用户名: 密码: 验证码:
生物固定化双层PRB技术去除地下水中MTBE的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可渗透反应格栅(Permeable Reactive Barrier,PRB)是一种新兴的地下水原位修复(in situ remediation)技术,能够有效去除地下水中各类污染物质。本文首先建立污染物在土壤—地下水环境中迁移转化基本控制方程,并针对所提出的生物固定化双层PRB结构设计,从过程参数、相间传质、生物降解和流体力学等方面对地下水中甲基叔丁基醚(MTBE)的复杂修复过程进行了系统研究。
     由吸附平衡实验确定了MTBE在不同粘性土壤中的吸附行为为线性关系;通过土柱弥散实验计算得到MTBE在夹砂粉质粘土中的弥散系数和阻滞系数,由阻滞系数仅为1.004可知土壤对MTBE几乎没有任何截留和净化能力。
     用渗透仪获得微生物固定化载体—膨胀珍珠岩的渗透特性;通过静态间歇实验确定了MTBE在膨胀珍珠岩中的吸附规律符合Freundlich模型,且为一吸热过程,能够自发进行;采用摇瓶振荡法,确定了MTBE好氧降解条件:温度20~25℃、pH8.0、接种量1∶10(V/V)。
     对过氧化钙(CaO2)释氧过程中的pH调节表明,一定配比的KH2PO4和(NH4)2SO4可将pH值控制在6.5~8.5范围;电气石和饱和区土壤作为辅助调节手段可减少缓冲剂用量,避免地下水二次污染;通过测定混合菌的生长曲线,确定CaO2及其相应配比的培养基能够满足好氧微生物的新陈代谢需要。
     采用土柱实验研究了MTBE在双层PRB系统中的去除过程。通过对pH、溶解氧(DO)、MTBE和叔丁醇(TBA)的浓度监测发现,释氧材料层能够为系统中微生物提供足够的DO含量和适宜的pH环境;固定有微生物的降解层不仅可以去除模拟地下水中的MTBE,其降解产物TBA经历一段积累期后也进一步发生了降解。根据污染物在地下水环境中迁移转化基本控制方程,建立了包含对流、水动力弥散、相间传质及生物降解作用的一维PRB传质模型。通过比较模型计算结果和土柱实验数据,表明本文模型能够描述实验室的PRB修复过程。
     基于连续性方程和多孔介质流体动量方程及MTBE迁移转化模型,采用有限元方法求解,对PRB系统捕获区宽度的各种影响因素、MTBE在PRB系统及其附近区域的浓度分布场进行了二维模拟。模拟结果可用于指导现场PRB及其附属设施的设计、安装以及地下水修复效果的正确评价。
Permeable reactive barrier (PRB) is fast emerging as an alternative to traditional pump-and-treat and dig-and-treat methods for in situ remediation of inorganic and organic groundwater contaminants. A basic model has been firstly presented for describing migration and transformation of contaminants in groundwater, and then using immobilized biological two-layer PRB developed by author, the removal of methyl tert-butyl ether (MTBE) from groundwater considering process parameters, mass transfer between solid and liquid phases, biodegradation and hydromechanics has been investigated.
     The results of batch experiment indicated that linear equilibrium adsorption equation can well describe the adsorption behavior of MTBE in different clayey soils. A soil column experiment was performed to calculate the dispersive coefficient and retardation factor of the test medium. The retardation factor is only 1.004, which means the soil used in this study has hardly the retarding and purification capabilities for MTBE.
     Permeability of expanded perlite used as carrier for immobilizing the microbes was measured by TST-70 soil penetrate apparatus. The static adsorption experiment was conducted to investigate the performance of granular expanded perlite for the removal of MTBE in solution and thermodynamic characteristic of adsorption. The results showed that the adsorption of MTBE in expanded perlite follow Freundlich equation, and the adsorption amount of equilibrium increases as the operational temperature increases. Furthermore, the thermodynamic analyze on the experimental data meant that the adsorption of MTBE is an endothermic process, and can occur automatically. The degradation performance of MTBE using mixed aerobic microbe enriched and acclimated in laboratory was studied. The optimum conditions for MTBE degradation is as follows: 20~25℃, pH8.0 and 1:10 (V/V) of inoculation amount of microbes.
     Calcium peroxide (CaO2) was used as source of supplying oxygen for microbes immobilized in two-layer PRB system, and its oxygen-releasing characteristic and the regulation of high pH were explored. As useful nutrient components in medium, KH2PO4 and (NH4)2SO4 at a certain ratio can regulate pH caused by CaO2 from 12.1 to the range of 6.5-8.5, which is suitable for microbial growth. Although the effect of tourmaline and saturated soil on the pH is weaker than the former, it can help to decrease excessive use of nitrogen and phosphorus and preserve groundwater from new pollution. In addition, microbial growth curve suggested that the metabolism of mixed aerobic microbes could be meet by CaO2 and relevant medium.
     The removal process of MTBE in two-layer PRB system was investigated in laboratory by using two stainless columns. Based on the results obtained from the column experiment, we concluded that the oxygen-releasing material layer could supply sufficient oxygen and suitable pH environment for the microbes immobilized in the second layer. In the passive system, occurrence of aerobic degradation can be verified by the consumption of MTBE, the decrease in DO levels in the biodegradation column effluent compared to the influent. As the MTBE byproduct, tert-butyl alcohol (TBA) can also be biodegraded after the transient accumulative period. According to the basic control equation, a one-dimension mass transfer model under the condition of this study was presented, and the result of simulation was in good agreement with the experimental data.
     By using finite element approach, hydraulic capture zone width, which refers to the width of the zone of groundwater that passes through PRB, and the distribution of MTBE concentration in PRB and adjacent area were simulated based on the continuity equation, momentum transfer, migration and transformation model of MTBE. The simulated results are important for design, construction of PRB as well as appropriately evaluating effectiveness of groundwater remediation.
