of unsaturated soil aggregates.Soil Technology,1998,34:123-135
    156.Hayes M H B,Cheshire M V.Composition,origins,structures,and reactivities of soil polysaccharides.In:Boodt de M F,Hayes M H B,Herbillon A eels.,Soil colloids and their associations in aggregates.New York:Plenum Press,1990,307-336
    157.Horn R,Taubner H,Wuttke M,Baumgartl T.Soil physical properties related to soil structure.Soil Till Res,1994,30:187-216
    158.Horton R E.Erosional development of streams and their drainage basins.Hydrological approach to quantitative morphology,Bull Geo Soc Am,1945,56:275-370
    159.Horton R E.The role of infiltration in the hydrologic cycle.Trans Am Geophysical Union,1933,14:446-460
    160.Hudson N W.Soil Conservation.London:BT Batsford,1976
    161.Kay B D,Angers D A,Balddoek J A,Groenevelt P H.Quantifying the influence of cropping history on soil structure.Can J Soil Sci,1988,18:64-73
    162.Kay B D,Angers DA.Soil structure,p.A229-A269.In:Sumner M E ed.,Handbook of soil science.New York:CRC Press,1999
    163.Kemper W D,Rosenau R C,Klute A.Aggregate stability and size distribution In:Klute,A.ed.,Methods of Soil Analysis.Part 1.Physical and Mineralogical Methods.American Society of Agronomy,Madison,Wisconsin,1986,425-442
    164.Kinnell P I A.Runoff as a factor influencing experimentally determined interrill erodibilities.Aust J Soil Res,1993,31(3):333-342
    165.Lal R.黄河水利委员会宣传出版中心.土壤侵蚀研究方法.北京:科学出版社,1991,92-111
    166.Lades J M,Waters A G.Aggregate hierarchy in soils.Aust J of Soil Sci,1991,29:815-828
    167.Lado M,Ben-Hur M,Shainherg I.Soil Wetting and Texture Effects on Aggregate Stability,Seal Formation,and Erosion.Soil Sci Soc Am J,2004a,68:1992-1999
    168.Lado M,Paz A,Ben-Hur M.Organic matter and aggregate size interactions in infiltration,seal formation,and soil loss.Soil Sci Soc Am J,2004b,68(3),935-942
    169.Lal R,Couper D C.A ten-year watershed managemem study on agronomic productivity of different cropping systems in sub-humid regions of western Nigeria.In:Baum E,Wolff P,Zobisch M A eds.,Topics in applied resource management in the tropics(Vol.2).German:Institute For Tropical and Subtropical Agriculture,1990,61-81
    170.Larionov G A,Bushueva O G,Dobrovol' skaya N G,Kiryukhina Z P,Litvin L F,Maksimova I A.Destruction of soil Aggregates in Slope Flows.Eura Soil Sci,2007,40(10):1128-1134
    171.Laws J O.Measurement of fall-velocity of waterdrop and raindrop.Tram Am Geophysical Union.1947,22:709-720
    172.Laws J O.Parsons D A.The relationship of raindrop size to intensity.Trans Am Geography Union,1943,22:452-459
    173.Laws J O.Recent studies in raindrops and erosion.Aric Eng,1940,21:431-433
    174.Le Bissonnais Y,Arrouays D.Aggregate stability and assessment of soil crustability and erodibility:Ⅱ Application to humic loamy soils with various organic carbon contents.Eur J Soil Sci,1997,48,39-48
    175.Le Bissonnais Y,Singer M J.Crusting,runoff and erosion response to soil water content and successive rainfalls.Soil Sci Soc Am J,1992,56:1898-1903
    176.Le Bissonnais Y.Aggregate stability and assessmem of soil crustability and erodibility Ⅰ.Theory and methodology.Eur J Soil Sci,1996,47(4):425-437
    177.Legout C,Leguedois S,Le Bissonnais Y.Aggregate breakdown dynamics under rainfall compared with aggregate stability measurements.Eur J Soil Sci,2005,56(2) 225-237
    178.Levy G J,Levin J and Shainberg I.Prewetting rate and aging effects on seal formation and interrill soil erosion.Soil Sci,1997,162:131-139
    179.Li Z X,Cai C F,Shi Z H,Wang T W.Aggregate stability and its relationship with some chemical properties of red soils in subtropical China.Pedosphere,2005,15(1):129-136
    180.Loch R J,Foley J L.Measurement of aggregate breakdown under rain:comparison with tests of water stability and relationships with field measurements of infiltration.Aust J Soil Res,1994,32:701-720
    181.Luk S H,Abrahams A D,Parsons A J.A simple rainfall simulator and trickle system for hydro-geomorphic experiments.Phys Geogr,1986,7(4):344-356
    182.Luk S H.Effect of antecedent soil moisture content on rainwash erosion.Catena,1985,12:129-139
    183.Makkaveev N I.River Channel and Erosion at its Basin.Moscow:Academy Press,1955
