用户名: 密码: 验证码:
盐渍化石油污染土壤的生物修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤石油污染对人类健康和生态系统安全构成了严重威胁,是目前亟待解决的重要环境问题。在我国,大部分陆上石油生产基地的土壤均有不同程度的盐渍化,石油在开采、加工和利用等过程中容易造成盐渍化土壤的石油污染,形成盐渍化石油污染土壤。生物修复是治理石油污染土壤的一种有效、经济、环保的方法,关于生物修复石油污染土壤的成功实例,国内外已有很多报道,但对于盐渍化石油污染土壤修复的研究罕见报道,如何有效修复该类土壤是迫切需要解决的重要任务。本文从黄河三角洲长期受盐渍化石油污染土壤中筛选出1株高效耐盐石油降解菌BM38和1株产生物表面活性剂耐盐菌BF40,通过液体培养试验,研究了BM38耐盐、产生物表面活性剂、降解石油特性,考察了不同因子对BF40产生物表面活性剂的影响以及BF40产生物表面活性剂的动力学特征,并对其产物进行了理化性质分析和初步鉴定;通过室内模拟石油污染土壤修复试验,研究了BM38、BF40及其产物对盐渍化石油污染土壤的强化修复作用,以及土壤环境条件对接种BM38、同时添加BF40产生的表面活性剂强化修复石油污染土壤的影响;通过种子发芽、植物修复试验筛选出1种适合修复石油污染土壤的耐盐植物,构建了盐渍化石油污染土壤的植物-微生物联合修复系统。研究成果将为盐渍化石油污染土壤的生物修复提供支持。本文主要研究结果如下:
     1.从黄河三角洲盐渍化石油污染土壤中分离出54株细菌,经液体培养初筛和土壤培养复筛试验,得到1株高效耐盐石油降解菌BM38。通过形态特征、生理生化特征和16SrDNA序列分析,确定该菌为恶臭假单胞菌(Pseudomonas putida)。耐盐试验表明,BM38在含0.5%-6%NaCl液体培养基中生长良好,属中度耐盐菌。BM38能产生一种生物乳化剂,其发酵液最大乳化能力出现在生长稳定期,NaCl浓度对发酵液的乳化能力影响较大。BM38能够利用环己烷、甲苯、异辛烷、菲和正十六烷为唯一碳源生长,其中对正构烷烃和芳烃具有较强的利用能力。在含1%、3%和5%NaCl的培养基中BM38对原油降解曲线符合一级反应动力学模型。在中性以及偏碱性的环境中利于BM38对原油的降解,在含0~3%NaCl液体培养基中BM38对原油降解率较高。温度、原油浓度和接种量对BM38降解原油的能力影响较大。
     2.通过原油平板法从黄河三角洲盐渍化石油污染土壤分离出41株产生物表面活性剂细菌,通过测定发酵液排油活性、表面张力和乳化值,确定了一株高效产生物表面活性剂耐盐菌BF40。BF40可将发酵液表面张力降低到28.4mN·m-1,乳化值(E124)达到96.8%。经鉴定BF40为沙雷氏菌(Serratia sp.)。BF40耐受盐度范围为0.5-7%NaCl,属中度耐盐菌。BF40在含1%NaCl液体培养基中,培养7d,原油降解率达到56.7%。BF40合成生物表面活性剂与其利用的碳氮源类型有关,其中以牛肉膏为碳源,氯化铵为氮源,产生的生物表面活性剂活性最高。在30~37℃,中性及偏碱性环境中BF40产生物表面活性剂较多。NaCl浓度对BF40产生物表面活性剂影响较大,其中对发酵液表面张力的影响程度小于乳化性能。BF40产生物表面活性剂的方式为生长相关型。经薄层层析、GC-MS分析初步鉴定BF40产生的生物表面活性剂(BS40)为脂肽类。BS40水溶液的临界胶束浓度为32.8mg·L-1,具有良好的耐高温、耐盐性和耐酸碱性,对二甲苯、柴油、液体石蜡和橄榄油具有较强的乳化能力。
     3.石油污染土壤修复试验结果表明,BM38分泌的生物乳化剂(BS38)对盐渍化土壤中石油污染物生物降解强化作用不明显,接种外源菌(BF40、BM38、BM38+BF40)或添加BF40产生的生物表面活性剂(BS40)能促进土壤中石油污染物的降解,其中添加BS40、同时接种BM38修复效果最好,修复60d,石油降解率达到48.3%。石油族组分分析和气相色谱分析表明,添加BS40、同时接种BM38更能有效促进土壤中饱和烃、芳香烃和沥青质的降解,其中正构烷烃几乎全被降解,对姥鲛烷和植烷降解效果明显。接种外源菌(BF40、BM38、BM38+BF40)或添加生物表面活性剂(BS40)、生物乳化剂(BS38)对土壤土壤水溶液表面张力、土壤脱氢酶活性影响不同,表明接种外源菌和添加生物表面活性剂对促进盐渍化石油污染土壤的生物修复存在不同作用机制。
     4.高盐环境抑制土著微生物降解土壤中石油污染物能力,土壤中接种BM38、同时添加BS40能明显促进不同盐度土壤中石油污染物的降解。在中性偏碱的土壤中接种BM38、同时添加BS40强化石油污染物降解效果较好。在中、高度石油污染水平下,接种BM38、同时添加BS40能明显提高石油污染物的降解效率。添加玉米芯对接种BM38、同时添加BS40强化修复盐渍化石油污染土壤效果好于棉籽壳、麦糠和玉米杆。
     5.从黄河三角洲筛选出一种对石油污染物耐性强,生物量较高,强化土壤中石油污染物的降解效果好的本土植物虎尾草。在盐渍化石油污染土壤中接种BM38、添加BS40和玉米芯、种植虎尾草组成的植物-微生物复合修复系统与单一处理相比土壤总异养细菌和石油降解细菌数量最多,石油污染物降解率最大。在复合修复系统中BM38和BS40对土壤饱和烃和芳香烃的降解起主要作用,虎尾草则更能有效去除土壤中胶质。土壤脱氢酶活性与土壤中微生物的数量呈显著的正相关关系。接种BM38、同时添加BS40在修复后期对提高土壤脱氢酶活性作用很有限,而种植虎尾草在修复过程中能保持较高的土壤脱氢酶活性。
Petroleum contamination, which has significantly threatened human health and ecosystem security, is an important environmental problem that should be solved quickly. In China, the soils of many oil production bases are various degree of salinity. The saline soil is easy to be contaminated when the petroleum is exploited, processed and utilized, finally turned into petroleum contaminated saline soil. Bioremediation is an effective, economic and environmental way to eliminate petroleum contaminated saline soil. There are many studies reported the bioremediation of petroleum contaminated soil, but the bioremediation of petroleum contaminated saline soil, which has received less attention in the literature, is an important environmental task that should be solved quickly. In this study, one efficient halotolerant petroleum-degrading bacteria (BM38) and an high-efficient biosurfactant-producing bacteria (BF40) were screened from the long term petroleum contaminated saline soil samples in Yellow River Delta. A series of liquid incubation experiments were conducted to researched the halotolerance, producing biosurfactants and characteristics of petroleum-degradating of BM38, discussed the effect of different factors to the biosurfactant and dynamics of a salt-tolerant Serratia BF40, analyzed and identified the product of BF40based on the morphological, physiochemical characteristics. Laboratory simulation test of petroleum contaminated soil remediation were also studied to discuss the effects of BM38, BF40and their products to the petroleum degradation in saline soil, the effects of different soil conditions to the accelerating of saline soil remediation by BM38and BF40inoculating and biosurfactant application. A halophyte that was suitable for petroleum contaminated soil remediation was screened by seed germination experiments and plant remediation texts. A phyto-microbial remediation system in petroleum contaminated saline soil was structured. The results will provide support for the bioremediation of petroleum contaminated saline soil. The main result of the study could be seen as below:
