用户名: 密码: 验证码:
基于堆肥化和高效降解菌的多环芳烃降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(PAHs)能对生物体引起急慢性伤害,甚至致癌、致畸、致突变。近年来,越来越多的PAHs类物质通过尾气的释放、污泥的农业应用、废水的排放等途径进入环境。我国红壤丘陵区面积大、是重要的农业生产区、同时工业发达、污染严重。由于PAHs可通过食物链迁移和转化,其在土壤和水体中的积聚对人类健康和生态安全构成了巨大的威胁。同时,现代规模化农业导致大量的农业植物废物无法通过传统的利用途径被消耗,造成了生物资源的浪费和环境污染。
     针对多环芳烃污染土壤的修复,以强化生物降解和生物转化为基本特征的堆肥化技术相对于其它物理化学方法具有低成本和能够实现资源再生等优点。而由于PAHs具有高疏水性,其堆肥化微生物降解过程是个传质限制过程。含有PAHs的堆肥产品的使用将可能导致其在环境中重新集聚。
     利用高效降解菌降解PAHs相对于其它物理化学方法同样具有高效、低成本的优点。但其降解效率受到诸如温度、pH、共存污染物等环境条件的限制。
     污染环境中PAHs和重金属往往同时存在。二者在生物降解转化过程中发生交互作用,从而影响其降解转化的效率。
     基于以上原因,论文研究了一种利用堆肥化技术同时实现农业废物资源再生和PAHs污染丘陵红壤修复的方法;在此基础上,研究建立了两种能够强化堆肥化过程、提高堆肥化降解PAHs的效率、减少堆肥中残留PAHs的技术;并首次研究了PAHs和重金属在堆肥微生物降解转化过程中的交互作用及其机制;同时,论文驯化、筛选、鉴定了一种PAHs高效降解菌,并系统研究了高效降解菌的降解能力及其影响因素,且对其胞外酶和胞内酶的降解能力进行了初步研究。研究得到以下一些主要结果:
     (1)添加农业植物废物好氧堆肥化可以有效降解丘陵红壤中的PAHs。堆肥产品不仅对植物没有毒性而且还能促进种子的生长,从而同时实现了农业植物废物的资源化和PAHs污染土壤的修复。堆肥化32d,堆肥体中菲和芘的残留率可分别降至4.6%和9.2%。采用土壤:农业植物废物:树叶、干草:木屑为8:3:1:1时,堆料的有机物含量和C/N分别在适宜堆肥进行的有机物含量范围内和C/N比范围内。农业植物废物的添加使堆体微生物代谢活跃。细菌是降解有机物和PAHs的主要微生物类群。整个堆肥化过程pH在6.6至7.6之间波动。这个pH变化范围有利于菲的降解,也在最适宜堆肥化的pH范围之内。
     (2)臭氧预氧化能够降低堆料中PAHs的含量,减小其对后续堆肥化微生物的抑制作用,从而加快堆肥化的启动过程,因此,可以进一步提高堆肥化修复PAHs污染土壤的效率,并进一步降低堆肥产品中的PAHs含量。堆肥化31d时,经臭氧氧化-堆肥化处理的表层土壤中的菲和芘的残留率可分别降至1.1%和5.0%;堆料对植物已没有毒性。臭氧氧化处理中,土壤中的有机质会显著降低其去除PAHs的效率。
     (3)添加经驯化的活性污泥是另外一种能够进一步降低堆肥产品中PAHs含量的有效方法。活性污泥的添加显著加快了堆肥化进程和PAHs的降解过程。添加经驯化的活性污泥的堆样,堆肥化31d后菲和芘的残留率可分别降至1.5%和7.4%。
     (4)添加农业植物废物好氧堆肥化可以同时实现污染土壤中PAHs的降解和铅向难以生物利用的形态转化。堆肥化完成后,堆料对植物生长已没有抑制作用,可以二次利用。堆肥化32d,铅-菲复合污染的堆体中,菲的残留率降至9.6%,残渣态Pb的百分比超过50%。整个堆肥化过程不需要调节pH值。堆肥化中后期的堆体以偏碱性存在,有利于游离的铅离子形成沉淀,减轻其对堆肥微生物的抑制,从而促进菲的微生物降解。菲和铅在堆肥降解转化过程中存在交互作用。堆体中的Pb在一定程度上抑制了堆肥微生物的活性,并使液相中水溶性有机碳固定于固相、同时抑制堆体中胡敏酸和富里酸的生成,从而抑制了菲的降解。菲也抑制了Pb向难以生物利用形态转化的过程,但这种影响比较弱。
     (5)通过驯化培养和反复划线分离获得了一株PAHs高效降解菌。通过形态学观察、培养特性观察,综合生理生化实验结果和16S rDNA序列分析结果,将该菌归为Bacillus属,命名为Bacillus sp. PAHD3。该菌对萘、荧蒽、芴、菲和芘均能够利用。其降解PAHs的酶基因可能位于质粒DNA上。
     (6)Bacillus sp. PAHD3在pH5至pHH12的范围内均能够以菲为唯一碳源生长,且当降解体系的pH值为7.0时,其对菲的降解能力最强;该菌有较宽的底物浓度适应范围,培养7d,200mg·L-1的菲可全部被降解;500mg·L-1的菲可被降解90%以上;2000mg·L-1的菲可被降解70%以上。葡萄糖的添加对该菌降解菲的过程有抑制作用;而20mg·L-1的水杨酸对该菌降解菲的过程有促进作用;浓度为50mg·L-1的Tween-80和浓度为200mg·L-1的SDBS均促进该菌对菲的降解,且前者的促进作用比后者强。
     (7)在铅离子浓度0mg.L-1至500mg.L-1的范围内,Bacillus sp. PAHD3均能够降解菲。但铅离子对该菌降解菲的能力有一定的抑制作用,且该抑制作用随着铅离子浓度的增大而增大。偏酸性的环境能够减弱铅离子对该菌降解菲的抑制作用。铅离子能够影响该菌的细胞官能团、细胞形态、胞外酶、细胞分泌表面活性物质的能力,这可能是铅离子影响Bacillus sp. PAHD3菲降解能力的内在机制。
     (8) Bacillus sp. PAHD3胞内酶和胞外酶对菲和芘均有很高的降解活性。二者酶促反应的最适pH值分别为6.0和7.0,最适温度均为30℃。在最适条件下二者对菲的酶促去除率可分别达到98%和88%,对芘的去除率可分别达到90%和73%;其胞内酶的酶促降解作用强于其胞外酶的;pb2+与Cd2+对Bacillus sp. PAHD3胞外酶酶促去除菲均有抑制作用;低浓度的Pb2+和Cd2+对Bacillus sp. PAHD3胞内酶酶促去除菲有促进作用,高浓度的有抑制作用。
     (9)与接入经驯化的活性污泥堆肥化相比,接入Bacillus sp. PAHD3堆肥化对降解土壤中的PAHs而言没有显著的优势。