    184.Mamedov A I,Shainberg I,Levy G J.Wetting rate and sodicity effects on interrill erosion from semi-arid Israeli soils. Soil Till Res, 2002, 68: 121-132
    185. Mamedov A I, Levy G J, Shainberg I, Letery J. Wetting rate and soil texture effect on infiltration rate and runoff. Aust J Soil Res 2001, 36: 1293-1305
    186. Marshall T J, Holmes J W, Rose C W. Soil physics. Cambridge: Cambridge University Press, 1996
    187. Martinez-Mena M, Deeks L K, Williams A G. An evaluation of a fragmentation fractal dimension technique to determine soil erodibility. Geoderma, 1999, 90 (1-2): 87-98
    188. McIntyre D S. Permeability measurements of soil crusts formed by raindrop impact. Soil Sci, 1958,85: 185-189
    189. Mein R G, Larson C L. Modeling infiltration during a steady rain. Water Resour Res, 1973. 9: 384-394
    190. Merritt E. The identification of four stages during micro-rill development. Earth Surf Process Landforms, 1984, 19:493-496
    191. Meyer L D, Foster G R, Romkens M J M. Source of soil eroded by water from upland slopes. In: Present and Prospective Technology for Prediction Sediment Yield and Sources. Proc. Sediment Yield Workshop, USDA Sedimentation Lab, Oxford, MS Agric Res Service ARS-S-40. 1975a, 177-189
    192. Meyer L D, Foster G R. Mechanics of soil erosion by rainfall and overland flow. Trans ASAE, 1965, 8(4): 689-693
    193. Meyer L D, Foster GR, Nikolov S. Effect of flow rate and canopy on rill erosion. Trans ASAE, 1975b, 18(5): 905-911
    194. Moore D C, Singer M J. Crust Formation Effects on Soil Erosion Processes. Soil Sci Soc Am J, 1990,54:1117-1123
    195. Morgan R P C, Quinton J N, Smith R E. The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf Process Landforms, 1998, 23 (6): 527-544
    196. Morgan R P C. Soil Erosion and Conservation. Addison-Wesley Longman, Edinburgh, 1995
    197. Nearing M A, Bradford J M, Holtz R D. Measurement of waterdrop impact pressures on soil surfaces. Soil Sci Soc Am J, 1987, 51:1302-1306
    198. Nearing M A, Bradford J M. Single waterdrop splash detachment and mechanical properties of soils. Soil Sci Soc Am J, 1985,49: 547-552
    199. Nearing M A, Foster G R, Lane L J. A process-based soil erosion model for USDA-water erosion prediction project technology. Trans ASAE, 1989, 32 (5): 1587-1593
    200. Oades J M. Soil organic matter and structural stability mechanisms and implications for management. Plant Soil, 1984, 76: 319-337
    201. Palmer R S. The influence of a thin water layer on waterdrop impact force. Inter Assoc Hydro Pub, 1963, (65): 141-148
    202. Panabokke C R, Quirk J P. Effect of initial water content on stability of soil aggregates in water. Soil Sci,1957,83:185-195
    203.Payne D.Soil structure,tilth and mechanical behaviour In:Wild A.(ed.) Russell's soil conditions and plant growth,11th.ed.Essex:Longman Scientific and Technical,1988,378-411
    204.Piccolo A,Pietramellara G,Mbagwu J S C.Use of humic substances as soil conditioners to increase aggregate stability.Geoderma,1997,75:267-277
    205.Quirk J P,Aylmore L A G.Domains and quasi-crystalline regions in clay systems.Soil Sci Soc Am J,1971,35:652-654
    206.Ramos M C,Nacci S,Pla I.Effect of raindrop impact and its relationship with aggregate stability to different disaggregation forces.Catena,2003,53:365-376
    207.Rauws G,Govers G.Hydraulic and soil mechanical aspects of rill generation on agricultural soils.J Soil Sci(UK),1988,39:111-124
    208.Reichert J M,Norton L D.Aggregate stability and rain-impacted sheet erosion of air-dried and prewetted clayey surface soils under intense rain.Soil Sci,1994,158:159-169
    209.Romero C C,Stroosnijder L,Baigorria G A.Interrill and rill erodibility in the northern Andean Highlands.Catena,2007,70(2):105-113
    210.Romkens M J M,Prasad S N,Parlange J Y.Surface seal development in relation to rainstorm intensity.Catena Supplement,1990,17:1-11
    211.Romkens,M J M.The soil erodibility factor:A perspective.In John,M H,Agricultural soil loss,1987,125-138
    212.Roth C H,Eggert T.Mechanisms of aggregate breakdown involved in surface sealing,runoff generation and sediment concentration on loess soils.Soil Till Res,1994,32:253-268.