     1.54bacteria strains were isolated from the petroleum contaminated saline soil samples in Yellow River Delta, One bacterium (strain BM38) were found to efficiently degrade crude oil in highly saline environments based on a series of liquid and soil incubation experiments. According to its morphology, physiochemical characteristics and16S rDN A sequence analysis, this strain was identified as Pseudomonas putida. The salt resistant test demonstrated that strain BM38grew well at NaCl concentrations ranging from0.5%to6.0%. Strain BM38could produce a bioemulsifier in a liquid culture medium. The highest emulsifying capacity of fermentation broth comes out in the steady growth stage. But NaCl concentration had the significant effect on the emulsifying capacity of fermentation broth. This strain was able to grow in mineral liquid media amended with hexadecane, toluene, phenanthrene, isooctane and cyclohexane as the sole carbon sources. Among these hydracarbons, strain BM38showed the higher ability to degrade n-alkanes and aromatic hydracarbons. The crude oil degradation curve of BM38conforms to the first-order reaction kinetic model in the medium containing1%,3%and5%NaCl. The neutral and alkaline environments are suitable for degradating of BM38to crude oil. The degradating rate was higher at NaCl concentrations ranging from0%to3%. The temperature, concentration of crude oil and the inoculation amounts have significant effects to the degradating capacity of BM38.
     2.41microbial strains were isolated from saline soil contaminated by crude oil of the Yellow River Delta through plate culture method, using crude oil as C and energy source. BF40strain with salt-tolerant ability was screeded in this study, based on culture solution of degreasing, biosurfacial and emulsifying activities from different strains. Surface tension of BF40culture solution reduced to28.4mN·m-1, and emulsifying index was96.8%. BF40strain was identified as Serratia sp. It can grow in the saline condition ranged from0.5~7%of NaCl, and its salt-tolerant ability reached moderate level. After incubation of7d,56.7%of crude oil in BF40liquid culture with1.0%of NaCl was degraded. Biosurfactant production of BF40was affected by the forms of C and N sources. The greatest production was observed in the treatment using beef extract as C source and NH4Cl as N source. The higher production also founded in neutral or weak alkaline condition under temperature ranged from30to37℃. Biosurfacial activity of BF40was affected by salinity obviously. The lower effect of salinity on biosurfacial activity was founded than that on emulsifying activity. Biosurfacial activity of BF40was proposed to be the model of grow correlated. Biosurfactant (BS40) from BF40was determined to be lipopeptides by thin layer chromatography and GC-MS analysis. The critical micelle concentration of BS40solution was32.8mg·L-1. BS40possessed high temperature, salt, and acid-base tolerant properties. Higher emulsifying activity also observed for p-xylene, diesel, liquid paraffin and olive oil.
     3. Results of soil remediation experiment showed that biosurfactant (BS38) from BM38increased crude oil biodegradation insignificantly. Inoculation with exogenous strains (BF40, BM38, and BM38+BF40) or biosurfactant of BS40can increase crude oil degradation, and the greatest degradation rate was founded in the treatment with BS40addition and BM38inoculation, showing48.3%of degradation rate after60d incubation. Combination of BS40addition and BM38inoculation can effectively enhance saturated and aromatic hydrocarbon and asphalt degradation through GC analysis, and n-alkanes was almost degraded completely. The improvement of pristine and phytane degradation was also significant. Different effects on surface tension of soil solution and soil dehydrogenase activity were observed among exogenous strain inoculation, BS40addition, and BS38addition, which indicated that exogenous strain inoculation and biosurfactant addition improve soil remediation through different mechanisms.
     4. High salinity inhibited crude oil degradation in soil. Combination of BM38seeding and BS40addition can increase crude oil degradation in soils with different salinity. In weak alkaline soil, the greater crude oil dissipation was in the treatment with combination of BM38seeding and BS40addition. In the soil contaminated with high and moderate levels of crude oil, combination of BM38seeding and BS40addition can significantly increase crude oil degradation rate. Corncob addition increased crude oil degradation better than that did by cottonseed hull, wheat bran and cornstalk addition.