引文
[1] Campagnolo J F, Akgerman A. Modeling of soil vapor extraction (SVE) systems-Part Ⅰ, Water Management, 1995, 15: 379-389
    [2] Lesage S, Hao X, Kent S N. Distinguishing natural hydrocarbons from anthropogenic contamination in groundwater, Groundwater, 1997, 35(1): 149-160
    [3] Lang M M, Paul V R, Lewis S. Model simulations in support of field scale design and operation of bioremediation based on eometabolic degradation, Groundwater, 1997, 35(4): 565-572
    [4] 胥思勤,王焰新,土壤及地下水有机污染生物修复技术研究进展,环境保护,2001,2:22-23,37
    [5] 黄国强,土壤气相抽提(SVE)中有机污染物的运移与数学模拟研究:[博士学位论文],天津:天津大学,2002
    [6] Mays M A. The use of oxygenated hydrocarbons in gasolineand their contribution to reducing urban air pollution, Pure Appl Chem, 1989, 61: 1373-1378
    [7] Ellen E M, Paul T K. MTBE Remediation Handbook, Amberst: Amberst Scientific Publishers, 2003
    [8] Moolenaar R L, Hefflin B J, Ashley D L, et al. Methyl tertiary buty letherin human blood after exposure to oxygenated fuel in fair banks, Archives of Environmental Health, 1994, 49(5): 402-409
    [9] Bird M G, Chun J S, Donglas J K, et al. On cogenicity studies of inhaled methyl tertiary-butyl ether (MTBE) in CD-1 mice and F344 rats, J Appl Toxicol, 1997, 17: 45-55
    [10] Anonymous. Health advisory set for fuel oxygenate MTBE, Environ Sci Technol, 1998, 32(3): 83-88
    [11] Squillace P, Pankow J. Review of the environmental behavior and fate of methyl tert-butyl ether, Environ Toxicol Chem, 1997, 16(9): 1836-1839
    [12] Gablle P A, Pyle S M. Emissions from two outboard engines operation on reformulated gasoline containing MTBE, Environ Sci Technol, 2000, 34(2): 368-372
    [13] 陈建孟,蒲凤莲,陈效等,MTBE 的生物降解技术,环境污染治理技术与设备,2004,5(1):61-64
    [14] Michael D, William H F. The Paradoxes of MTBE, Toxicological Science, 2001, 61: 211-217
    [15] Office of Pollution Prevention and Toxics. Chemical Summary for Methyl-Tert-Butyl Ether, USEPA, Report, No.749-F-94-017a, 1994
    [16] Johnson B, James P, David B, et al. MTBE-to what extent will past releases contaminate water supply wells, Environ Sci Technol/News, 2000: 2A-9A
    [17] Simmons B P. MTBE, where is it, and how did it get there? Hydro Visions Jan/Feb, Chemist’s Corner, 1996
    [18] 钱伯章,汽油禁用 MTBE 的预测分析,石油化工技术经济,2001,3:33-35
    [19] 刘杰民,温美娟,程慧琼等,甲基叔丁基醚(MTBE)对环境的污染及其对我国汽油生产的影响,环境污染治理技术与设备,2003,3(3):7-11
    [20] Sakata R, Office of Ground Water, USEPA, Personal communication, 1999-08-04
    [21] Bennett T, Hardy J, TNRCC, Personal communication, 1999-08-05
    [22] Nouri B, Fouillet G. B, Toussanit R. Chambon complementary of purge-and-trap and head-space capillary gas chromatographic methods for determination of methyl-tert-butyl ether in water, Journal of Chromatography A, 1996, 726: 153-159
    [23] Hiromitsu K, Veronica I, Reginald G. GC/MS analysis of MTBE, ETBE and TAME in gasoline, Anal Chem, 1994, 66(6): 924-927
    [24] Verga G R, Sironi A. Selective determination of oxygenates in complex samples with the O-FID analyzer, Journal of High Resolution Chromatography & Chromatography Communications, 1988, 11(3 ): 248-252
    [25] Song H, Christian M D, Ann T L. Analysis of methyl tert-butyl ether and its degradation products by direct aqueous injection onto gaschromatography with mass spectrography with massspectrometry or flame ionization detection systems, Journal of Chromatography A, 1999, 857: 205-216
    [26] Bianchi A, Varney M S. Analysis of methyl-tert-butyl ether and 1,2-dihaloethanes in estuarine water and sediments using purge-and-trap/gas chromatography, Journal of High Resolution Chromatography, 1989, 12(3): 184-186
    [27] Diehl J W, Finkbeiner J W, DiSanzo Frank P. Determination of ethers and alcohols in gasolines by gas chromatography/fourier transform infrared spectroscopy, Anal Chem, 1992, 64: 3202-3205
    [28] Reinhard M. Gasoline analysis by 1H nuclear magnetic resonance spectroscopy, Fuel, 1996, 75(10): 1235-1243
    [29] David M C, Louis I G, Brian D A. Development of an ion store/ time of flight mass spectrometer for the analysis of volatile, Anal Chem, 1997, 69(18): 3780 –3790
    [30] Annesini M C, Gironi F, Monticelli B. Removal of oxygenated pollutants from wastewater by polymeric resins data on adsorption equilibrium and kinetics in fixed beds, Water Research, 2000, 34(11): 2989-2996
    [31] Wilhelm M J, Adams V D, Curtis J G, et al. Carbon adsorption and air-stripping removal of MTBE from river water, Journal of Environ Eng, 2002, 128(9):813-823
    [32] Shih, T C, Wang P M, Suffet M. Evaluation of granular activated carbon technology for the removal of methyl tertiary butyl ether (MTBE) from drinking water, Water Research, 2003, 37(2): 375-385
    [33] 郑艳梅,王战强,黄国强等,地下水曝气法处理土壤及地下水中甲基叔丁基醚(MTBE),农业环境科学学报,2004,23(6):1200-1202
    [34] Cristin L B. Pergormance expectations for in situ air sparging systems [ submitted for degree of doctor], Arizona state university, 2001