Polycyclic aromatic hydrocarbons (PAHs) can cause acute or chronic toxic effect and have carcinogenic, teratogenic, mutagenic effect on living beings. In recent years, more and more PAHs have entered environment through the release of tail gas, the agricultural application of sewage sludge, and the discharge of waste water. Red soil hilly area is large in China, and is the important area for agricultural production. But it is polluted due to the developed industry. The enrichment of PAHs in soil and water environment poses a great threat to public health and ecological security because it can migrate and transform through food chain. At the same time, modern large-scale agriculture produces a large number of agricultural plant wastes, which can not consume through traditional way, resulting in the waste of biological resource and environmental pollution.
     For the remediation of the soil polluted by PAHs, composting technology with the basic characteristics of strengthening biodegradation and biotransformation is lower cost and easier to realize resource recycling than the other physical and chemical methods. The degradation of PAHs during composting is limited by mass transfer due to its high hydrophobicity. The utilization of composting product containing residual PAHs may result in the re-enrichment of PAHs in environment.
     The method utilizing high efficient PAHs-degrading bacteria to degrade PAHs is also more efficient, lower cost than the other physical and chemical methods. But the degradation efficiency is limited by environmental conditions such as temperature, pH, and the coexistence of pollutants.
     Heavy metals and PAHs tend to exist at the same time in the polluted environment. They may interact and thus affect the efficency of biotransformation or biodegradation.
     Based on the above reasons, a method, which utilize composting technology to realize both the recycling of agricultural waste and the remediation of the red hilly soil polluted by PAHs, was presented, and futhermore two strengthening methods, by which the degradation efficiency of PAHs was increased and the residual PAHs was decreased during composting, were studied. The interaction between PAHs and heavy metals during compositng was also studied. One high efficient PAHs-degrading bacterium was isolated based on acclimatizing, screening and identifying. And both its degradation ability and the degradation ability of its enzymes were studied. The important results were listed as following:
     (1) PAHs in polluted soil were efficiently degraded by composting adding agricultural plant waste, which product was unharmful to plant and furthermore promoted its growth. Accordingly, both the reuse of agricultural plant waste and the restoration of PAHs contaminated soil were realized at the same time. After composting for32d, the residual rate of phenanthrene (PHE) and pyrene(Pyr) were4.6%and9.2%, respectively. When the ratio of the soil, agricultural plant wastes, leaves and hay, and wood chips was8:3:1:1, the organic matter content and C/N were respectively suitable for composting. The addition of agricultural plant waste stimulated the microbial metabolism. Bacterium was the main microbial group to degrade organic matter and PAHs. The pH ranged from6.6to7.6during composting process, which was favorable for the biodegradation of PHE and the composting process.