     5. Phytoremediation experiment showed that Alopecurus pratensis Swartz. possessed high crude oil tolerant ability, biomass, and the greatest remediation efficiency. In plant-microbial systems, Alopecurus pratensis Swartz. cultivation in combination of BM38seeding and BS40and corncob addition treatment, significantly increased population of total heterotrophic bacteria and crude oil degrading bacteria, which in turn enhance degradation. In combined remediation system, saturated and aromatic hydrocarbon degradation was mainly caused by BM38seeding and BS40addition, and gelatine degradation was mainly caused by Alopecurus pratensis Swartz. cultivation. Soil dehydrogenase activity positively correlated with microbial population. Combination of BM38seeding and BS40addition increased soil dehydrogenase activity insignificantly, while Alopecurus pratensis Swartz. cultivation increased significantly.
引文
1.陈碧娥,刘祖同.2001.湄洲湾海洋细菌降解石油烃研究.石油学报(石油加工),17(5):31-35.
    2.陈薇,陈邦本,沈其荣.2000.滨海盐土脱盐过程中pH变化及碱化问题研究.土壤学报,3(4):521-528.
    3.程国玲,李培军.2007.石油污染土壤的植物与微生物修复技术.环境工程学报,1(6):91-9.
    4.东秀珠,蔡妙英.2001.常见细菌系统鉴定手册.北京:科学出版社,67-105,128-191.
    5.范淑秀,李培军,巩宗强,等.2007.苜蓿对多环芳烃菲污染土壤的修复作用研究.环境科学,28(9):2080-2084.
    6.傅时波,李尔炀.2007.生物表面活性剂检测方法的研究.江苏工业学院学报,19(2):23-25.
    7.高学文,姚仕义,Huong P,等.2003.枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定.微生物学报,43(5):647-652.
    8.谷奉天,刘振元,姚志刚.2003.黄河三角洲野生经济植物资源.济南:山东省地图出版社,341-423.
    9.顾传辉,陈桂珠.2000.石油污染土壤生物降解生态条件研究.生态科学,19(4):67-72.
    10.何丽媛,党志,唐霞,等.2010.混合菌对原油的降解及其降解性能的研究.环境科学学报,30(6):1220-1227.
    11.何良菊,李培杰,魏德洲,等.2004.石油烃微生物降解的营养平衡及降解机理.环境科学,25(1):91-94.
    12.胡浩,沈红,王浩.2002.一株原油降粘细菌的筛选.山东大学学报,37(3):276-278.
    13.黄廷林,肖洲强,徐金兰,等.2007.生物菌剂修复陕北石油污染土壤实验研究.西安建筑科技大学学报(自然科学版),39(1):14-17.
    14.李慧,陈冠雄,张颖,等.2007.高效石油烃降解菌的分离鉴定及降解特性.哈尔滨工业大学学报,39(10):1664-1669.
    15.李丹,黄磊,李国强,等.2008.烃降解菌株T7-2产生的生物乳化剂及其理化性质研究.微生物学通报,35(5):653-660.
    16.李建国,濮励杰,朱明,等.2012.土壤盐渍化研究现状及未来研究热点.地理科学,67(9):1233-1245.
    17.蔺昕,李培军,台培东,等.2006.石油污染土壤植物-微生物修复研究进展.生态学杂志,25(1):93-100.
    18.刘魏魏,尹睿,林先贵,等.2010.生物表面活性剂强化微生物修复多环芳烃污染土壤的初探.土壤学报,47(6):1118-1125.
    19.刘五星,骆永明,余冬梅,等.2010.石油污染土壤的生态风险评价和生物修复Ⅳ.油泥的预制床修复及其微生物群落变化.土壤学报,47(4):621-627.
    20.牛玺荣,李志农,高江平.2008.盐渍土盐胀特性与机理研究进展.土壤通报,39(1):163-168.
    21.潘冰峰,徐国梁,施邑屏,等.1999.生物表面活性剂产生菌的筛选.微生物学报,39(3):264-267.
    22.潘海莲,周成,王红蕾,等.2006.内蒙古锡林浩特地区嗜盐古菌多样性的研究.微生物学报,46(1):1-6.
    23.彭胜巍,周启星,张浩,等.2009.种8花卉植物种子萌发对石油烃污染土壤的响应.环境科学学报,29(4):786-790.
    24.沈萍,范秀容,李广武.1999.微生物学试验.第3版.北京:高等教育出版社,92.
    25.沈薇,杨树林,宁长发,等.2005.蓝色凝胶平板法筛选生物表面活性剂产生菌.南京理工大学学报,29(4):486-490.
    26.孙清,陆秀君,梁成华.2002.土壤的石油污染研究进展.沈阳农业大学学报,33(5):390-393.
    27.汪杰,郑维爽,礼晓,等.2010.高效石油降解菌的筛选鉴定及修复能力研究.环境科学学报,30(6):1228-1234
    28.王君,马挺,李蔚,等.2008.一株高温解烃产黏菌的特性及其调剖驱油效果.化工学报,5(3):694-699.
    29.王海峰,包木太,韩红,等.2009.一株枯草芽孢杆菌分离鉴定及其降解稠油特性.深圳大学学报(理工 版),26(3):221-227.
    30.魏德洲,秦煜民.1997.H202在石油污染土壤生物治理过程中的作用.中国环境科学,17(5):429-432.
    31.翁永玲,宫鹏.2006.黄河三角洲盐渍十盐分特征研究.南京大学学报(白然科学),42(6):602-610.
    32.夏文杰,汉平,董俞理,等.2011.铜绿假单胞菌WJ-1降解原汕特性.化工学报,62(7):2013-2019.
    33.徐金兰,黄延林,唐智新,等.2007.高效石油降解菌的筛选及石油污染土壤生物修复特性的研究.环境科学学报,27(4):622-628.
    34.徐金兰,黄廷林,黄志超,等.2010.添加膨松剂和翻耕对石油污染土壤生物修复的影响试验研究.西安建筑科技大学学报,40(1):65-69.