    [35] Sutherland J, Adams C, Kekobad J. Treatment of MTBE by air stripping, carbon adsorption, and advanced oxidation: technical and economic comparison for five groundwaters, 2004, 38: 193-205
    [36] Anderson M A. Removal of MTBE and other organic contaminants from water by sorption to high silica zeolite, Environ Sci Technol, 2000, 34: 725-727
    [37] Kwon B G, Lee D S, Kang N. Characteristic of p-chlorophenol oxidation by Fenton’s reagent, Water Research, 1999, 33: 2110-2118
    [38] Lu M C, Chen J N, Chang C P. Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst, Journal of Hazard Mater, 1999, B65: 277-288
    [39] Rivas F J, Beltran F J, Frades J, et al. Oxidation of Phydroxybenzoic acid by Fenton’s reagent, Water Research, 2001, 35(2): 387-396
    [40] Benitez F J, Acero J L, Real F J, et al. The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions, Water Research, 2001, 35(3): 1338-1343
    [41] Chen G, Hoag G E, Chedda P, et al. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent, Journal of Hazard Mater, 2001, 87: 171-186
    [42] Gallard H, De Laat J. Kinetics of oxidation of chlorobenzenes and phenyl-ureas by Fe(II)/H2O2 and Fe(III)/ H2O2: Evidence of reduction and oxidation reactions of intermediates by Fe(II) or Fe(III), Chemosphere, 2001,42: 405-413
    [43] Arturo A,Burbano,Dionysios D, et al. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent, Water Research, 2005, 39: 107-118
    [44] Xu X R, Zhao Z Y,Li X Y, et al. Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton’s regent, Chemosphere, 2004, 55: 73-79
    [45] Bergendahl J A, Thies T P. Fenton’s oxidation of MTBE with zero-valent iron, Water Research, 2004, 38: 327-334
    [46] Stefan M I, Mack J, Bolton J R. Degradation pathways during the treatment of methyl tert-butyl ether by the UV/H2O2 process, Environ Sci Technol, 2000, 34: 650-658
    [47] Cater S R, Stefan M I, Bolton J R, et al. UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters, Environ. Sci Technol, 2000, 34: 659-662
    [48] Acero J L, Haderlein S B, Schmidt T C, et al. MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation, Environ Sci Technol, 2001, 35: 4252-4259
    [49] Chang P B L, Young T M. Kinetics of methyl tert-butyl ether degradation and by-product formation during UV/hydrogen peroxide water treatment, Water Research, 2000, 34(8): 2233-2240
    [50] Graham J L, Striebich R, Patterson C L, et al. MTBE oxidation byproducts from the treatment of surface waters by ozonation and UV-ozonation, Chemosphere, 2004, 54: 1011-1016
    [51] Zang Y J, Faronood R. Effects of hydrogen peroxide concentration and ultraviolet light intensity on methyl tert-butyl ether degradation kinetics, Chemical Engineering Science, 2005, 60: 1641-1648
    [52] Safarzadeh-Amiri A. O3/H2O2 treatment of methyl-tert-butyl ether (MTBE) in contaminated waters, Water Research, 2001, 35: 3706-3714
    [53] Cooper W J, Nickelsen M G, Mezyk S P, et al. MTBE and priority contaminant treatment with high energy electron beam injection, Radiation Physics and Chemistry, 2002, 65: 451-460
    [54] O’shea K E, Kim D K, Wu T X. et al. The degradation MTBE-BTEX mixtures by gamma radiolysis. A kinetic modelin study, Radiation Physics and Chemistry, 2002, 65: 343-347
    [55] Hsieh L L, Lin Y L, Wu C H. Degradation of MTBE in dilute aqueous solution by gamma radiolysis, Water Research, 2004, 38: 3627-3633
    [56] Wu T X, Cruz V, Mezyk S, et al. Gamma radiolysis of methyl tert-butyl ether: a study of hydroxyl radical mediated reaction pathways, Radiation Physics and Chemistry, 2002, 65: 335-341
    [57] Hua I, Hoffmann M R. Optimisation of ultrasonic irradiation as an advanced oxidation technology, Environ Sci Technol, 1997, 31: 2237-2243
    [58] Kang J W, Hoffmann M R. Kinetic and mechanism of the sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation in the presence of ozone, Environ Sci Technol, 1998, 32: 3194-3199
    [59] Neppolian B, Jung H, Choi H, et al. Sonolytic degradation of methyl tert-butyl ether: the role of coupled fenton process and persulphate ion, Water Research, 2002, 36: 4699-4708
    [60] Barreto D R, Gray K A, Anders K. Photocatalytic degradation of methyl tert-butyl ether in TiO2 slurries: a proposed reaction scheme, 1995, Water Research, 29: 1243-1248
    [61] O’shea K E, Wu T, Cooper W J. TiO2 photocatalyis of gasoline oxygenates: Kinetic parameters and effects of catalyst types and loading on the degradation of methyl tert-butyl ether in MTBE and the environment. In: Diaz, A, Drogos, D (Eds.), ACS Symposium Series, American Chemical Society, Washington, 2001
    [62] Sahle-Demessie E, Enriquez J, Gupta G. Attenuation of methyl tert-butyl ether in water using sunlight and photocatalyst, Water Environ Res, 2002, 74: 122-130
    [63] Ellen R B, Ramaswami A. The potential for phytoremediation of MTBE, Water Research, 2001, 35(5): 1348-1353
    [64] 于晓章,Stefan Trapp,汽油添加剂甲基叔丁基醚(MTBE)污染的植物修复,生态科学,2003,22(1):6-8