     (2) Pre-ozonation further decreased PHE in soil and thus decreased its inhibition on the composting microbes and quickened the startup of the following composting. After composting for31d, the residual rates of PHE and Pyr in surface red soil were1.1and5.0%, respectively, and the phytotoxicity of the contaminated soil disappeared. The organic content in soil remarkably decreased the efficiency of removing PAHs by ozonation.
     (3) Composting with inoculation of acclimatized activated sludge was also an effective method for further decreasing PAHs in composting product. The addition of acclimatized activated sludge made both the composting and the degradation of PAHs more rapid and further decreased PAHs in composting materials. The residual rate of PHE and Pyr were decreased to1.5%and7.4%, respectively, by composting for31d.
     (4) Composting with agricultural plant waste both decreased the residual PHE in composting product and promoted the morphological transformation of Pb. When composting was completed, the product could be reused because it was unharmful to plant, in which the percentage of PHE was decreased to9.6%and more than50%of Pb was bound to the residual fraction. During composting, pH could guarantee the composting without adjustment and the alkaline environment in the middle and the later periods of composting was helpful for the precipitation of lead ion, which reduced its inhibition on composting microbes and promoted the biodegradation of PHE. The coexistence of Pb inhibited the biodegradation of PHE to some extent by inhibiting the growth of composting microbes, decreasing the dissolved organic carbon, humic acid and fulvic acid. On the other hand, the coexistence of PHE inhibited the transformation of lead. But this effect was weak.
     (5) One high efficient PAHs-degrading bacterium was isolated by acclimatizing and screening. It was identified as Bacillus sp. and named Bacillus sp. PAHD3through the observation of morphology, cultural characteristics, physiological and biochemical experiments and the analysis of16S rDNA sequences. Naphthalene, fluo-ranthene, fluorene, phenanthrene and pyrene were all able to be utilized by this bacterium. And its gene for degrading PAHs existed in plasmid.
     (6) Bacillus sp. PAHD3was able to grow with the sole carbon source of PHE under the pH value of5to12. And the degradation was most efficient under the pH value of7.0. The concentration range of PHE which Bacillus sp. PAHD3could utiliaze was wide. After7d, PHE with the concentration of200mg·L-1,500mg·L-1and2000mg·L-1were degraded by100%, more than90%, and more than70%, respectively. Glucose showed inhibitory effect on the biodegradation of PHE while salicylic acid of20mg·L-1stimulated its degradation. Both Tween-80(50mg·L-1) and SDBS (200mg·L-1) promoted the biodegradation of PHE, and the former effect was bigger than the latter.
     (7) Under the concentration ranging from0mg·L-1to500mg·L-1, Bacillus sp. PAHD3was able to degrade PHE. But lead ion had certain inhibitory effect on the biodegradation of PHE, furthermore the inhibition increased with the increase of lead ion concentration. Acid environment could abate this inhibition. Lead ions affected the functional group, the extracellular enzymes, the cell morphology and the ability to produce surfacants of Bacillus sp. PAHD3. It was the internal mechanism of lead affecting the biodegradation of PHE.
     (8) Both intracellular and extracellular enzymes of Bacillus sp. PAHD3were efficient on degrading both PHE and pyrene. The removal rate of PHE (pyrene) reached98%(90%) by intracellular enzymes under the optimal pH value of6.0, and 88%(73%) by extracellular enzymes under the optimal pH value of7.0. The degradation of PHE by intracellular enzyme was stronger than by the extracellular enzymes. The optimum temperature for the above degradation was30℃. Both Pb2+and Cd2+inhibited the removal of PHE by extracellular enzymes. Pb2+and Cd2+of low concentration stimulated enzymatic removal of PHE, while which of high concentration had an opposite effect.
     (9) Compared with composting soil with the addition of activated sludge, composting soil with the addition of Bacillus sp. PAHD3was not more efficient for degrading PAHs.