    35.徐金兰,黄廷林,唐智新,等.2009.石油污染十壤生物修复高效菌的降解特性.石油学报(石油加工),25(4):570-579.
    36.许超,夏北成.2007.土壤多环芳烃污染根际修复研究进展.生态环境,16(1):216-222.
    37.杨福廷.2006.脂肽类生物表面活性剂研究进展.精细化工,23(2):121-125.
    38.杨玉楠,韩东.2007.嗜盐菌强化石油污染十壤生物修复的可行性研究.农业环境科学学报,26(增刊):121-126.
    39.尹华,谢丹平,彭辉,等.2005.假单胞菌XD-1 (PseudomonasXD-1)的产表面活性剂性能研究.环境科学学报,25(2):220-225.
    40.袁红莉,杨金水,王占生,等.2003.降解石油微生物菌种的筛选及降解特性.中国环境科学,23(2):157-161.
    41.张从,夏立江.2000.污染土壤的生物修复技术.北京:中国环境科学出版社,246-273.
    42.张景来,李止要,汀莉,等.海水中原油生物的降解,北京科技大学学报,2003,25(5):410-413.
    43.张鲁进,杨谦,陈中祥,等.2010.两株石油降解菌的降解性能研究.南京理工大学学报(白然科学版),34(6):849-854.
    44.赵百锁,杨礼富,宋蕾,等.2007.中度嗜盐菌在生物技术中的应用.微生物学通报,34(2):359-363.
    45.钟华,曾光明,黄国和,等.2006.生物表面活性剂对土壤中微生物降解疏水性有机物的作用机制.高技术通讯,16(3),325-330.
    46. Abouseoud M,Maachi R,Amrane A, et al.2008.Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens.Desalination,223(1-3):143-151.
    47. Al-Mueini R,Al-Dalali M,Al-Amri I S, et al.2007.Hydrocarbon degradation at high salinity by a novel extremely halophilic actinomycete.Environmental Chemistry,4:5-7.
    48. Anderson T A,Guthrie E A,Walton B T.1993.Bioremediation in the rhizophere,plant roots and associated microbes clean contamnated soil.Environ. Sci. Technol.,27:2630-2636.
    49. Anyanwu C U,Obi S K C, Okolo B N.2011.Lipopeptide biosurfactant production by Serratia marcescens NSK-1 strain isolated from petroleum-contaminated soil.Journal of Applied Sciences Research,7(1):79-87.
    50. Arima K,Kakinuma A,Tamura G.1968.Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis:isolation, characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communications,31(3):488-494.
    51. Atlas R M,Richard B.1992.Hydrocarbon biodegradation and oil spill bioremediation.Advances in Microbial Ecology.,12,287-338.
    52. Audrew R A, Gary M E.1992.Bioremediation:An effective semedial alternative for petroleum hydrocarbon contamitioned soil.Environment Progress,11(4):318-322.
    53. Banat I M.1995.Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation:A review.Bioresource Technology,51(1):1-12.
    54. Barathi S.Vasudevan N.2001.Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil.Environment International,26(5-6):413-416.
    55. Bert rand J C,Almallah M.Acquaviva M, et al.1990.Biodegradation of hydrocarbons by an extremely halophilic archaebacterium.Letter Applied Microbiology,11:260-263.
    56. Binet P.Portal J M.Leyval C.2000.Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass.Soil Biol.Biochem.,32:2011-2017.
    57. Bodour, A A,Maier, R M.1998.Application of a modified drop collapse technique for surfactant quantification and screening of biosurfactant-producing microorganisms.J.Microbiol.Methods,32,273-280.
    58. Bordoloi N K,Konwar B K.2009.Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons.Journal of Hazardous Materials,170(1):495-505.
    59. Bossert I,Bartha R.1984.The fate of petroleum in soil ecosystems.In:Atlas RM,eds.Petroleum Microbiology.NewYork:Macmillan Publishing Corporation,89-98.
    60. Cajthaml T M.Moder P K,Sasek V, et al.2002.Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection.J. Chromatogr. A,974:213-222.
    61. Calvo C,Manzanera M,Silva-Castro G A, et al.2009.Application of bioemulsifiers in soil oil biorernediation processes.Future prospects.Science of the Total Environment,407(12):3634-3640.
    62. Cameotra S S,Singh P.2008.Bioremediation of oil sludge using crude biosurfactants.International Biodeterioration and Biodegradation,62(3):274-280.
    63. Cameotra S S.Makkar R S.2004.Recent applications of biosurfactants as biological and Immunological molecules.Current Opinion in Microbilogy,7(3):262-266.
    64. Cerniglia C E.1992.Biodegradation of polycyclic aromatic hydrocarbons.Biodegradation,3:351-368.
    65. Cha M,Lee N,Kim M, et al.2008.Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida.Bioresource Technology,99(7):2192-2199.
    66. Chaineau C H,Morel J L,Oudot J.1995.Microbial degradation in soil microcosms of fuel oil hydrocarbons from drilling cuttings.Environ. Sci. Technol.,29:1615-1621.
    67. Chaineau C H,Morel J L, Oudot J.2000.Biodegradation of fuel oil hydrocarbons in the rhizosphere of Maize (Zea mays L.).Journal of Environmental Quality,29:569-578.
    68. Chaineau C H, Rougeux G, Yepemian C, et al.2005.Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil.Soil Biology and Biochemistry,37:1490-1497.
    69. Chang M W,Holoman T P,Yi H.2008.Molecular characterization of surfactant-driven microbial community changes in anaerobic phenanthrene-degrading cultures under methanogenic conditions.Biotechnol. Letter,30:1595-1601.
    70. Child R,Miller C, Liang Y, et al.2007.Polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates:their association with plant roots.Applied Microbiology and Biotechnology,75(3):655-663.
    71. Christofi N,Ivshina I B.2002.Microbial surfactants and their use in field studies of soil remediation. Journal of Applied Microbiology,93(6):915-929.
