用户名: 密码: 验证码:
基于炉内参数测量的燃烧系统优化运行理论与技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在火力发电成本中,燃料费用一般要占70%以上,提高锅炉燃烧系统的运行水平对机组的节能降耗具有重要意义。同时,发电企业面临厂网分开、竞价上网的电力市场竞争,而且,由于能源紧张导致燃煤价格上涨,进一步加大了发电企业的生产成本。随着国家对电站污染物排放的限制,如何有效降低污染物排放的技术成为电厂当前关注的热点。
     燃煤价格的上涨和污染排放的限制,使国内燃煤电站面临着提高锅炉效率与降低污染排放的双重要求,迫切需要面向节能、降耗与降低污染、安全运行的生产过程优化控制与调度方法。
     锅炉燃烧优化技术能够有效提高机组运行效率,降低发电成本,显著降低锅炉污染物的排放,并能够监督保障锅炉的安全运行。本文以电站锅炉燃烧系统为研究对象,探讨了锅炉燃烧优化运行理论与技术。主要内容包括:
     (1)炉内参数测量技术与方法的研究。
     燃烧优化技术目标是根据锅炉的负荷和煤种,实时优化锅炉的风量和煤量,指导锅炉燃烧调整,提高锅炉燃烧运行效率,降低发电煤耗,同时减少烟气的NOx排放,实现锅炉的经济环保运行。
     为了实现这一目标首要的问题是,采用一种什么样的测量设备来实时地检测出锅炉内部的主要参数,根据这些参数指导锅炉燃烧调整。
     本文提出了利用美国佐炉公司的ZoloBOSS激光测量网作为炉内参数检测设备,配以我们自行研制的运行优化站,构成锅炉燃烧优化运行系统。
     (2)基于RBF神经网络的锅炉燃烧系统模型建立。
     锅炉燃烧过程中的NOx排放和锅炉效率的影响因素非常复杂,相互联系,相互耦合。因此用机理建模方法建立符合锅炉当前特性的模型存在一定的困难。该文引入先进的人工智能神经网络技术,根据锅炉燃烧过程历史数据,利用RBF神经网络建立了锅炉效率的预测模型和NOx排放的预测模型,并通过实测数据验证了模型的准确性。
     (3)锅炉烟气干燥燃褐煤时的热经济性分析。
     对褐煤进行预干燥可以明显地提高直接燃褐煤电站发电效率,滚筒烟气干燥是应用最早的干燥方法。为此,本文建立了锅炉烟气干燥燃褐煤发电系统的热经济性分析模型,并且利用该模型对某600MW机组采用锅炉烟气干燥对发电系统热效率的影响因素进行了分析。
     将分析结果与前述的锅炉燃烧优化运行系统配合使用,将大大提高直接燃褐煤火电厂的热效率,起到节能的目的。
     (4)基于多目标遗传算法NSGA-Ⅱ的燃烧参数优化。
     建立模型之后,采用多目标遗传算法NSGA-Ⅱ对锅炉的运行参数进行优化,仿真结果表明,本文的方法能够给出可行的调整各风门开度等操作量的优化控制方案,使锅炉维持在良好的工况下,达到节能减排的目的。将为火力发电机组实现高效率、低排放运行提供有效解决方案。
The cost of fuel accounts for more than70%in all thermal power costs, so it is of great significance to raise the running level of combustion system of utility boilers.Besides, power generators are faced with the competition of separation of plant and network and biding for use of network, and energy shortage causes the price rise of coal. All these make the thermal power costs greater. As the State put restrictions on power plant emissions, the technology of how to effectively reduce emissions becomes the focus of power plants.
     Domestic coal-fired power plants are confronted with two requirements to improve boiler efficiency and lower pollution emission because of the rising coal prices and pollution emission limits, thus there is an urgent need for a method of optimizing the process control and schedule. This method can meet the needs of energy saving, consumption reducing, pollution lowering and safe operation.
     The optimization technology of combustion system for utility boilers can improve unit operation efficiency, reduce power-generation costs, reduce the emission of pollutions significiently, and safeguard the safe operation of the boiler. This dissertation puts the combustion system for the study, and discuss the theories and techniques for the optimization of combustion of utility boilers. The main content includes:
     1. Study on techniques and methods of boiler parameter measurement.
     The goal of combustion optimization is to optimize boiler air distribution, coal distribution and operation mode in real time on the basis of the load and the coal, to guide the combustion regulation, so as to improve the operation efficiency of boiler combustion, reduce coal cost and the emission of NOx, and achieve economic environmental operation of utility boiler.