    213.Savat J,Ploey J D.Sheetwash and rill development by surface flow.In:Eryan R B and Yair A Badland Geomorphology and Piping.Geobooks,Norwich,1998,113-126
    214.Shadfan H,Dixon J B,Calhoun F G.Iron oxide properties versus strength ferruginous crust and iron glaeblues in soils.Soil Sci,1985,140:317-325
    215.Shainberg I,Marnedov A I,Levy G J.Role of wetting rate and rain energy in seal formation and erosion.Soil Sci,2003,168:54-62
    216.Soil Survey Staff(USDA).Soil taxonomy:a basic system of soil classification for making and interpreting soil surveys.Agricultural Handbook 436,US Department of Agriculture,Washington,DC,1999,871
    217.Statistical Package for the Social Sciences Inc.SPSS Advanced Statistics 11.0.SPSS Inc.,Chicago,2001
    218.Teixeira P C,Misra R K.Erosion and sediment characteristics of cultivated forest soil as affected by mechanical stability of aggregates.Catena,1997,30:119-134
    219.Tisdall J M,Oades J M.Organic matter and water-stable aggregates in soils.J Soil Sci,1982,33:141-163
    220.Tisdall J M.Possible role of soil microorganisms in aggregation in soils.Plant Soil,1994,159:115-121
    221. Truman C C, Bradford J M, Ferris J E. Antecedent Water content and rainfall energy influence on soil aggregate breakdown. Soil Sci Soc Am J, 1990, 54:1385-1392
    222. Truman C C. Bradford J M. Laboratory determination of interrill soil erodibility. Soil Sci Soc Am J, 1995, 59(2): 519-526
    223. Valmis S, Dimoyiannis D, Danalatos, N G. Assessing interrill erosion rate from soil aggregate instability index, rainfall intensity and slope angle on cultivated soils in central Greece. Soil Till Res, 2005, 80: 139-147
    224. Valmis S, Kerkides P, Aggelides S. Soil aggregate instability index and statistical determination of oscillation time in water. Soil Sci Soc Am J, 1988,59: 1188-1191
    225. Vanliew N M, Santon K E. Slope steepness and incorporated residue effect on rill erosion. Trans ASAE, 1983,26(6): 1736-1743
    226. Wan Y, El-Swaify S A. Flow-induced transport and enrichment of erosional sediment from a well-aggregated and uniformly-textured Oxisol. Geoderma, 1997, 75(3-4), 251-265
    227. Watson D A, Laflen J M. Soil strength, slope and rainfall intensity effects on interrill erosion. Trans ASAE, 1986, 29(1): 98-102
    228. Wischmeier W H, Mannering J V. Relation of soil properties to its erodibility. Soil Sci Soc Am Proc, 1969, 33(1): 131-137
    229. Yoder, R E. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. J Am Soc Agronomy, 1936, 28: 337-351
    230. Young R A, Onstad G A. The effect of soil characteristics on erosion and nutrient loss. 1AHS, 1982,(137): 105-113
    231. Young R A, Wiersma J L. The role of rainfall impact in soil detachment and transport. Water Resour Res, 1973,9 (6): 1629-1636
    232. Young R A. AGNPS: A non-point source pollution model for evaluating agricultural watershed. J Soil and Water Conserv, 1989, 44 (2): 168-173
    233. Young R. A. Characteristics of eroded sediment. Trans ASAE, 1980, 23: 1139-1146
    234. Zhang B, Horn R Mechanisms of aggregate stabilization in Ultisols from subtropical China. Geoderma, 2001, 99 (1-2): 123-145
    235. Zhang M K, Xu J M. Restoration of surface soil fertility of an eroded red soil in southern China. Soil Till Res, 2005, 80 (1-2): 13-21
    236. Zhang X C, Nearing M K, Miller W P. Modeling interrill sediment delivery. Soil Sci Soc Am J, 1998,62:438-444
    237. Ziegler A D, Sutherland R A, Giambelluca T W. Partitioning total erosion on unpaved roads into splash and hydraulic components: The roles of interstorm surface preparation and dynamic erodibility. Water Resour Res, 2000, 36 (9): 2787-2791

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700