    [65] Suflita J M, Mormile M R. Anaerobic biodegradation of know and potential gasoline oxygenate in the terrestrial subsurface, Environ Sci Technol, 1993, 27(5): 976-978
    [66] Hardison L K, Curry S S, Ciuffetti L M, et al. Metabolism of diethyl ether and cometabolism of methyl tert-butyl ether by a filamentous fungus, a Graphium sp, Appl Environ Microbiol, 1997, 63: 3059-3067
    [67] Steffan R J, Mcllay K, Vainberg S, et al. Biodegradation of gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propanc-oxidizing bacteria, Appl Environ Microbiol, 1997, 63: 4216-4222
    [68] Mo K, Lora C O, Wanken A E, et al. Biodegradation of methyl t-butyl ether by pure bacterial cultures, Appl. Microbiol. Biotechnol, 1997, 47(1): 69-72
    [69] Hanson J R, Ackerman C E, Scow K M. Biodegradation of methyl tert-butyl ether by a bacterial pure culture, Appl Environ Microbiol, 1999, 65: 4788-4792
    [70] Hyman M, O’Reilly, K. Physiological and enzymatic features of MTBE-degrading bacteria. In: The Fifth International In Situ and On-Site Bioremediation Symposium, Columbus, 1999
    [71] Koenigsberg S, Sandefur C, Mahaffey W, et al. Peroxygen mediated bioremediation of MTBE. In: The Fifth International In Situ and On-Site Bioremediation Symposium, Columbus, 1999
    [72] Garnier P M, Auria R, Augur C, et al. Co-metabolic biodegradation of methyl t-butyl ether by Pseudomonas aeruginosa grown on pentane. Appl Microbiol Biotechnol, 1999, 51: 498-503
    [73] Prince R C. Biodegradation of methyl-tert-butyl ether (MTBE) and other fuel oxygenates, Critical Reviews in Microbiology, 2000, 26(3): 163-178
    [74] Steffan R J, Vainberg S, Condee C, et al. Biotreatment of MTBE with a new bacterial isolate. In: Bioremediation and phytoremediation of chlorinated and recalcitrant compounds, Columbus, 2000
    [75] Hatzinger P B, McClay K, Vainberg S, et al. Biodegradation of methyl tert-butyl ether by a bacterial pure culture, Appl Environ Microbiol, 2001, 67: 5601-5607
    [76] Hernandez-Perez G, Fayolle F, Vandecasteele J P. Biodegradation of ethylt-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by Gordonia terrae, Appl Microbiol Biotechnol, 2001, 55(4): 117-121
    [77] Fayolle F, Vandecasteele J P, Monot F. Microbial degradation and fate in the environment of methyl-tert-butyl ether and related fuel oxygenates, ApplMicrobiol Biotechnol, 2001, 56(3-4): 339-349
    [78] Liu C Y, Speitel G E, Georgiou G. Kinetics of methyl-tert-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria, Appl Environ Microbiol, 2001, 67: 2197-2201
    [79] Salanitro J P, Spimnier G E, Maner P M, et al. In situ bioremediation of MTBE using biobarriers of single or mixed cultures. In: The Sixth International In Situ and On-Site Bioremediation Symposium, Columbus, 2001
    [80] Fran?ois A, Mathis H, Godefroy D, et al. Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium Austroafricanum IFP 2012. Appl Environ Microbiol, 2002, 68: 2754-2762
    [81] Kern E A, Veeh R H, Langner H W, et al. Characterization of methyl tert-butyl ether-degrading bacteria from a gasoline-contaminated aquifer, Journal of Bioremediation, 2002, 6: 113-124
    [82] Smith C A, O’Reilly K T, Hyman M R. Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacterium vaccae JOB5, Appl Environ Microbiol, 2003, 69: 796-804
    [83] Schirmer M, Butler B J, Church C D. Laboratory evidence of MTBE biodegradation in Borden aquifer material, Journal of Contam Hydrol, 2003, 60: 229-249
    [84] Morales M, Velázquez E, Jan J, et al. Methyl tert-butyl ether biodegradation by microbial consortia obtained from soil samples of gasoline-polluted sites in Mexico, Biotechnol Lett, 2004, 26: 269-275
    [85] Pruden A, Suidan M. Effect of benzene, toluene, ethylbenzene, and p-xylene (BTEX) mixture on methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) by pure culture UC1, Biodegradation, 2004, 15: 213-227
    [86] Reed T, Allen M H, Peabody J. JP-4/JP-8 bioremediation using ORC pumped into semi- permanent injection wells. In: The Sixth Annual In-situ and On-site Bioremediation Conference, San Diego, 2001
    [87] Salanitro J P, Spimnier G E, Neaville C C, et al. Demonstration of the enhanced MTBE bioremediation(EMB) in situ process. In: The Fifth International In Situ and On-Site Bioremediation Symposium, Monterey, 1999
    [88] Schmidt T C, Schirmer M, Wei? H, et al. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface, Journal of Contamin Hydrol, 2004, 70: 173-203
    [89] Church C D, Tratnyak P G, Scow K M. Pathways for the degradation of MTBE and other fuel oxygenates by isolate PM1, Am Chem Soc, 2000, 40: 261-263
    [90] Fortin N Y, Deshusses M A. Treatment of methyl tert-butyl ether vapors in biotrickling filters. 1.Reactor startup, steady-state performance, and culture characteristics, Environ Sci Technol, 1999, 33(17): 2980-2986
    [91] Mackay D M, Cherry J A. Groundwater contamination: pump-and-treatremediation, Environ Sci Technol, 1989, 23(6): 630-636