     To achieve this goal, the first problem is what kind of measuring instrument to be used to detect the main paremeters inside the boiler in real time, so as to guide the boiler combustion regulation according to these parameters.
     This dissertation takes the laser measurement system ZoloBOSS from Zolo technologies, Inc. as the instrument of parameter measuring, and combined with our self-developped optimization station to consist of combustion optimization system for utility boiler.
     2. Modeling of combustion system of utility boiler based on RBF neural network.
     The factors that influence NOx emissions in combustion process and the boiler efficiency are very complex, interrelated and mutually coupled, so it is quite difficult to set up a model for combustion which conforms to the current boiler characteristics by use of theoretical method. This dissertation introduces the advanced artifical intelligence neural network technology,and establishes prediction models of thermal efficiency and NOx emissions of utility boilers by RBF neural network on the basis of historical data in the combustion process, and verifies the accuracy of the model based on experimental data.
     3. Thermal economic analysis of lignite drying with boiler flue gas dryer.
     Lignite Pre-drying can obviously improve the power generation efficiency of directly lignite-fired power plant, and rotary drying is the earliest application lignite pre-drying method. Therefore, a theoretical economic analysis model for lignite-fired power generation system with boiler flue gas dryer was established in this dissertation, with which a case study on a600MW power generation system was conducted to analyze the factors influencing thermal efficiency.
     Combining the analysis results with combustion optimization system can improve the thermal efficiency of lignite-fired power plants in a large degree and realize energy-saving purposes.
     4. Parameter optimization of combustion system based on multi-objective genetic algorithm NSGA-Ⅱ.
     Particle Swarm Optimization Algoritthm is employed to optimize the operation parameters of boiler after we obtain boiler combustion model. The results show that the method came up with in this dissertation can give practical optimum solution of adjusting parameters such as air throttle opening, and keep the boiler in a good working condition and achieve the purpose of energy saving and emission reduction. This can provide effective solutions for thermal generators to realize high-efficiency, low-emission operation.
引文
[1]韦迎旭.绿色燃煤发电技术[M].北京:中国电力出版社,2011.
    [2]岑可法,周吴,池作和.大型电站锅炉安全及优化运行技术[M].北京:中国电力出版社,2002.
    [3]Li K, Thompson S, Wieringa P A, et.al. Neural networks and genetic algorithms can support human supervisory control to reduce fossil fuel power plant emissions [J]. Cognition, Technology & Work,2003,5(2):107-126.
    [4]A.Kalogirou S. Artificialintelligence for the modeling and control of combustionprocesses:a review [J]. Progress in Energy and Combustion Science, 2003,29(6):515-566.
    [5]Adali T, Bakal B, Sonmez M K, et.al. NOx and CO prediction in fossil fuel plants by time delay neural networks [J]. Integrated Computer-Aided Engineering,1999, 6(1):27-39.
    [6]Reifman J, Feldman E E. Identification and control of NO(x) emissions using neural networks [J]. Journal of the Air and Waste Management Association,1998, 48(5):408-417.
    [7]Tronci S, Baratti R, Servida A. Monitoring pollutant emissions in a 4.8 MW power plant through neural network [J]. Neurocomputing,2002,43:3-15.
    [8]许振宇,刘文清,阚瑞峰,等.可调谐半导体激光吸收光谱中的吸光度反演算法研究[J].光谱学与光谱分析,2010,30(8):2201-2204.
    [9]张帅,董凤忠,张志荣,等.基于可调谐半导体激光吸收光谱的氧气测量方法的研究[J].光谱学与光谱分析,2009,29(10):2593-2596.
    [10]张亮,刘建国,阚瑞峰,等.基于可调谐半导体激光吸收光谱技术的高速气流流速测量方法研究[J].物理学报,2012,61(3):0342141-0342147.
    [11]娄南征,李宁,翁春生.基于时分复用技术的吸收光谱气体温度在线测量研究[J].光谱学与光谱分析,2012,32(5):1329-1333.
    [12]夏慧,刘文清,张玉钧,等.可调谐半导体激光吸收光谱法监测燃烧过程中CO浓度的变化[J].光谱学与光谱分析,2008,28(11):2478-2481.