引文
[1]Olivella M A, Fernandez I, Cano L, et al. Role of chemical components of cork on sorption of aqueous polycyclic aromatic hydrocarbons. International Journal of Environmental Research,2013,7(1):225-234
    [2]廖书林,郎印海,王延松.辽河口湿地土壤多环芳烃的分布及水源研究.环境科学,2011,32(4):78-84
    [3]Villanneau E J, Saby N P A, Orton T G, et al. First evidence of large-scale PAHs trends in French soils. Environmental Chemistry Letters,2013,11 (1):99-104
    [4]Cao X F, Liu M, Song Y F, et al. Composition, sources, and potential toxicology of polycyclic aromatic hydrocarbons in agricultural soils in Liaoning, People's Republic of China. Environmental Monitoring and Assessment,2013,185 (3): 2231-2241
    [5]何汀涛,金爱芳,陈索暖,等.北京东南郊污灌区PAHs垂向分布规律.环境科学,2009,30(5):72-76
    [6]Khan S, Aijun L, Zhang S Z, et al. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. Journal of Hazardous Materials,2008,152 (2): 506-515
    [7]Wang P, Luo L, Ke L, et al. Combined toxicity of polycyclic aromatic hydrocarbons and heavy metals to biochemical and antioxidant responses of free and immobilized Selenastrum capricornutum. Environmental Toxicology and Chemistry,2013,32 (3):673-683
    [8]Zhang H, Dang Z, Zheng L C, et al. Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). International Journal of Environmental Science and Technology,2009,6 (2):249-258
    [9]Hua L, Wu W X, Liu Y X, et al. Heavy metals and PAHs in sewage sludge from twelve wastewater treatment plants in Zhejiang province. Biomedical and Environmental Sciences,2008,21 (4):345-352
    [10]Rippey B, Rose N, Yang H D, et al. An assessment of toxicity in profundal lake sediment due to deposition of heavy metals and persistent organic pollutants from the atmosphere. Environment International,2008,34 (3):345-356
    [11]Hannam M L, Bamber S D, Galloway T S, et al. Effects of the model PAH phenanthrene on immune function and oxidative stress in the haemolymph of the temperate scallop Pecten maximus. Chemosphere,2010,78 (7):779-784
    [12]Shen G Q, Lu Y T, Zhou Q X, et al. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme. Chemosphere,2005,61 (8): 1175-1182
    [13]岳敏,谷学新,邹洪,等.多环芳烃的危害与防治.首都师范大学学报(自然科学版),2003,24(3):40-44
    [14]Williams E S, Mahler B J, Van Metre P C. Cancer risk from incidental ingestion exposures to PAHs associated with coal-tar-sealed pavement. Environmental Science and Technology,2013,47 (2):1101-1109
    [15]张进.上海典型地区环境介质中多环芳烃的来源和分布特征研究:[上海交通大学硕士学位论文].上海:上海交通大学,2008,60-65
    [16]Suvarapu L N, Seo Y K, Baek S O. Volatile organic compounds and polycyclic aromatic hydrocarbons in ambient air of Indian cities-a review. Research Journal of Chemistry and Environment,2013,17(3):67-74
    [17]骆苑蓉.多环芳烃降解菌的降解特性与降解途径研究:[厦门大学博士学位论文].厦门:厦门大学,2008,34-36
    [18]Fisher T T, Law R J, Rumney H S, et al. Towards a scheme of toxic equivalency factors for the acute toxicity of PAHs in sediment. Ecotoxicology and Environmental Safety,2011,74(8):2245-2251
    [19]Armstrong B G, Gibbs G E. Exposure-response relationship between lung cancer and polycyclic hydrocarbons(PAHs). Ocuppational and Environmental Medicine, 2009,66(11):740-746
    [20]张霖琳,吕俊岗,吴国平,等.我国某肺癌高发区人群多环芳烃和微量元素的日暴露量研究.中国环境科学,2010,30(1):104-109
    [21]Miller P E, Lazarus P, Lesko S M, et al. Meat-related compounds and colorectal cancer risk by anatomical subsite. Nutrition and Cancer-AN International Journal,2013,65(2):202-226
    [22]王莹.蒽醌类和多环芳烃类化合物对水生生物的急性光致毒性及QSAR研究:[大连理工大学博士学位论文].大连:大连理工大学,2009,57-60
    [23]Jones L, Kinsella B, Furey A. Monitoring the occurrence of PAHs in Irish wastewater effluent. Journal of Environmental Monitoring,2012,14(11): 3009-3014
    [24]kenneth O, Elena K, Walter S, et al. Determination of polycyclic aromatic hydrocarbons in aqueous samples by reversed-phase liquid chromatoraphy. Analytical Chemistry,1979,51 (8):1315-1320
    [25]Wang C Y, Wang F, Wang T, et al. PAHs biodegradation potential of indigenous consortia from agricultural soil and contaminated soil in two-liquid-phase bioreactor (TLPB). Journal of Hazardous Materials,2010,176 (1-3):41-47