    72. Cowie B R,Greenberg B M,Slater G F.2010.Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance 14C analysis of PLFA. Environ. Sci. Technol.,44:2322-2327.
    73. Cunha C D, do Rosario M,Rosado A S, et al.2004.Serratia sp.SVGG16:a promising biosurfactant producer isolated from tropical, soil during growth with ethanol-blended gasoline. Process Biochemistry, 39:2277-2282.
    74. Dassarma S,Arora P.2002.Halophiles:in Encyclopedia of life sciences.London:Nature Publishing Group,8:458-466.
    75.Dastgheib S M M,Amoozegar M A,Khajeh K, et al.2011.A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation.Applied Microbiology and Biotechnology,90(1)305-312.
    76. Dibble J, Bartha R.1979.Effect of environmental parameters on the biodegradation of oil sludge. Applied and Environmental Microbiology,37:729-739.
    77. Dietz A C.SchnoorJ L.2001.Advances in phytoremediation.Environ Health Perspect,109(1):163-168.
    78. Diks R M M, Ottengraf S P P, van den Oever A H C.1994.The influence of NaCl on the degradation rate of dichloromethane by Hyphomicrobium sp.Biodegradation,5:129-141.
    79. Eckford R,Cook F D,Saul D, et al.2002.Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils.Appl. Environ. Microbiol.,68:5181-5185.
    80. Espinosa E E,Gallegos-Martinez M E E, et al.2005.Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system.Chemosphere,59:405-413.
    81. Euliss K,Ho C H,Schwab A P, et al.2008.Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone.Bioresource Technology,99:1961-1971.
    82. Eweis J B,Ergas S J,Chang D P Y. et al.1998.Bioremediation Principles.New:McGraw-Hill Book Company Europe,125-129.
    83. Fry I J.Chakrabarty A M,DeFrank J J.1992.In situ bioremediation of oil-contaminated soil and ground water of the Straford army engine plant using natural surfactants. Proc.CRDEC Science Conf.on Chemical Defense, Edgewood, Maryland, USA,362.
    84. Gaskin S E,Bentham R H.2010.Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses.Science of the Total Environment,408:3683-3688.
    85. Gerhardt K E,Huang X,Glick B R, et al.2009.Phytoremediation and rhizoremediation of organic soil contaminants:Potential and challenges.Plant Science,176(1):20-30.
    86. Gennida J J,Frick C M,Farrell R E.2002.Phytoremediation of oil-contaminated soils.Developments in Soil Science,28(2):169-186.
    87. Gesheva V,Stackebrandt E,Vasileva-Tonkova E.2010Biosurfactant production by halotolerant Rhodococcusfascians from Casey Station, Wilkes Land, Antarctica.Current Microbiology,60(2):112-117.
    88. Ghojavand H, Vahabzadeh F, Mehranian M, et al.2008.Isolation of thermotolerant,halotolerant, facultative biosurfactant-producing bacteria.Applied Microbiology Biotechnology,80:1073-1085.
    89. Ghojavand H,Vahabzadeh F,Azizmohseni F A.2011.Halotolerant,thermotolerant,andfacultative biosurfactant producer:Identification and molecular characterization of a bacterium and evolution of emulsifier stability of a lipopeptide biosurfactant.Biotechnology and Bioprocess Engineering,16(l):72-80.
    90. Ghojavand H,Vahabzadeh F,Mehranian M,et al.2008.Isolation of thermotolerant,halotolerant, facultative biosurfactant-producing bacteria.Applied Microbiology Biotechnology,80(6):1073-1085.
    91. Goudar C,Strevett K,Grego J.1999.Competitive substrate biodegradation during surfactant-enhanced remediation.Journal of Environment Engineering,125 (12):1142-1148.
    92. Grimberg S J,Stringfellow W,Aitken M D.1996.Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Appl. Environ. Microbiol.,62(7):2387-2392.
    93. Grund A,Shapiro J,Fennewald M, et al.1975.Regulation of alkane oxidation in Pseudomonas putida.J. Bacteriol.,139:546-556.
    94. Haritash A K,Kaushik C P.2009.Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazardous Materials,169:1-15.
    95. Harvey S.Elashvili I,Valdes J J,et al.1990.Enhanced removal of Exxon Valdez Spilled Oil from Alaskan Gravel by a microbial surfactant.Nature Biotechnology.8(3),228-230.
    96. Hua X F,Wang J,Wu Z J, et al.2010.A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum-and salt-contaminated soil.Biochemical Engineering Journa!,49(2):201-206.
    97. Huang X D,El-Alawi Y,Gurska J, et al.2005.A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils.Microchemical Journal,81:139-147.
    98. Huesemann M H,Truex M J.1996.The role of oxygen diffusion in passive bioremediation of petroleum contaminated soils.Journal of Hazardous Materials.51(1-3):93-113.
    99. Hutchins S R,Miller D E.1998.Combined laboratory/field study on the use of nitrate for in situ bioremediation of a fuel-contaminated aquifer.Environ.Sci.Technol.,32(12):1832-1840.
    100. Ijah U J J.1998.Studies on relativecapabilities of bacterial and yeastisolates from tropical soil in degrading crude oil.Waste Management,18(5):293-299.
    101. Itoh S,Suzuki T.1972.Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability.Agric. Biol. Chem.,36:2233-2235.
    102. Jain D K,Lee H,Trevors J T.1992.Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soft.J. Ind. Microbiol.,10:87-93.
    103. Joner E J,Corgie S C,Amellal N, et al.2002.Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere.Soil. Biol. Biochem.,34:859-864.
    104. Jorgensen K S, Puustinen J, Suortti A M.2000.Bioremediation of petroleum hydrocarbon contaminated soil by composting in biopiles.Environmental Pollution,107(2):245-254.
    105. Kaimi E, Tsukasa M,Shyoji M, et al.2006.Ryegrass enhancement of biodegradation in diesel-contaminated soil,Environmental and Experimental Botany,55:110-119.