    [92] Nyer E K, Suthersan S S. Air Sparging: Savior of Ground Water Remediation or Just Blowing Bubbles in the Bath Tub, Groundwater Water Monitoring and Remedation, 1993, 13(3): 87-91
    [93] Rabideau A J,Blayden J M, Ganguly C. Field performance of air-sparging system for removing Tce from groundwater, Environ Sci Technol, 1999, 33(1): 157-162
    [94] Johnston C D, Rayner J L, Briegel Rayner D. Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, Western Australia, Journal of Contam Hydrol, 2002, 59:87-111
    [95] Johnson P C, Johnson R L, Bruce C L, et al. Advances in in situ air sparging/biosparging, Bioremediation Journal, 2001, 5(4): 251-266
    [96] Hall B L, Lachmar T E, Dupont R R. Field monitoring and performance evaluation of a field-scale in-well aerotion system at a gasoline-contaminated site, Journal of Hazard Mater, 2001, B82: 197-212
    [97] Multi-phase extraction: state-of-the-practice, USEPA, Report, No. 542-R-99-004, 1999
    [98] Reynolds G W, Hoff J T, Gillham R W. Sampling Bias by Materials Used to Monitor Halocarbons in Groundwater, Environ Sci Technol, 1990, 24(1): 135-142
    [99] Cmatrell K J, Kaplan D I, Wietsma T W. Zero-valent iron for the in-situ remediation of selected metals in groundwater, Journal of Hazard Mater, 1995, 42(2): 201-2l2
    [100] Beitinger E. Permeable treatment walls-design, construction and cost: NATO/OCMS pilot study 1998, Special Session, Treatment Walls and Permeable Reactive Barriers, USEPA, Report, No. 542-R-98-003, 1998
    [101] Puls R W, Blowers D W, Gillham R W. Long-term performance monitoring for a permeable reactive barrier at the US Coast Guard Support Center, Elizabeth City, North Carolina, Journal of Hazard Mater, 1999, 68(1): 109-124
    [102] Gillham R W, O’hannesin S F. Enhanced degradation of halogenated aliphatics by zero-valent iron, Ground Water, 1994, 32(6): 958-967
    [103] Borden R C, Goin R T, Kao, C M. Control of BTEX migration using a biologically enhanced permeable barrier, Ground Water Monitoring and Remediation, 1997, 17: 70-80
    [104] Blowes D W, Ptacek C J, Cherry J A, et al. Passive remediation of groundwater using in situ treatment curtains, Geogenvironment, 2000, 1589-1605
    [105] Snape I, Morris C E, Cole C M. The use of permeable reactive barriers to control contaminant dispersal during site remediation in Antarctica, Cold Regions Science and Technology, 2001, 32: 157-174
    [106] Rasmussen G, Fremmersvik G, Olsen R A. Treatment of creosote-contaminatedgroundwater in a peat/sand permeable barrier—a column study, Journal of Hazard Mater, 2002, B39: 285-306
    [107] Ludwing R D, McGregor R G, Blowes D W, et al. A permeable reactive barriers for treatment of heavy metals, Ground Water, 2002, 40(1): 59-66
    [108] Wilkin R T, Puls R W, Sewell G W. Long-term performance of permeable reactive barriers using zero-valent iron: geochemical and microbiological effects, Ground Water, 2003, 41(4): 493-503
    [109] 胡黎明,地下水污染修复的活性渗滤墙技术,水利水电技术,2003,34(7): 11-13
    [110] Carsten V, Albin A, Helmut L, et al. Bioremediation of chlorobenzene-contaminated ground water in an in situ reactor mediated by hydrogen peroxide. Journal of Contam Hydrol, 2004, 68, 121-141
    [111] Kalin R M. Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution, Current Opinion in Microbiology, 2004, 7: 227-238
    [112] 束治善,袁勇,污染地下水原位处理方法:可渗透反应墙,环境污染治理技术与设备,2002,3(1):47-51
    [113] Starr R C, Cherry J A. In situ remediation of contaminated groundwater: the funnel-and gate system, Ground Water, 1994, 32(3): 465-476
    [114] Williamson D, Hoenke K, Wyatt J, et al. Construction of a funnel-and-gate treatment system for pesticide-contaminated groundwater. In: Wickramanayake GB, Gavaskar AR, Chen ASC, editors. Chemical oxidation and reactive barriers, Columbus, OH: Battelle Press, 2000
    [115] Guerin T F, Horner S, McGovern T, et al. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater, Water Research, 2002, 36: 15-24
    [116] Burries D R, Antworth C P. In situ modification of an aquifer in filow-through systems by cationic surfactant to enhance retardation of organic contaminants, Journal of Contam Hydrol, 1992, 10: 325-337
    [117] Cantrell K J, Kaplan D I. Retention of zero-valent iron colloids by sand columns: application to chemical barrier formation, Journal of Environ Eng, 1997, 123(5): 499-505
    [118] Cantrell K J, Kaplan D I, Gilmore T J. Injection of colloidal Fe0 particles in sand with shear-thinning fluid, Journal of Environ Eng, 1997, 123(8): 786-791
    [119] Wickramanayake G B, Gavaskar A R, Chen A. Chemical oxidation and reactive barriers: Remediation of chlorinated and recalcitrant compounds. In: The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Columbus, 2000
    [120] Baker M J, Blows D W, Ptacek C J. Laboratory development of permeable reactive mixtures for the removal of phosphorous from onsite wastewaterdisposal system, Environ Sci Technol, 1998, 32: 2308-2316
    [121] Czurda K A. Reactive walls with fly ash zeolites as surface active components. In: The 11th International Clay Conference, Ottawa, 1998