    [26]Zhou H W, Luan T G, Zou F, et al. Different bacterial groups for biodegradation of three-and four-ring PAHs isolated from a Hong Kong mangrove sediment. Journal of Hazardous Materials,2008,152 (3):1179-1185
    [27]Haritash A K, Kaushik C P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs):A review. Journal of Hazardous Materials,2009,169 (1-3):1-15
    [28]Li X J, Lin X, Li P J, et al. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. Journal of Hazardous Materials,2009,172 (2-3):601-605
    [29]曹晓星.多环芳烃降解菌的共代谢及其相关酶的研究:[厦门大学硕士学位论文].厦门:厦门大学,2006,43-44
    [30]Mohandass R, Rout P, Jiwal S, et al. Biodegradation of benzopyrene by the mixed culture of bacillus cereus and bacillus vireti isolated from the petrochemical industry. Journal of Environmental Biology,2012,33(6):985-989
    [31]Gramss G, Kirsche B, Voigt K D, et al. Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes. Mycological Research,1999,102 (8): 1009-1018
    [32]杜丽娜,高大文.青顶拟多孔菌对单一和复合多环芳烃的降解特性.中国环境科学,2011,31(2):277-282
    [33]唐婷婷,金卫根.多环芳烃微生物降解机理研究进展.土壤,2010,42(6):876-881
    [34]Wang X P, Yu X B, Richard B. Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil. Environmental Science & Technology,1990,24 (7):1086-1089
    [35]邓欢欢,张甲耀,赵磊,等.外源降解菌对黄麻根区净化能力的生物强化作用.应用与环境生物学报,2005,11(4):426-430
    [36]赵飞,刘翔,杨建刚,等.降解菌对堆肥中多环芳烃降解作用的研究.环境污染治理技术与设备,2005,6(1):47-49
    [37]Lashermes G, Barriuso E, Houot S. Dissipation pathways of organic pollutants during the composting of organic wastes. Chemosphere,2012,87(2):137-143
    [38]Jimenez I Y, Bartha R. Solvent-augmented mineralization of pyrene by a Mycobacterium sp. Applied and Environmental Microbiology,1996,62 (7): 2311-2316
    [39]Pantsyrnaya T, Delaunay S, Goergen J L, et al. Biodegradation of phenanthrene by Pseudomonas putida in the presence and in the absence of a surfactant. Indian Journal of Microbiology,2012,52(3):420-426
    [40]Andrew J, Daniel K, Thomas M. Enhancing solubilization of sparingly soluble organic compounds by biosurfactants produced by Nocardia erythropolis. Water Environment Research,1998,70 (3):351-355
    [41]Joyce J F, Sato C, Cardenas R, et al. Composting of polycyclic aromatic hydrocarbons in simulated municipal solid waste. Water Environment Research, 1998,70(3):356-361
    [42]尹春芹,蒋新,王芳,等.不同碳源刺激对老化污染土壤中PAHs降解研究.环境科学,2012,33(2):11-15
    [43]Coates J D, Anderson R T, Lovley D R. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Applied and Environmental Microbiology,1996,62 (3):1099
    [44]Leduc R, Samson R, Al-Bashir B, et al. Biotic and abiotic disappearance of four PAH compounds from flooded soil under various redox conditions. Water science and technology,1992,26 (1/2):51-60
    [45]Lamar B W, Bogan R T. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Applied Environmental Microbiology,1996,62 (5):1597
    [46]刘芳,梁金松,孙英,等.高分子量多环芳烃降解菌LD29的筛选及降解特性研究.环境科学,2011,32(6):1799-1804
    [47]刘海滨,王翠苹,张志远,等.苯并[a]芘高效降解菌筛选及其降解特性研究.环境科学,2011,32(9):2696-2702
    [48]王然,夏星辉,孟丽红,等.水体颗粒物的粒径和组成对多环芳烃生物降解的影响.环境科学,2006,27(5):855-861
    [49]李全霞,范丙全,龚明波,等.降解芘的分枝杆菌M11的分离鉴定和降解特性.环境科学,2008,29(3):763-768
    [50]杨建刚,刘翔,余刚,等.非离子表面活性剂Tween20对菲生物降解的影响.环境科学,2004,25(1):53-56
    [51]仉磊,袁红莉.一株菲降解细菌的分离及其特性.环境科学,2005,26(1):159-163
    [52]Vivas A, Moreno B, Val C, et al. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. Journal of Environmental Monitoring,2008,10 (11):1287-1296
    [53]Shen G Q, Lu Y T, Hong J B. Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil. Ecotoxicology and Environmental Safety,2006,63 (3):474-480
    [54]Saeedi M, Li L Y, Salmanzadeh M. Heavy metals and polycyclic aromatic hydrocarbons:pollution and ecological risk assessment. Journal of Hazardous Materials,2012,227:9-17
    [55]Song S S, Zhu L Z, Zhou W J. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant. Environmental Pollution,2008,156 (3):1368-1370
    [56]Xiao J J, Guo L J, Wang S P, et al. Comparative impact of cadmium on two phenanthrene-degrading bacteria isolated from cadmium and phenanthrene co-contaminated soil in China. Journal of Hazardous Materials,2010,174 (1-3): 818-823
    [57]Maslin P, Maier P M. Phamnolipid enhanced mineralization of phenanthrene in organic metal co-cotaminated soils. Bioremediation Journal,2000, (4):295-308