    106. Kapley A,Purohit H J,Chhatre S, et al.1999.Osmotolerance and hydrocarbon degradation by a genetically engineered microbial consortium.Bioresource Technology,67:241-245.
    107. Karamalidis A K,Evangelou A C,Karabika E, et al.2010.Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet.Bioresource Technology,10:6545-6552.
    108. Kechavarzi C.Pettersson K,Leeds-Harrison P, et al.2007.Root establish ment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers.Environ. Pollut.,145(1):68-74.
    109. Kiran G S,Thomas T A,Selvin G,et al.2010.Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA 13 in solid state culture.Bioresource Technology,101(7):2389-2396.
    110. Kiyohara H,Nagao K,Kouno K.1982.Phenanthrene-degrading Phenotype of Alcaligenes faecalis AFK2.APPL. Environ. Microbiol,43(2):458-461.
    111. Kleinsteuber R S,Riis V,Fetzer I, et al.2006.Population dynamics within a microbial consortium during growth on diesel fuel in saline environments.Applied and Environmental Microbiology,72(5):3531-3542.
    112. Kosaric N.2001.Biosurfactants for soil bioremediation, food technol.Biotechnol.,39(4):295-304.
    113. Kulichevskaya I S, Milekhina E I, Borzenkov I A, et al.1991.Oxidation of petroleum hydrocarbons by extremely halophilic archeobacteria.Microbiology,60:596-601.
    114. Kushner D J.1978.Life in high salt and solute concentrations. In:Kushner DJ (ed) Microbial life in extreme environments. London:Academic Press,317-368.
    115. Kuznetnov V D, Zaitseva T A, Vakulenko L V, et al.1992.Streptomyces albiaxialis sp. nov.-a new petroleum hydrocarbon-degrading species of thermoand halotolerant Streptomyces.Mykrobiologiya, 61:84-91.
    116. Leahy J G,Colwellr R.1990.Microbial degradation of hydrocarbons in the environment. Microbiological Reviews,54(3):305-315.
    117. Li H, Zhang Y,Kravchenko I, Xu H,et al.2007.Dynamic changes in microbial activity and community structure during biodegradation of petroleum compounds:A laboratory experiment.Journal of Environmental Sciences,19:1003-1013.
    118. Lotfabad T B,Shourian M,Roostaazad R, et al.2009.An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01,isolated from oil excavation areas in south of Iran.Colloids and Surfaces B: Biointerfaces,69(2):183-193.
    119. Lu M,Zhang Z,Qiao W, et al.2010.Remediation of petroleum-contaminated soil after composting by sequential treatment with Fenton-like oxidation and biodegradation.Bioresource Technology, 101(7):2106-2113.
    120. Maier R M.2003.Biosurfactant:Evolution and diversity in bacteria.Adv. Appl. Microbiol.,52,101-121.
    121. Manoj K,Lecdn V,De Sisto Angela M, et al.2008.Biosurfactant production and hydrocarbon-degradation by halotolerant and thermotolerant Pseudomonas sp..World Journal Microbiology Biotechnology,24(7):1047-1057.
    122. Margesin R,Schinner F.2001 a.Biodegradation and bioremediation of hydrocarbons in extreme environments.Applied Microbiology and Biotechnology,56:650-663.
    123. Margesin R,Schinner F.2001b.Potential of halotolerant and halophilic microorganisms for biotechnology.Extremophiles,5(2):73-83.
    124. Margesin R,Schinner F.1999.Biodegradation of diesel oil by cold-adapted microorganisms in presence of sodium dodecylsulfate.Chemosphere,38(15):3463-3472.
    125. Mariela R M,Andrea M S,Georgina F, et al.2005.Engineering Pseudomonas fluorescens for biodegradation of 2,4-Dinitrotoluene in itrotoluene.Applied and Environmental Microbiology,71(12):8864-8872.
    126. Meredith W,Kelland S J,Jones D M.2000.Influence of biodegradation on crude oil acidity and carboxylic acid composition.Org. Geochem.,31,1059-1073.
    127. Merkl N,Schultze-kraft R.Infante C.2005.Phytoremediation in the tropics-influence of heavy crude oil on root morphological characteristics of gram inoids.Environ. Pollut.,138(1):86-91.
    128. Mille G,Almallah M,Bianchi M, et al.1991.Effect of salinity on petroleum biodegradation.Fresenius' Journal of Analytical Chemistry,339(10):788-791.
    129. Mnif S, Chamkha M, Sayadi S.2009.Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.Journal of Applied Microbiology,107(3):785-794.
    130. Morgan P,Watkinson R J.1989.Hydrocarbon degradation in soils and methods for soil biotreatment. CRC Critical Reviews in Biotechnology,4,305-333.
    131. Muhammad S, Muller T, Joergensen R G.2008.Relationships between soil biological and other soil properties in saline and alkaline arable soils from the Pakistani Punjab.J. Arid. Environ.,72:448-457.
    132. Mukherji S,Jagadevan S,Mohapatra G, et al.2004.Biodegradation of diesel oil by an Arabian Sea sediment culture isolated from the vicinity of an oil field.Bioresource Technology,95(3):281-286.
    133. Najafi A R,Rahimpour M R,Jahanmiri A H, et al.2010.Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology.Chemical Engineering Journal,163(3):188-194.
    134. Nakamura K S,Sugiura K,Yamauchi-inomata Y, et al.1996.Construction of bacterial consortia that degrade Arabian light crude oil.Journal of Fermentation and Bioengineering,82,570-574.
    135. Nicholson C A,Fathepure B Z.2004.Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions.Applied and Environmental Microbiology,70(2):1222-1225.
    136. Nicholson CA, Fathepure BZ.2005.Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma.FEMS Microbiology Letter,245:257-262.
    137. Nie M,Yin X, Ren C,et al.2010.Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3.Biotechnology Advances, 28(5):635-643.
    138. Nikolopouloua M,Kalogerakis N.2008.Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses.Mar. Pollut. Bull.,56,1855-1861.