    [122] Czurda K A, Haus R. Reactive barriers with fly ash zeolites for in situ groundwater remediation, Applied Clay Science, 2002, 21: 13-20
    [123] 董军,赵勇胜,赵晓波等,垃圾渗滤液对地下水污染的 PRB 还原处理技术, 环境科学,2003,24(5):151-156
    [124] 钟佐燊,刘菲,地下水有机污染控制及就地修复技术研究进展(三),水文地质工程地质,2001,5:76-79,31
    [125] Komnitsas K, Bartzas G, Paspaliaris I. Efficiency of limestone and red mud barriers: laboratory column studies, Minerals Engineering, 2004, 17: 183-194
    [126] Kriegman-King, Reinhand M. Transformation of carbon tetrachloride by pyrite in aqueous solution, Environ Sci Technol, 1994, 28: 692-700
    [127] Muftikian R, Fernando Q, Korte N, et al. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water, Water Research, 1995, 29: 24-34
    [128] Sivavec T M, Mackenzie P D, Horney D P. Effect of siete groundwater on reactivity of bimetallic media: Deactivation of nickel plated granular iron, ACS National Meeting, American Chemical Society, 1997, 37(1): 83-85
    [129] Puls R W, Paul C J, Powell R M. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test, Appl Geochem, 1999, 14(8): 989-1000
    [130] Powell R M, Puls R W, Hightower S K, et al. Coupled iron corrosion and chromate reduction: Mechanisms for subsurface remediation, Environ Sci Technol, 1995, 29(8): 1913-1922
    [131] Cantrell K J, Kaplan D I, Wietsma T W. Zero-valent iron for the in-situ remediation of selected metals in groundwater, Journal of Hazard Mater, 1995, 42(2): 201-212
    [132] Mcrae C W, Blowes D W, Ptacek C. Laboratory-scale investigation of remediation of As and Se using iron oxides. Sixth Symposium and Exhibition on Groundwater and Soil Remediation, Montreal, Canada, 1997
    [133] Powell R M, Puls R W. Proton generation by dissolution of intrinsic or augmented aluminosilicate minerals for in situ contaminant remediation by zero-valence-state iron, Environ Sci Technol, 1997, 31(8): 2241-2251
    [134] Permeable reactive barrier technologies for contaminant remediation, USEPA, Report, EPA/600/R- 98/125, 1998
    [135] David W B, Carol J P, Shawn G B, et al. Treatment of inorganic contaminants using permeable reactive barriers, Journal of Contam Hydrol, 2000, 45: 123-137
    [136] 王业耀,孟凡生,地下水污染修复的渗透反应格栅技术,地下水,2004,26(2):97-100
    [137] Bostick W D, Shoemaker J L, Osborne P E, et al. Removal of agricultural nitrate from till-drainage water using in-line bioreactors, Journal of Contam Hydrol, 1990, 15: 207-211
    [138] Robertson W D, Cherry J A. In situ denitrification of septic system nitrate using reactive porous media barriers: field trails, Ground Water, 1995, 33(1): 99-111
    [139] Schipper L, Vojvodic-Vukovic M. Nitrate removal from groundwater using a denitrification wall amended with sawdust: field trail, Journal of Environ Qual, 1998, 27: 664-668
    [140] Benner S G, Herbert R B, Blowes D W, et al. Geochemistry and microbiology of a permeable reactive barrier for acid mine drainage, Environ Sci Technol, 1999, 33: 2793-2799
    [141] Westerhoff P. Reduction of nitrate, bromate and chlorate by zero valent iron, Journal of Environ Eng, 2003, 129(1): 10-16
    [142] O’hannesin S F. A field demonstration of a permeable reaction wall for the in situ abiotic degradation of halogenated aliphatic organic compounds, Ontario, Canada University of Waterloo, 1993
    [143] Schreier C G, Reinhard M. Transformation of chlorinated organic compounds by iron and manganese powders in buffered water and in landfill leachate, Chemosphere, 1994, 29: 1743-1753
    [144] Orth W S, Gillham R W. Dechlorination of trichloroethene in aqueous solution using Fe0, Environ Sci Technol, 1996, 30: 66-71
    [145] Bradley P M, Chapelle F H. Anaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sediments, Environ Sci Technol, 1996, 30: 2084-2086
    [146] O’heannesin S F, Gillham R W. Long-term performance of an situ “iron wall” for remediation of VOCs, Ground Water, 1998, 36(1): 164-170
    [147] Farrell J, Kason M, Melitasn N, et al. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene, Environ Sci Technol, 2000, 34(3): 514-521
    [148] Li T, Farrell J. Electrochemical investigation of the rate limiting mechanism for trichloroethylene and carbon tetrachloride reduction at iron surface, Environ Sci Technol, 2001, 35(17): 3560-3565
    [149] Long term performance of permeable reactive barriers using zero-valent iron: an evaluation at two sites. USEPA, Report, EPA/600/S-02/001, 2002
    [150] Grattini G, Malcomson M, Fernando Q, et al. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system, Environ Sci Technol, 1995,29(12): 2898-2900
    [151] Liang L, nickortej D, Clausen J, et al. Byproduct formation during the reduction of TCE by zero-valance iron and palladized iron, Groundwater Monitoring and Remediation, 1997, Winter: 122-127
    [152] Anid P J, Alvarez P J, Vogel T M. Biodegradation of monoaromatic hydrocarbons in aquifer columns amended with hydrogen peroxide and nitrate, Water Research, 1993, 27: 685-691