    [58]Rosner J L, Aumercier M. Potentiation by salicylate and salicyl alcohol of cadmium toxicity and accumulation in Escherichia coli. Antimicrobial agents and chemotherapy,1990,34 (12):2402-2406
    [59]Gogolev A, Wilke B M.. Combination effects of heavy metals and fluoranthene on soil bacteria. Biology and Fertility of Soils,1997, (25):274-278
    [60]Maliszewska-Kordybach B, Smreczak B. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environment International,2003,28 (8):719-728
    [61]Chakravarty R, Banerjee P C. Morphological changes in an acidophilic bacterium induced by heavy metals. Extremophiles,2008,12 (2):279-284
    [62]Sikkema J, Bont J A, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. The Journal of biological chemistry,1994,269 (11): 8022-8028
    [63]Harms H, Smith K E C, Wick L Y. Microorganism-hydrophobic compound interactions. Handbook of Hydrocarbon and Lipid Microbiology,2010, (Part 15): 1479-1490
    [64]Kobayashi H, Takami H, Hirayama H, et al. Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudomonas putida IH-2000. Journal of bacteriology,1999,181 (15):4493-4498
    [65]沈国清,陆贻通,洪静波,等.菲和镉复合污染对土壤微生物的生态毒理效应.环境化学,2005,24(6):662-665
    [66]Carine F, Enrique A G, Steven C. Metal effects on phenol oxidase activities of soils. Ecotoxicology and Environmental Safety,2009,72 (1):108-114
    [67]Niu Q Y, Zeng G M, Niu Y L, et al. Laboratory study on composting of soil with combined pollutants of phenanthrene and lead. In:Proc of 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2009). Beijing,2009,3-4
    [68]Ke L, Bao W W, Chen L L, et al. Effects of humic acid on solubility and biodegradation of polycyclic aromatic hydrocarbons in liquid media and mangrove sediment slurries. Chemosphere,2009,76 (8):1102-1108
    [69]高彦征,熊巍,凌婉婷,等.重金属污染的长春水田黑土对菲的吸附作用.中国环境科学,2006,26(2):161-165
    [70]胡天觉.城市有机固体废物仓式好氧堆肥工艺改进及理论研究:[博士学位论文].长沙:湖南大学,2004,46-48
    [71]Antizar-Ladislao B, Lopez-Real J, Beck A J. Laboratory studies of the remediation of polycyclic aromatic hydrocarbon contaminated soil by in-vessel composting. Waste Management,2005,25 (3):281-289
    [72]Lashermes G, Houot S, Barriuso E. Sorption and mineralization of organic pollutants during different stages of composting. Chemosphere,2010,79 (4): 455-462
    [73]Zhang Y, Zhu Y G, Houot S, et al. Remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil through composting with fresh organic wastes. Environmental Science and Pollution Research,2011,18 (9):1574-1584
    [74]Namkoong W, Hwang E Y, Park J S, et al. Bioremediation of diesel-contaminated soil with composting. Environmental Pollution,2002,119 (1):23-31
    [75]Haroun M, Idris A, Omar S. Analysis of heavy metals during composting of the tannery sludge using physicochemical and spectroscopic techniques. Journal of Hazardous Materials,2009,165 (1-3):111-119
    [76]Amir S, Hafidi M, Merlina G, et al. Fate of polycyclic aromatic hydrocarbons during composting of lagooning sewage sludge. Chemosphere,2005,58 (4): 449-458
    [77]Koolivand A, Naddafi K, Nabizadeh R, et al. Biodegradation of petroleum hydrocarbons of bottom sludge from crude oil storage tanks by in-vessel composting. Toxicological and Environmental Chemistry,2013,65(1):101-109
    [78]Sayara T, Borras E, Caminal G, et al. Bioremediation of PAHs-contaminated soil through composting. International Biodeterioration and Biodegradation,2011, 65(6):859-865
    [79]Oleszczuk P. Phytotoxicity of municipal sewage sludge composts related to physico-chemical properties, PAHs and heavy metals. Ecotoxicology and Environmental Safety,2008,69 (3):496-505
    [80]Bargagli R. Environmental contamination in antarctic ecosystems. Science of the Total Environment,2008,400 (1-3):212-226
    [81]Ramirez W A, Domene X, Ortiz O, et al. Toxic effects of digested, composted and thermally-dried sewage sludge on three plants. Bioresource Technology, 2008,99(15):7168-7175
    [82]Farrell M, Jones D L. Critical evaluation of municipal solid waste composting and potential compost markets. Bioresource Technology,2009,100 (19): 4301-4310