    [13]张春晓,王飞,李宁,等.可调谐半导体激光吸收光谱技术光信号相关法氨气浓度流速同时测量[J].光谱学与光谱分析,2009,29(10):2597-2601.
    [14]李宁,王飞,严建华,等.利用可调谐半导体激光吸收光谱技术对气体浓度的测量[J].中国电机工程学报,2005,(15):121-126.
    [15]李宁,严建华,王飞,等.利用可调谐激光吸收光谱技术对光路上气体温度分布的测量[J].光谱学与光谱分析,2008,(08):1708-1712.
    [16]王飞,严建华,马增益,等.运用激光诱导发光法测量碳黑粒子浓度的模拟计算[J].中国电机工程学报,2006,26(7):
    [17]李宁,翁春生.基于多波长激光吸收光谱技术的气体浓度与温度二维分布遗传模拟退火重建研究[J].物理学报,2010,59(10):6914-6920.
    [18]姜治深,王飞,邢大伟,等.可调谐半导体激光吸收光谱技术应用于平面火焰中气体浓度二维分布重建的研究[J].光谱学与光谱分析,2012,32(11):2891-2896.
    [19]宋俊玲.基于激光吸收光谱技术的燃烧场气体温度和浓度二维分布重建研究[J].物理学报,2012,61(24):2407021-2407029.
    [20]杨祥良.基于声波测温技术的电站锅炉受热面污染监测[D].北京:华北电力大学,2010.
    [21]王寅,赵刚,黄大钢,等.超声波高温测量装置的研究[J].化工自动化及仪表,2012,39(5):631-634.
    [22]王利军,田亮,叶艳,等.超声波温度测量装置的设计与实现[J].电站系统工程,2011,27(6):19-21.
    [23]张利巍.基于声学测量方法的二维温度场的可视化研究[D].大庆:大庆石油学院,2010.
    [24]李庚生,安连锁,张世平,等.基于声波测温的电站锅炉水冷壁壁温实时监测系统研究[J].电站系统工程,2012,28(1):5-8.
    [25]安连锁,李庚生,沈国清,等.声学测温系统在200MW电站锅炉中的应用研究[J].动力工程学报,2011,31(12):928-932.
    [26]陈钦,杨权,舒茂龙.1000MW超超临界锅炉声波测温技术的特点及应用[J].华电技术,2011,33(3):5-7.
    [27]李刚.炉膛声波测温系统在宁海电厂1000MW超超临界锅炉上应用[J].自动化博览,2011,(02):68-70.
    [28]李晟.基于CCD图像传感器的高温温度场软测量系统的研究[D].长沙:中南大学,2008.
    [29]B.Skarman, J.Becker, K.Wozniak. Simulataneous 3D-PIV and temperature measurements using a new CCD-based holographic interferometer. [J]. Flow Measurement and Instrumentation,1996,7(1):1-6.
    [30]B.Skarman, J.Becker, K.Wozniak. Digital in-line holography for the analysis of Benard-convection [J]. Flow Measurement and Instrumentation,1999,10(2): 91-97.
    [31]D.Manca, M.Rovaglio. Infrared Thermographic Image Processing for the Operation and Control of Heterogeneous Combustion Chambers [J]. Combustion and Flame, 2002,130(4):277-297.
    [32]王补宣,李天铎,吴占松.图像处理技术用于发光火焰温度分布测量的研究[J].工程热物理学报,1989,10(4):446-448.
    [33]周怀春,韩曙东,郑楚光.两种辐射温度图像监测方法的模拟比较分析及其适用性评价[J].中国电机工程学报,2002,22(6):109-114.
    [34]周怀春,娄新生,肖教芳.炉膛火焰温度场图像处理试验研究[J].中国电机工程学报,1995,15(5):295-300.
    [35]HC Z, F S, SD H. Reconstruction of temperature distribution in a 2-D sbsorbing emitting system from adiant energy images [J]. JSME International Journal, series B,2000,43(1):104-109.
    [36]娄春,周怀春,姜志伟.炉膛内断面温度场与辐射参数同时重建实验研究[J].中国电机工程学报,2006,26(14):98-103.
    [37]娄春,周怀春,吕传新.电站锅炉炉内三维温度场在线检测与分析[J].热能动力工程,2005,20(1):61-64.
    [38]薛飞,黄国权,李晓东,等.CCD计测量燃烧室截面温度场的原理研究[J].动力工程,1999,19(5):390-393.