    [153] Kao C M, Prosser J. Intrinsic bioremediation of trichloroethene and chlorobenzene: field and laboratory studies, 1999, B69: 67-79
    [154] Arienzo, M. Degradation of 2,4,6-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound, Chemosphere, 2000, 40: 331-337
    [155] Kao C M, Lei S E. Using a peat biobarrier to remediate PCE contaminated aquifers, Water Research, 2000, 34: 835-845
    [156] Bianchi-Mosquera G C, Allen-King R M, Mackay D M. Enhanced degradation of dissolved benzene and toluene using a solid oxygen-releasing compound, Ground Water Monitoring and Remediation, 1994, 14: 120-128
    [157] Cassidy D P, Irvine R L. Use of calcium peroxide to provide oxygen for contaminant biodegradation in saturated soil, Journal of Hazard Mater, 1999, 69: 25-39
    [158] Robert H, Richard S I. Dissolved oxygen-releasing compound, US patent application, 20030189187
    [159] Kao C M, Borden. Enhanced TEX biodegradation in a nutrient briquet-peat barrier system, Journal Environ Eng, 1997, 123(1): 18-24
    [160] Jeffrey A C, Halla B, Gray D H, et al. Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulphate, Environ Sci Technol, 2001, 35(3): 1663-1670
    [161] 张胜,张云,张凤娥等,地下水NO3-污染的原位微生态修复技术试验研究,农业环境科学学报,2004,23(6):1223-1227
    [162] Vogan J L, Focht R M, Clark D K, et al. Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater, Journal of Hazard Mater, 1999, 68(1): 97-108
    [163] Kao C M, Chen S C, Su M C. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation, Chemosphere, 2001, 44: 925-934
    [164] Barnes B, Fischer W, Ochs D. Integrated approach to remediate a large MTBE groundwater plume. In: The Third International Remediation of Chlorinated and Recalcitrant Compounds Conference, Monterey, 2002
    [165] Kao C M, Chen S C, Wang J Y, et al. Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies . Water Research, 2003, 37: 27-38
    [166] Gupta N, Fox T C. Hydrogeologic modelling for permeable reactive barriers, Journal of Hazard Mater, 1999, 68: 19-39
    [167] Norris R D, Hinchee R E, Brown R A, et al. Handbook of Bioremediation. Boca Raton, FL: CRC Press, 1994
    [168] Riser-Roberts E. Bioremediation of Petroleum Contaminated Sites, NCEL, Port Hueneme, CA: C. K. Smoley Publishers, CRC Press, 1992
    [169] Ritter W F, Scarborough R W. Review of bioremediation of contaminated soils and groundwater. J. Environ Science and Health, 1995, A30(2): 333-357
    [170] Weston Inc, Roy F. Remedial Technologies for Leaking Underground Storage Tanks. University of Massachusetts, Amherst, MA: Lewis Publishers, 1988
    [171] Hadely P W, Armstrong. “Where is the benzene?” Examing California ground-water quality surveys, Ground Water, 1991, 29(1): 35-40
    [172] Thomas J M, Wilson J T, Ward C H. Microbial process in the subsurface. In: Subsurface Restoration, Michigan, Ann Arbor Press, 1997, 177-199
    [173] David E E, Edward J L, Martin J O, et al. Bioaugmentation for accelerated in situ anaerobic bioremediation, Environ Sci Technol, 2000, 34(11): 2254-2260
    [174] Gruiz K, Kriston. In situ bioremediation of hydrocarbon in soil, Journal of Soil Contamination, 1995, 4(2):163-173
    [175] Duba A G. TCE remediation using in situ restingstate bioaugmentation, Environ Sci Technol, 1996, 30(6): 1982-1989
    [176] Smyth D J A, Shikaze S G, Cherry J A. Hydraulic performance of permeable barriers for in situ treatment of contaminated groundwater, Land Contam Reclam, 1997, 5(3): 131-137
    [177] Eykholt G R, Elder C R, Benson C H. Effects of aquifer heterogeneity and reaction mechanism uncertainty on a reactive barrier, Journal of Hazard Mater, 1999, 68(1): 73-96
    [178] 刘兆昌,张兰生,聂永丰等,地下水系统的污染与控制,北京:中国环境科学出版社,1991
    [179] 孙讷正,地下水污染—数学模型和数值方法,北京:地质出版社,1989
    [180] Scheidegger A E. General theory of dispersion in porous media, Journal of Geophys Res, 1961, 66: 3273-3278
    [181] Davis J W, Madsen S. Factors affecting the biodegradation of toluene in soil, Chemosphere, 1996, 33(1): 107-130
    [182] Reddy H L, Ford R M. Analysis of biodegradation and bacterial transport: Comparison of models with kinetic and equilibrium bacterial adsorption, Journal of Contam Hydrol, 1996, 22:271-287
    [183] Lahvis M A, Baehr A L. Estimation of rates of aerobic hydrocarbon biodegradation by simulation of gas transport in the unsaturated zone, Water Resour Res, 1996, 32(7): 2231-2249
    [184] Bekins B A, Warren E, Michael G. E. A comparison of Zero-order, First-order, and Monod biotransformation models, Ground Water, 1998, 36(2): 261-268
    [185] Vayenas D V, Michalopoulou E, Constantinides G N, et al. Visualization experiments of biodegradation in porous media and calculation of the biodegradation rate, Advances in Water Resources, 2002, 23: 203-219 109
    [186] Borden R C, Bedient P B. Transport of dissolved hydrocarbons influedced by oxygen-limited biodegradation, 1.Theoretical development, Water Resour Res, 1986, 22(13): 1973-1982