    [83]张棋,李忠武,曾光明,等.中国南方红壤丘陵区湖南水环境时空变化研究.环境科学与技术,2008,31(3):98-102
    [84]温利华,史志华,王天巍,等.湖北省咸宁市土地利用/覆盖变化研究.华中农业大学学报,2008,27(3):373-377
    [85]巩宗强,李培军,王新,等.污染土壤中多环芳烃的共代谢降解过程.生态学杂志,2000,19(6):40-45
    [86]葛成军,安琼,董元华,等.钢铁工业区周边农业土壤中多环芳烃(PAHs)残留及评价.农村生态环境,2005,21(2):66-69
    [87]Potin O, Veignie E, Rafin C. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiology Ecology,2004,51 (1):71-78
    [88]倪进治,骆永明,张长波,等.长江三角洲地区土壤环境质量与修复研究Ⅲ,农业土壤不同粒径组分中菲和苯并[a]芘的分配特征.土壤学报,2006,43(5):717-722
    [89]Mathura S P, Owenb G, Dinela H, et al. Determination of compost biomaturity. Literature Review,1993,10 (2):65-85
    [90]张从,沈德中,张文娟,等.接菌堆肥法处理污染土壤中多环芳烃的研究.中国农业大学学报,1999,4(1):117
    [91]李国学,李玉春,李彦富,等.固体废物堆肥化及堆肥添加剂研究进展.农业环境科学学报,2003,22(2):252-256
    [92]Zeng G M, Huang D L, Huang G H, et al. Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresource Technology,2007,98 (2):320-326
    [93]房敏.高温堆肥技术处理多环芳烃污染土壤的研究:[山东大学博士后论文].济南:山东大学,2000,56-58
    [94]Lee H, Jiang Y, Kim J M, et al. White-rot fungus merulius tremellosus identified as an effective degrader of polycyclic hydrocarbons. Journal of Basic Microbiology,2013,53(2):195-199
    [95]Hansen L D, Nestler C, Ringelberg D, et al. Extended bioremediation of PAH/PCP contaminated soils from the POPILE wood treatment facility. Chemosphere,2004,54 (10):1481-1493
    [96]Simarro R, Gonzalez N, Fernando B, et al. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures. FEMS Microbiology Ecology,2013,83(2): 438-449
    [97]Vaidehi K, Kulkarni S D. Microbial remediation of polycyclic aromatic hydrocarbons:an overview. Research Journal of Chemistry and Environment, 2012,16(4):200-212
    [98]Jan C J, Harm S, Martin R J, et al. Combined oxidative and biological treatment for separated streams of tannery wastewater. Water Science and Technology, 1997,36(2-3):209-216
    [99]郭瑾,马军.臭氧预氧化对芘在天然有机物中分配行为的影响.中国环境科学,2007,27(3):327-331
    [100]Kulik N, Goi A, Trapido M, et al. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. Journal of Environmental Management,2006,78 (4): 382-391
    [101]何苗,张晓健,瞿福平,等.难降解有机物生物抑制特性的研究.环境科学1997,18(2):56-58
    [102]Zucconi F, Forte M, Monaco A, et al. Biological evaluation of compost maturity. Biocycle,1981,22:27-29
    [103]Baborova P, Moder M, Baldrian P, et al. Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Research in Microbiology,2006,157 (3): 248-253
    [104]Gutierrez T, Green D H, Nichols P D, et al. Polycyclovorans algicola gen. nov. sp nov., an aromatic hydrocarbon degrading marine bacterium found associated with laboratory cultures of marine phytoplankton. Applied and Environmental Microbiology,2013,79 (1):205-214
    [105]Yu S H, Ke L, Wong Y S, et al. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a bacterial consortium enriched from mangrove sediments. Environment International,2005,31 (2):149-154
    [106]Thavamani P, Megharaj M, Naidu R. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation, 2012,23(6):823-835
    [107]Macleod C T, Daugulis A J. Degradation of polycyclic aromatic hydrocarbons by a hydrophobic mycobacterium. Process Biochemistry,2005,40:1799-1805
    [108]Cheng Q Y, Guo S S, Ai W D, et al. A straw-soil co-composting and evaluation for plant substrate in BLSS. Advances in Space Research,2013,51(3):483-491
    [109]朴哲,赵秀锦,陈新兵,等.一种快腐菌剂在堆肥制作中的应用研究.环境科学与技术,2011,34(10):138-142
    [110]许月蓉,顾希贤.垃圾堆肥微生物接种实验.应用与环境生物学报,1995,1(3):274-278
    [111]Saha N, Mukherjee D, Sen S, et al. Application of highly efficient lignocellulolytic fungi in cocomposting of paddy straw amended poultry droppings for the production of humus rich compost. Compost Science and Utilization,2012,20(4):239-244
    [112]黄丹莲,曾光明,黄国和,等.接种白腐真菌堆肥处理含Pb垃圾.环境科学,2006,27(1):175-177
    [113]Jimenex E I, Garcia V P. Relationship between carbon and total organic matter in municipal solid waste and city refuse compost. Bioresource Technology,1992, 41:209-223
    [114]Thavamani P, Megharaj M, Naidu R, et al. Multivariate analysis of mixed contaminants(PAHs and heavy metals) at manufactured gas site soils. Environmental Monitoring and Assessment,2012,184(6):3875-3885