    [39]王飞,薛飞,马增益,等.运用彩色CCD测量火焰温度场的试验研究及误差分析[J].热能动力工程,1998,13(2):81-84.
    [40]卫成业,王飞,马增益,等.运用彩色CCD测量火焰温度场的校正算法[J].中国电机工程学报,2000,20(1):70-73.
    [41]浦世亮,Lebrun D,王勤辉,等.激光数码全息测量技术在循环流化床中的应用[J].中国电机工程学报,2005,25(15):111-115.
    [42]彭小奇,严军,孙元.基于CCD图像传感器的高温场测量仪设计与实现[J].传感技术学报,2010,23(3):354-358.
    [43]郭建民,刘石,姜凡,等.利用CCD测量炉膛温度场及NOx排放特性试验研究[J].热能动力工程,2006,21(1):39-42.
    [44]Bakal B, Adali T, Sonmez M K, et.al. Time delay neural networks for NOx and CO prediction in fossil fuel plants [A]. Proceedings of the World Congress on Neural Networks [C], Washington, DC, USA, Lawrence Erlbaum Associates,1995 (3): 111-115.
    [45]Reifman J, Feldman E E. Neural networks for control of NOx emissions in fossil plants [A]. Proceedings of the Simulators International XIV Proceedings of the 1997 Simulation Multi Conference [C], Atlanta, GA, USA, SCS,1997:64-69.
    [46]Li K, Thompson S. NOx emission modeling and prediction of a 200-MWe power generation boiler using multilayer perceptron neural networks [A]. Proceedings of the Proceedings Thirty-First Annual North American Power Symposium [C], San Luis Obispo, CA, USA, California Polytech. State Univ,1999:218-224.
    [47]Gabor J, Pakulski D, Swirski K, et.al. Closed loop NOx control and optimisation using neural networks [steam power plants] [A]. Proceedings of the Power Plants and Power Systems Control 2000 [C], Brussels, Belgium, Elsevier Science,2000: 141-146.
    [48]Radi B J. Neural networks prove effective at NOx reduction [J]. Modern Power Systems,2000,20(5):59-62.
    [49]Thompson S, Li K. A MLP prediction model for power plant NOx emission [A]. Proceedings of the Algorithms and Architectures for Real-Time Control 2000 [C], Palma de Mallorca, Spain, Elsevier Science,2000:117-122.
    [50]Booth R C, Roland W B.Neural Network-Based Combustion Optimization Reduces NO, Emissions While Improving Performance [A]. Proceedings of the Dynamic Modeling Control Applications for Industry Workshop,1998 IEEE Industry Applications 1998 [C], Vancouver, BC, IEEE,1998:1-6.
    [51]Ferretti G, Piroddi L. Estimation of NOx emissions in thermal power plants using neural networks [J]. Journal of Engineering for Gas Turbines and Power,2001, 123(2):465-471.
    [52]Liukkonen M, Hiltunen T, Halikka E, et.al. Modeling of the fluidized bed combustion process and NOx emissions using self-organizing maps:An application to the diagnosis of process states [J]. Environmental Modelling & Software,2011, 26(5):605-614.
    [53]周昊,朱洪波,曾庭华,等.基于人工神经网络的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2002,22(6):96-100.
    [54]Zhou H, Cen K, Fan J. Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks [J]. Energy,2004,29(1):167-183.
    [55]王培红,李磊磊,陈强,等.电站锅炉NOx排放与效率的响应特性模型[J].动力工程,2004,24(2):254-259.
    [56]周怀春.炉内火焰可视化检测原理与技术[M].北京:科学出版社,2005.
    [57]张毅,陈彪,丁艳军,等.燃煤锅炉高效低NOx运行策略的实验研究[J].清华大学学报(自然科学版),2006,46(5):666-669.
    [58]陈庆文,马晓茜,刘翱.大型电站锅炉混煤掺烧的NOx排放特性预测与运行优化[J].中国电机工程学报,2009,29(23):20-26.
    [59]梁森,李凌.电站锅炉低NOx排放的参数辨识[J].动力工程,2006,26(5):670-675.
    [60]许昌,吕剑虹,郑源,等.以效率和低NOx排放为目标的锅炉燃烧整体优化[J].中国电机工程学报,2006,26(4):46-50.
    [61]Wu F, Zhou H, Ren T, et.al. Combining support vector regression and cellular genetic algorithm for multi-objective optimization of coal-fired utility boilers [J]. Fuel,2009,88(10):1864-1870.