    [187] McQuarrie K T, Sudicky E A. Simulation of biodegradable organic contaminants in groundwater, 1. numerical formulation in principal directions. Water Resour Res, 1990, 26(2): 207-222
    [188] Alvarez P J, Vogel T M. Substrate interactions of benzene, toluene, and p-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries, Appl Environ Microbiol, 1991, 57: 2981-2985
    [189] Admason A W. Physical Chemistry of Surfaces. Interscience Pub, New York, 1967
    [190] T K 修伍得等著,时钧等译,传质学,北京:化工出版社,1988
    [191] 潘绍先,王庆生,土壤相对表观极性及其对有机污染物吸附的影响,中国环境科学,1994,14(2):81-85
    [192] W.金士博,杨汝均,水环境数学模型,北京:中国建筑出版社, 1987
    [193] 陈崇希,李国敏,地下水溶质运移理论及模型,武汉:中国地质大学出版社, 1996
    [194] 郭建青,钱会,分析一维砂柱弥散试验数据的反函数法,水利学报,1999,2:43-48
    [195] 郭建青,马键,王洪胜,分析一维砂柱弥散试验数据的相关系数极值法,水科学进展,2001,12(2):172-176
    [196] Yates S R. An Analytical Solution for One-dimensional Transport in Porous Media with an Exponential Dispersion Function. Water Resour Res, 1992, 28: 2149-2154
    [197] Kai U T. Evaluation of fluoride-induced mobilization in soil columns. Journal of Environ Qual, 2000, 29: 454-459
    [198] 沈耀良,黄勇,赵丹等,固定化微生物污水处理技术,北京:化学工业出版社,2002
    [199] Bear J. Dynamics of fluids in porous media, Elsevier Pub, New York, 1972
    [200] E 科林斯著,陈钟祥,吴望一译,流体通过多孔介质的流动,北京:石油工业出版社,1983
    [201] Garcla-Delgado R A, Cotouelo-Minguez L M, Rodiguez J J. Equilibrium study of single solute adsorption of anionic surfactants with polymeric XAD resins, Sep Sci Technol, 1992, 27(7): 975-987
    [202] Juang R S, Shiau J Y, Shao H J. Effect of temperature on equilibrium adsorption of phenols onto nonionic polymeric resins, Sep Sci Technol, 1999, 34(9): 1819-1831
    [203] 李洁莹,陈金龙,费正皓等,大孔吸附树脂对邻甲酚的吸附行为研究,离子交换与吸附,2004,20(5):430-437
    [204] 何炳林,黄文强,离子交换与吸附树脂,上海:上海科技教育出版社,1992
    [205] Salanitro J P, Diaz L A, Williams M P, et al. Isolation of a bacterial culture that degrades methyl t-butyl ether, Appl Environ Microbiol, 1994, 60: 2593-2596
    [206] 郑艳梅,原位曝气去除地下水中 MTBE 及数学模拟研究:[博士学位论文],天津:天津大学,2005
    [207] 黄国强,李鑫钢,李凌等,地下水有机污染的原位生物修复进展,化工进展,2001,10:13-16
    [208] White D M, Irvine R L, Woolard C R. The use of solid peroxide to stimulate growth of aerobic microbes in tundra, Journal Hazard Mater, 1998, 57: 71-78
    [209] Ilaria, G, Luigi V, Mauro F. Oxygen supply for biostimulation of enzymatic activity in organic-rich marine ecosystems, Soil Biology & biochemistry, 2004, 5: 1-7
    [210] Nick M F, Reed T. BTEX/TPH remediation using an oxygen release compound. In: The Sixth Annual In-Situ and On-Site Bioremediation Conference, San Diego, 2001
    [211] Dupont R R. Fundamentals of bioventing applied to fuel contaminated sites, Environ Pro, 1993, 12(1): 45-53
    [212] Yaniga P M, Smith W. Aquifer restoration via accelerated in situ biodegradation of organic contaminants. In: The Joint NWWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Groundwater, Houston, 1984
    [213] Wilson J T, Ward C H. Opportunity for bioremediation of aquifers contaminated with petroleum hydrocarbon, Journal of Industrial Microbiol, 1988, 27: 109-116
    [214] Pardieck D L, Bouwer E J, Stone A T. Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: a review, Journal Contamin Hydrol, 1992, 9: 221-242
    [215] Kao C M. Bioremediation of BTEX contaminated aquifers using biologically active barriers, Ph.D. Dissertation, North Carolina State University, 1993
    [216] Fiorenza S, Ward C H. Microbial adaption to hydrogen peroxide and biodegradation of aromatic hydrocarbons, J. Ind. Microbiol Biotechnol, 1997, 18: 140-151
    [217] 林舜隆,黄德煌,陈大麟等,释氧剂在地下水中之扩散行为—现地模场试验,第二届海峡两岸土壤及地下水污染与修复研讨会,天津,2004
    [218] 吴瑞华,汤云晖,张晓晖,电气石的电场效应及其在环境领域中的应用前景, 岩石矿物学杂志,2001,20(4):474-476
    [219] 冀志江,金宗哲,梁金生等,电气石对水体 pH 值的影响,中国环境科学,2002,22(6):515-519
    [220] Schirmer M, Bulter B J, Roy J W et al. A relative-least-squares technique to determine unique Monod kinetic parameters of BTEX compounds using batch experiments, Journal of contamin hydrol, 1999, 37: 69-86
    [221] Chen Y M. Mathematical modeling of in-situ bioremediation of volatile organics in variably saturated aquifers, Ph.D. Dissertation, University of Michigan, 1996
    [222] Gavaskar A R. Design and construction techniques for permeable reactive barriers, Journal of Hazard Mater, 1999, 68: 41-71
    [223] Das D B. Hydrodynamic modelling for groundwater flow through permeable reactive barriers, Hydrological Processes, 2002, 16: 3393-3418
    [224] Das D B, Nassehi V, Wakeman R J. A finite volume model for the hydrodynamics of combined free and porous flow in sub-surface regions, Advances in Environ Res, 2002, 7: 35-58
    [225] Demond A H, Roberts P V. Effects of interfacial forces on two-phase capillary pressure relationships, Water Resour Res, 1991, 27(3): 423-437
    [226] Klotz D, Seiler K P, Moser H, et al. Dispersivity and velocity relationship from laboratory and field experiments, Journal of Hydrol, 1980, 45(3): 169-184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700