    [115]Zorpas A A, Constantinides T, Vlyssides A G, et al. Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresource Technology,2000,72 (2):113-119
    [116]Gao Y Z, Xiong W, Ling W T, et al. Sorption of phenanthrene by soils contaminated with heavy metals. Chemosphere,2006,65 (8):1355-1361
    [117]Canas A, Alcalde M, Plou F, et al. Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil. Environmental Science and Technology,2007,41(8):2964-2971
    [118]Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metal. Analytical Chemistry,1979,51:844-851
    [119]Kalantary R R, Badkoubi A, Mohseni B A, et al. Modification of PAHs biodegradation with humic compounds. Soil & Sediment Contamination,2013, 22(2):185-198
    [120]东秀珠,蔡妙英.常用细菌系统鉴定手册.北京:科学出版社,2001,63-58
    [121]Cristina R G, Emilia Q, Fernando M C, et al. Bacillus axarquiensis sp. nov. and Bacillus malacitensis sp. nov., isolated from river-mouthsediments in southern Spain. International Journal of Systematic and Evolutionary Microbiology,2005, 55:1279-1285
    [122]李银霞.氯苯降解菌CB-2的降解特性及质粒特性的研究:[辽宁师范大学硕士学位论文].大连:辽宁师范大学,2009,53-61
    [123]徐引弟.猪霍乱沙门氏菌C500株缺失株平衡致死系统的构建及应用:[华中农业大学博士学位论文].武汉:华中农业大学,2006,57-62
    [124]Lakshmi M B, Muthukumar K, Velan M. Optimization of minimal salt medium for efficient phenanthrene biodegradation by Mycoplana sp MVMB2 isolated from petroleum contaminated soil using factorial design experiments. Clean-Soil Air Water,2013,41 (1):51-59
    [125]Simarro R, Gonzalez N, Bautista L F, et al. Evaluation of the influence of multiple environmental factors on the biodegradation of dibenzofuran, phenanthrene, and pyrene by a bacterial consortium using an orthogonal experimental design. Water Air and Soil Pollution,2012,223 (6):3437-3444
    [126]Mohanty S, Mukherji S. Surfactant aided biodegradation of NAPLs by burkholderia multivorans:Comparison between triton X-100 and rhamnolipid JBR-515. Colloids and Surfaces B-Biointerfaces,2013,102:644-652
    [127]Syakti A D, Yani M, Hidayati N V, et al. The bioremediation potential of hydrocarbonoclastic bacteria isolated from a mangrove contaminated by petroleum hydrocarbons on the cilacap coast, Indonesia. Bioremediation Journal, 2013,17 (1):11-20
    [128]Moscoso F, Ferreira L, Deive F J, et al. Viability of phenanthrene biodegradation by an isolated bacterial consortium:optimization and scale-up. Bioprocess and Biosystems Engineering,2013,36 (2):133-141
    [129]张杰,刘永生,冯家勋,等.多环芳烃降解菌筛选及其降解特性.应用生态学报,2003,14(10):433-435
    [130]苏丹,李培军,王鑫,等.共基质对10株细菌降解芘的作用.应用生态学报,2007,18(3):636-640
    [131]姜霞,区自清,应佩峰.表面活性剂对分枝杆菌KR2菌株降解菲的影响.应用生态学报,2003,14(11):2011-2014
    [132]Zhang D, Zhu L Z. Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Environmental Pollution, 2012,164:169-174
    [133]赵渝,高林,徐亚同,等.高效菲降解菌的分离鉴定及细胞表面结构研究.华东师范大学学报(自然科学版),2008,(2):92-95
    [134]Behnoudnia F, Dehghani H. Synthesis and characterization of novel three-dimensional-cauliflower-like nanostructure of lead(Ⅱ) oxalate and its thermal decomposition for preparation of PbO. Inorganic Chemistry Communications,2012,24:32-39
    [135]Ding J, Chen B L, Zhu L Z. Biosorption and biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in aqueous solution. Chinese Science Bulletin,2013,58 (6):613-621
    [136]聂麦茜,吴蔓莉,王晓昌,等.一株黄杆菌及其粗酶液对芘降解的动力学特征研究.环境科学学报,2006,26(2):181-184
    [137]Wang C P, Sun H W, Li J M, et al. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere,2009,77:733-738
    [138]Yang Z X, Liu S Q, Zheng D W, et al. Effects of cadium, zinc and lead on soil enzyme activities. Journal of Environmental Science,2006,18:1135-1141
    [139]吴蔓莉,聂麦茜,王晓昌,等.金属离子对多环芳烃酶促降解的影响作用.水处理技术,2008,34(8):13-15
    [140]Yuan S Y, Su L M, Chang B V. Biodegradation of phenanthrene and pyrene in compost-amended soil. Journal of Environmental Science and Health Part-A: Toxic/Hazardous Substances & Environmental Engineering,2009,44(7): 648-653
    [141]余震.五氯酚污染土壤的堆肥修复及其微生物群落组成研究:[湖南大学博士学位论文].长沙:湖南大学,2012:68-86
    [142]王春明.多环芳烃降解菌分离、降解特性及在稠油微生物采油中的应用研究:[四川大学博士学位论文].成都:四川大学,2007:23-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700