    [62]Zhang Y, Ding Y, Wu Z, et.al. Modeling and coordinative optimization of NOx emission and efficiency of utility boilers with neural network [J]. Korea Journal of Chemical Engineering,2007,24(6):1118-1123.
    [63]王培红,李磊磊,陈强,等.人工智能技术在电站锅炉燃烧优化中的应用研究[J].中国电机工程学报,2004,(04):188-192.
    [64]Zhou H, Cen K, Fan J. Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms [J]. International Journal of Energy Research,2005,29(6):499-510.
    [65]Saario A, Oksanen A, Ylitalo M. Combination of genetic algorithm and computational fluid dynamics in combustion process emission minimization [J]. Combustion Theory and Modelling,2006,10(6):1037-1047.
    [66]Saario A, Oksanen A. Computational fluid dynamics and interactive multiobjective optimization in the development of low-emission industrial boilers [J]. Engineering Optimization,2008,40(9):869-890.
    [67]Nebro A J, Durillo J J, Luna F, et.al. MOCell:a cellular genetic algorithm for multiobjective optimization [J]. International Journal of Intelligent Systems,2009, 24(7):726-746.
    [68]Islam S M, Das S, Ghosh S, et.al. An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization [J]. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics,2012, 42(2):482-500.
    [69]Wang Y, Cai Z. Combining Multiobjective Optimization with Differential Evolution to Solve Constrained Optimization Problems [J]. IEEE Transactions on Evolutionary Computation,2012,16(1):117-134.
    [70]Zheng L, Zhang Y, Yu S, et.al. Use of differential evolution in low NOx combustion optimization of a coal-fired boiler [A]. Proceedings of the 6th International Conference on Natural Computation [C], Yantai, Shandong, China, IEEE Computer Society,2010 (8):4395-4399.
    [71]岑可法,周昊,池作和.大型电站锅炉安全及优化运行技术[M].北京:中国电力出版社,2003.
    [72]陈彦桥,刘建民,曾德良,等.火电机组燃烧优化的研究现状及展望[J].华东电力,2010,(10):1599-1603.
    [73]吕剑虹,王建武,杨榕,等.电厂锅炉燃烧控制系统优化[J].中国电力,2001,(10):48-51.
    [74]Zhou H, Cen K, Fan J. Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms [J]. International journal of energy research,2005,29(6):499-510.
    [75]周吴.大型电站锅炉氮氧化物控制和燃烧优化中若干关键性问题的研究[D]:浙江大学,2004.
    [76]马天星,王恩禄,张伟,等.燃煤电站锅炉运行参数对其热效率影响的试验研究[J].锅炉技术,2006,(06):21-25.
    [77]刘吉臻,牛成林,李建强,等.锅炉经济性分析及最优氧量的确定[J].动力工程,2009,(03):245-249.
    [78]王学栋,栾涛,程林,等.锅炉燃烧调整对NOx排放和锅炉效率影响的试验研究[J].动力工程,2008,(01):19-23.
    [79]黄素逸,周怀春.现代热物理测试技术[M].北京:清华大学出版社,2008.
    [80]武胜斌,郑研,陈志彬.基于红外测温技术的GIS导体温度在线监测的方案[J].高压电器,2009,(04):100-102,110.
    [81]娄春,周怀春.炉膛中二维温度场与辐射参数的同时重建[J].动力工程,2005,(05):633-638.
    [82]Huang Q, Wang F, Yan J, et.al. Simultaneous estimation of the 3-D soot temperature and volume fraction distributions in asymmetric flames using high-speed stereoscopic images [J]. Applied Optics,2012,51(15):2968-2978.
    [83]杨祥良,安连锁,沈国清,等.单路径声学高温计实时监测锅炉炉膛烟温的试验研究[J].动力工程,2009,(04):379-383.
    [84]沈国清,安连锁,姜根山,等.基于声波理论的锅炉燃烧监测方法及其技术关键[J].工程热物理学报,2006,(S2):139-142.
    [85]Bramanti M, Salerno E A, Tonazzini A, et.al. An acoustic pyrometer system for tomographic thermal imaging in power plant boilers [J]. Instrumentation and Measurement, IEEE Transactions on,1996,45(1):159-167.
    [86]阚瑞峰,刘文清,张玉钧,等.可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量[J].物理学报,2005,(04):1927-1930.