    139. Northcott G L,Jones K C.2000.Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment.Environ. Pollut.,108,19-43.
    140. Nwachukwu S U.2001.Biorernediation of sterile agricultural soils polluted with crude petroleum by application of the soil bacterium, Pseudomonas putida, with inorganic nutrient supplementations. Current Microbiology.42(4):231-6.
    141. Obayori O S,Adebusoye S A,Adewale A O, et al.2009.Differential degradation of crude oil (Bonny light) by four Pseudomonas strains.Journal of Environmental Sciences,21:293-248.
    142. Oberbremer A,Muller-Hurtig R.1989.Aerobic stepwise hydrocarbon degradation and formation of biosurfactants by an original soil population in a stirred reactor.Appl. Microbiol. Biotechnol.,31:582-586.
    143. Obuekwe C O,Badrudeen A M,Al-Saleh E, et al.2005.Growth and hydrocarbon degradation by three desert fungi under conditions of simultaneous temperature and salt stress.International Biodeterioration and Biodegradation,56(4):197-205.
    144. Olivera N D,Nievas M L,Lozada M, et al.2009.1solation and characterization of biosurfactant-producing Alcanivorax strains:hydrocarbon accession strategies and alkane hydroxylase gene analysis.Res. Microbiol.,160:19-26.
    145. Oren A.2002.Diversity of halophilic microorganisms:environments, phylogeny, physiology, and applications.J. Ind. Microbiol. Biotechnol,28:56-63.
    146. Parrish Z D,Banks M K,Schwab A P.2005.Effect of root death and decay on dissipation of polycyclic aromatic hydrocarbons in the rhizosphere of yellow sweet clover and tall fescue.J. Environ. Qual.,34(1):207-216.
    147. Patel R M,Desai A J.1997.Biosurfactant production by Pseudomonas aeruginosa GS3 from molasses.Letters in Applied Microbiology,25(2):91-94.
    148. Peng S W, Zhou Q X,Cai Z et al.2009.Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment.Journal of Hazardous Materials,168:1490-1496.
    149. Piehler M F,Paerl H W.1989.Enhanced biodegradation of diesel fuel through the addition of particulate organic carbon and inorganic nutrients in coastal marine waters.Biodegradation,7(3):239-247.
    150. Pornsunthorntawee O,Arttaweeporn N,Paisanjit S, et al.2008.Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery.Biochem. Eng. J.,42:172-179.
    151. Pruthi V, Cameotra S.S.1997.Production of a biosurfactant exhibiting excellent emulsification and surface active properties by Serratia marcescens.World Journal of Microbiology and Biotechnology,13, 133-135.
    152. Putheti R R,Patil M C.2009.Pharmaceutical formulation development of floating and swellable sustained drug delivery systems:a review.E-J. Sci. Technol.,4(2):1-12.
    153. Qin X.Tang J C,Li D S, et al.2012.Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil.Letters in Applied Microbiology,55(3):210-217.
    154. Raghavan P U M,Vivekanandan M.1999.Bioremediation of oil-spilled sites through seeding of naturally adapted Pseudomonas putida.International Biodeterioration and Biodegradation,44(l):29-32.
    155. Rahman K S M,Thahira J.Rahman Y, et al.2003.Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients.Bioresource Technology, 90:159-168.
    156. Rahman K S M,Thahira-Rahman J,Lakshmanaperumalsamy P, et al.2002.Towards efficient crude oil degradation by a mixed bacterial consortium.Bioresource Technology,85:257-261.
    157. Rambeloarisoa E,Rontani J F,Giusti G, et al.1984.Degradation of crude oil by a mixed population of bacteria isolated from sea-surface foams.Marine Biology,83(1):69-81.
    158. Rehmann K,Noll H P,Steiberg C E W, et al.1998.Pyrene degradation by Mycobacterium sp. Strain KR2.Chemosphere,36(14):2977-2992.
    159. Rhykerd R L,Crews B.McInnes K J,et al.1999.Impact of bulking agents, forced aeration, andtillage on remediation of oil-contaminated soil.Bioresource Technology,67(3):279-285.
    160. Rhykerd R L,Weaver R W,McInnes K J.1995.Influence of salinity on bioremediation of oil in soil. Environ. Pollut.,90:127-130.
    161. Rietz D N,Haynes R J.2003.Effects of irrigation induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35,845-854.
    162. Ron E Z,Rosenberg E.2002.Biosurfactants and oil bioremediation.Current Opinion in Biotechnology,13(3):249-252.
    163. Rowland A P, Lindley D K,Hall M J, et al.2000.Effects of beach sand properties, temperature and rainfall on the degradation rates of oil in buried oil/beach sand mixtures.Environ. Pollut.,109:109-118.
    164. Salihu A,Abdulkadir I,Almustapha M N.2009.An investigation for potential development on biosurfactants.Biotechnology and Molecular Biology Reviews,3(5):111-117.
    165. Salmon C,Crabos J L,Sambuco J P, et al.1998.Artificial wetland performances in the purification efEciency of hydrocarbon wastewater. Water Air Soil Pollut.,104:313-329.
    166. Setti L,Lanzarini G,Pifferi P G, et al.1993.Further research into aerobic degradation of n-alkanes in a heavy oil by a pure culture of a Pseudomonas spp.Chemosphere,26:1151-1157.
    167. Siciliano S,Germida J J,Banks K, et al.2003.Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial.Applied Environmental Microbiology,69:483-489.
    168. Sobisch T,Heβ H,Niebelschutz H, et al.2000.Effect of additives on biodegradation of PAH in soils.Colloids and Surfaces A:Physicochemical and Engineering Aspects,162(1-3):1-14.
    169. Song J,Kinney K A.2001.Effect of directional switching frequency on toluene degradation in a vapor-phase bioreactor.Appl. Microbiol. Biotechnol.,56:108-113.
    170. Sugiura K,Ishihara M,Shimauchi T, et al.1997.Physiochemical properties and biodegradability of crude oil.Environ. Sci. Technol.,31:45-51.