    [87]Ning L, Chun-Sheng W. Gas concentration and temperature reconstruction by genetic simulated annealing algorithm based on multi-wavelengths diode laser absorption spectroscopy [J].2010:
    [88]宋邦富.DCS应用及发展[J].化学工程与装备,2010,(03):125-126+175.
    [89]白焰,吴洪,杨国田.分散控制系统与现场总线控制系统:基础、评选、设计和应用[M].北京:中国电力出版社,2001.
    [90]Lian F-L, Moyne J, Tilbury D. Network design consideration for distributed control systems [J]. Control Systems Technology, IEEE Transactions on,2002,10(2): 297-307.
    [91]毕贞福,孙玮,徐晓,等.运河电厂130MW机组DCS设计与调试[J].山东电力技术,2001,(02):62-64.
    [92]秦猛.关于DCS技术现状和未来发展趋势的探讨[J].石油化工自动化,2007,(03):63-66.
    [93]Zhao J, Yan W, Gao J, et.al. Design and implement of the control system for unmanned surface vehicle based on the VxWorks [A]. Proceedings of the Informatics in Control, Automation and Robotics (CAR),2010 2nd International Asia Conference on [C], IEEE,2010 (3):13-16.
    [94]罗伯特·杉布,王蔚庭IEC 61131-3国际标准简介[J].国内外机电一体化技术,2001,(01):54-57.
    [95]万涛.基于IEC61131-3标准编程环境的研究与开发[D]:武汉大学,2005.
    [96]张小桃,王培红,朱玉娜,等.锅炉效率ASME标准计算模型的简化研究[J].能源研究与利用,1999,(03):16-18.
    [97]冯俊凯,沈幼庭.锅炉原理及计算[M].北京:科学出版社,1992.
    [98]倪学林.火力发电厂技术经济指标计算[M].北京:水利电力出版社,1984.
    [99]范从振.锅炉原理[M].北京:水利电力出版社,1986.
    [100]曾汉才.燃烧与污染[M].武汉:华中理工大学出版社,1992.
    [101]Pershing D, Wendt J. Pulverized coal combustion:The influence of flame temperature and coal composition on thermal and fuel NOx [A]. Proceedings of the Symposium (International) on Combustion [C], Elsevier,1977 (16):389-399.
    [102]Liukkonen M, Hiltunen T, Halikka E, et.al. Modeling of the fluidized bed combustion process and NOx emissions using self-organizing maps:An application to the diagnosis of process states [J]. Environmental Modelling & Software,2011, 26(5):605-614.
    [103]Zeldovich Y, Frank-Kamenetskii D, Sadovnikov P. Oxidation of nitrogen in combustion [M]. Publishing House of the Acad of Sciences of USSR,1947.
    [104]徐旭常,吕俊复,张海.燃烧理论与燃烧设备[M].2 ed.北京:科学出版社,2012.
    [105]Goldberg D E. Computer-aided gas pipeline operation using genetic algorithms and rule learning [J].1983:
    [106]Goldberg D E. Genetic algorithms in search, optimization, and machine learning [J]. 1989:
    [107]Zadeh L A. From circuit theory to system theory [J]. Proceedings of the IRE,1962, 50(5):856-865.
    [108]Hecht-Nielsen R. Theory of the backpropagation neural network [A]. Proceedings of the Neural Networks,1989 IJCNN, International Joint Conference on [C], IEEE, 1989:593-605.
    [109]Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators [J]. Neural networks,1989,2(5):359-366.
    [110]许昌,吕剑虹,郑源.基于效率与NOx排放的锅炉燃烧优化试验及分析[J].锅炉技术,2006,(05):69-74.
    [111]周昊,朱洪波,茅建波,等.大型四角切圆燃烧锅炉NOx排放特性的神经网络模型[J].中国电机工程学报,2002,(01):34-38.
    [112]周昊,茅建波,池作和,等.燃煤锅炉低氮氧化物燃烧特性的神经网络预报[J].环境科学,2002,(02):18-22.
    [113]冯宝安,巢江辉,周晓东.电厂燃用混煤的作用及混煤配比的确定[J].锅炉技术,1997,(04):14-19.
    [114]孙云,王长安,刘京燕,等.混煤燃烧技术研究进展[J].电站系统工程,2011,(02):1-3,7.
    [115]段学农,朱光明,焦庆丰,等.电厂锅炉混煤掺烧技术研究与实践[J].中国电 力,2008,(06):51-54.