    171. Tahhan R A,Ammari T G,Goussous S J, et al.2011.Enhancing the biodegradation of total petroleum hydrocarbons in oily sludge by a modified bioaugmentation strategy. International Biodeterioration and Biodegradation,65(1):130-134.
    172. Tang J C,Wang R G,Niu X W, et al.2010.Enhancement of soil petroleum remediation by using a combination of ryegrass (Lolium perenne) and different microorganisms.Soil and Tillage Research,110(1):87-93.
    173. Tapilatu Y H,Grossi V,Acquaviva M, et al.2010.Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond(Camargue,France).Extremophiles,14:225-231.
    174. Thapa B,Kumar A,Ghimire A.2012.A review on bioremediation of petroleum hydrocarbon contaminants in soil.Kathmandu University Journal of Science,Engineering and Technology,8(1):164-170.
    175. Thavasi R,Jayalakshmi S,Banat I M.2011.Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium,Corynebacterium kutscheri and Pseudomonas aeruginosa.Bioresource Technology,102(2):772-778.
    176. Toledo F L,Calvo C,Rodelas B, et al.2006.Selection and identification of bacterial isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Systematic and Applied Microbiology,29(3):244-252.
    177. Trebbau A G,McInerney M J.1996.Emulsifying activity in thermophilic and extremely thermophlic microorganisms.Journal of Industrial Microbiology,16:1-7.
    178. Tripathi S,Kumari S,Chakraborty A, et al.2006.Microbial biomass and its activities in salt-affected coastal soils.Biol. Fertil. Soils,42:273-277.
    179. Tsai J C,Kumar M,Lin J G.2009.Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway.J. Hazard. Mater.,164(2-3):847-855.
    180. Tugrul T,Cansunar E.2005.Detecting surfactant-producing microorganisms by the drop-collapse test.World J. Microbiol. Biotechnol.,21:851-853.
    181. Turkovskaya O V,Dmitrieva T V,Muratova A U.2001.A biosurfactant-producing Pseudomonas aeruginosa strain.Applied Biochemistry and Microbiology,37(1):71-75.
    182. Ulrich A C,Guigard S E,Foght J M, et al.2009.Effect of salt on aerobic biodegradation of petroleum hydrocarbons in contaminated groundwater.Biodegradation,20(1):27-38.
    183. Urum K,Pekdemir T.2004.Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere,57,1139-1150.
    184. Venosa A D,Holder E L.2007.Biodegradability of dispersed crude oil at two different temperatures.Marine Pollution Bulletin,54(5):545-553.
    185. Ventosa A,Marquez M C,Garabito M J.1998.Moderately halophilic gram-positive bacterial diversity in hypersaline environments.Extremophiles,2(3):297-304.
    186. Verma S,Bhargava R,Pruthi V.2006.Oily sludge degradation by bacteria from Ankleshwar, India.International Biodeterioration and Biodegradation,57(4):207-213.
    187. Verstraete W,Vanloocke R,DeBorger R, et al.1976.Modelling of the breakdown and the mobilization of hydrocarbons in unsaturated soil layers:proceedings of the third international biodegradation symposium. Kaplan:Applied Science Publishers,99-112.
    188. Volkering F,Breure A M,Rulkens W H.1997.Microbiological aspects of surfactant use for biological soil remediation.Biodegradation,8(6):401-417.
    189. Walworth J,Braddock J,Woolard C.2001.Nutrient and temperature interactions in bioremediation of cryic soils.Cold Regions Science and Technology,32(2,3):85-91.
    190. Walworth J L,Reynolds C M.1995.Bioremediation of a petroleum-contaminated cryic soil:effects of phosphorous, nitrogen, and temperature J. Soil Contam.,4:299-310.
    191. Weid I V D,Marques J M,Cunha C D, et al.2007.Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil.Systematic and Applied Microbiology,30(4):331-339.
    191. Whang L,Liu P G,Ma C, et al.2008.Application of biosurfactants, rhamnolipid and surfactin, for enhanced biodegradation of diesel-contaminated water and soil.Journal of Hazardous Materials, 151:155-163.
    192. Whyte L G,Bourbonniere L,Bellerose C, et al.1998.Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp.Appl. Environ. Microbiol.64:2578-2584.
    193. Willumsen P A E,Karlson U.1997.Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactant and bioemulsifiers.Biodegradation,7:415-423.
    194. Wrenn B A,Venosa A D.1996.Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure.Can. J. Microbiol.,42(3):252-258.
    195. Xu Y H,Lu H.2010.Bioremediation of crude oil-contaminated soil:Comparison of different biostimulation and bioaugmentation treatments. Journal of Hazardous Materials,183:395-401.
    196. Xu R,Obbard J P.2003.Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil-contaminated beach sediments.J. Environ. Qual.,32,1234-1243.
    197. Yakimov M M,Timmis K N,Wray V,et al.1995.Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50.Applied and Environmental Microbiology,61 (5):1706-1713.
    198. Ye R W,Thomas S M.2001.Microbial nitrogen cycles:physiology, genomics and applications.Current Opinion in Microbiology,4(3):307-312.
    199. Yerushalmi L,Rocheleau S,Cimpoia R, et al.2003.Enhanced biodegradation of petroleum hydrocarbon in contaminated soil.Bioremediation Journal,7(1):37-51.
    200. Youssef N H,Duncan K E,Nagle D P,et al.2004.Comparison of methods to detect biosurfactant production by diverse microorganisms.Journal of Microbiological Methods,56(3):339-347.
    201. Zappi M E,Brad A R, Cynthia L T, et al.1996.Bioslurry treatment of a soil contaminated with low concentrations of total petroleum hydrocarbons.Journal of Hazardous Materials,46(1):1-12.
    202. Zhang X S,Xu D J,Zhu C Y, et al.2012.Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains.Chemical Engineering Journal,209:138-146.
    203. Zhou Q X, Cai Z, Zhang Z N et al.2011.Ecological remediation of hydrocarbon contaminated soils with weed plant.Journal of Resources and Ecology,2(2):97-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700