    [116]高洪阁,李白英.动力配煤的新模型及其求解[J].中国矿业大学学报,2001,(06):101-103.
    [117]张晓萱,黄国和,席北斗,等.电厂优化配煤的不确定性机会约束非线性规划方法[J].中国电机工程学报,2009,(05):11-15.
    [118]聂其红,孙绍增,李争起,等.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术,2001,(01):72-76.
    [119]李永华,李松庚,冯兆兴,等.褐煤及其混煤燃烧NOx生成的试验研究[J].中国电机工程学报,2001,(08):35-37,42.
    [120]程军,周俊虎,刘建忠,等.褐煤混煤燃烧过程中硫污染物的动态排放规律[J].煤炭学报,2003,(04):409-413.
    [121]王春波,李永华,陈鸿伟.混煤燃烧特性研究(英文)[J].中国电机工程学报,2005,(18):97-103.
    [122]曾令大,陈启卷,熊杰,等.680MW超超临界锅炉混煤燃烧特性的热重试验及锅炉选型建议[J].动力工程,2008,(05):672-676.
    [123]卢丹,黄镇宇,许建华,等.基于系统分类的配煤灰熔融特性研究[J].中国电机工程学报,2010,(08):20-26.
    [124]Hatzilyberis K, Androutsopoulos G. AN RTD STUDY FOR THE FLOW OF LIGNITE PARTICLES THROUGH A PILOT ROTARY DRYER PART I; BARE DRUM CASE [J]. Drying Technology,1999,17(4-5):745-757.
    [125]HATZILYBERIS K S, Androutsopoulos G. AN RTD STUDY FOR THE FLOW OF LIGNITE PARTICLES THROUGH A PILOT ROTARY DRYER PART II: FLIGHTED DRUM CASE [J]. Drying technology,1999,17(4-5):759-774.
    [126]Hatzilyberis K, Androutsopoulos G, Salmas C. Indirect thermal drying of lignite: Design aspects of a rotary dryer [J]. Drying technology,2000,18(9):2009-2049.
    [127]Kakaras E, Ahladas P, Syrmopoulos S. Computer simulation studies for the integration of an external dryer into a Greek lignite-fired power plant [J]. Fuel, 2002,81(5):583-593.
    [128]王海锋,朱书全,任红星,等.通辽褐煤在流化床干燥器中的干燥特性研究[J].选煤技术,2007,(04):43-47.
    [129]李先春,余江龙,胡广涛,等.印尼褐煤干燥和水分再吸收特性的试验研究[J].现代化工,2009,(S1):5-7.
    [130]赵卫东,刘建忠,周俊虎,等.褐煤等温脱水热重分析[J].中国电机工程学报,2009,(14):74-79.
    [131]阎维平,马凯,李春启,等.褐煤干燥对电厂经济性的影响[J].中国电力,2010,(03):35-37.
    [132]严俊杰,刘明,种道彤,等.预干燥燃褐煤发电系统理论研究[J].西安交通大学学报,2011,(05):1-5,58.
    [133]林万超.火电厂热系统节能理论[M].西安:西安交通大学出版社,1994.
    [134]许婧祺.多目标优化算法研究综述[J].科技信息,2010,(32):115-116.
    [135]卢小亭.多目标优化遗传算法选择方法的研究与改进[D]:安徽理工大学,2008.
    [136]陈志兴.用于多机器人路径规划的多目标遗传算法的研究[D]:中南大学,2009.
    [137]程方晓.基于自适应保持多样性遗传算法的汽车动力传动系多目标优化[D]:吉林大学,2011.
    [138]奎丹.基于遗传算法的工程风险决策多目标优化研究[D]:大连理工大学,2008.
    [139]杨晟尧.基于多目标遗传算法的认知无线电决策引擎[D]:大连理工大学,2011.
    [140]李莉.基于遗传算法的多目标寻优策略的应用研究[D]:江南大学,2008.
    [141]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [A]. Proceedings of the Proceedings of the 1st international Conference on Genetic Algorithms [C], L. Erlbaum Associates Inc.,1985:93-100.
    [142]Coello Coello C A. Evolutionary multi-objective optimization:a historical view of the field [J]. Computational Intelligence Magazine, IEEE,2006,1(1):28-36.
    [143]刘鎏.多目标优化进化算法及应用研究[D]:天津大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700