用户名: 密码: 验证码:
构造与气候共同作用下天山北麓中更新世以来构造地貌演化过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强烈的缩短构造变形使天山北麓地壳掀斜抬升,大规模的洪积砾石层和黄土堆积增加了地表高程,干旱化条件下局限在狭谷河道的下切使山麓地表总体保持稳定,在不同时间尺度上的构造变形与气候变化的共同作用下,天山得以向北扩展,继续着造山过程。
     天山北麓地壳有两种垂直方向上的变形方式,一是准噶尔南缘断裂带的逆冲推挤,二是岩层沿底部滑脱面向北运动,同时发生逆断裂和褶皱;由此天山北麓地壳自南向北掀斜抬升。在近东西向的水平方向上,第一排逆断裂‐褶皱带的清水河‐石梯子断裂仍在向西扩展,在地表上形成隆起;第二排逆断裂‐褶皱带的霍尔果斯褶皱、玛纳斯褶皱、吐谷鲁褶皱由中部开始,逐步向两侧扩展,最终连接成统一的褶皱隆起;第三排逆断裂‐褶皱带的独山子褶皱、哈拉安德褶皱、安集海褶皱也是由中部开始向两侧扩展,形成了三个孤立的褶皱隆起。由于准噶尔盆地地壳沿南东方向上向天山地壳的斜向俯冲和多层次消减,造成天山北麓地壳浅部岩层以褶皱和逆断裂的形式沿北西方向扩展。
     上游汇水盆地和下游洪积扇是一个耦合系统,中更新世以来,冰川剥蚀形成的大量松散物质贮积在山间,当遇到间冰期、间冰段、高温大降水等暖湿时期,山间松散物质搬运至主河道,并逐步搬运到山麓,形成洪积扇,组成了山麓堆积。由于中更新世以来持续的干旱化,坡麓地表径流小,剥蚀轻微,河流下切局限在狭谷式的深切河道中时行,侵蚀只占坡麓地表面积的10%,总体上地表比较稳定。天山北麓被逆断裂和褶皱隆起分隔为分隔盆地,一方面,各个分隔盆地面以阶梯式整体掀斜抬升;另一方面,变形隆起在分隔盆地前缘形成阻挡,使碎屑物质容易在分隔盆地中堆积下来,增加了盆地面的高度;由于地表剥蚀轻微,抬升和加积增高全部转换为地表隆起。随着地壳缩短,山前的构造隆起逐步缩短与天山之间的距离并与天山拼贴在一起,成为天山的一部分;同时由于构造隆起的向北扩展,准噶尔盆地南缘自南向北逐渐隆起成为山脉的一部分,天山得以向北扩展。
     天山北麓奎屯河的河流下切表明,河流下切是长时间尺度上的构造变形和干旱化,以及短时间尺度上的湿润气候变化共同作用的结果。长时间尺度上的构造变形为河流下切提供了坡度,而短时间尺度上的气候变化为河流下切提供了额外的水动力。末次冰期期间始于~30ka的高温大降水,水动力增强,山间物质被搬运到山前形成洪积扇,而后河流供给物减少,水动力主要用来下切河床,洪积扇被下切形成T3阶地。全新世早期~11ka是末次冰期之后的高温降水期,松散物质从奎屯河冲出来堆积在T2阶地的基座上,而后松散物质供给减少,在~10ka开始下切形成T2阶地。全新世以来,在越来越干旱的背景下,地表径流减小,松散物质难以搬运到下游,水动力几乎全部用来侵蚀河床,河流下切更为强烈;湿润期到来时,少量松散物质搬运到下游堆积下来,湿润期结束后,地表径流减小,河流中没有充足的松散物质,河床减小宽度以增强水动力,再次开始下切;因此,全新世以来天山北麓加剧的干旱化是河流强烈下切的主要原因。另外,天山北麓的逆断裂和褶皱变形为河床提供了额外的坡度,为水动力的多次下切提供了坡度条件,在褶皱变形部位形成了多级阶地。
Crust of the northern pediment of Tian Shanwas tilted and uplifted from south to north with continuing and intense deformation since middle Pleistocene. Mass ofconglomerates and loess mantled in northern blank of Tian Shan and a large scale of fluvial fan developed to accumulate the elevation of the pediment. With the drier climate, incision was limited in the stiff canyon trenched by the main stream. The surfaces keep a stable statue of equilibrium between incision and accumulation. Tian Shan had propagated to north with the impact by climate change and tectonic deformation in deferent time scale and undergone intercontinental orogeny since middle Pleistocene.
     Two styles of deformation existed in the crust of northern pediment of Tian Shan on vertical direction. One is thrusting that the crust of Tian Shan overthrusted to the Zhunger basin along the South Zhunger Fault (SZF). The other is the upper layer of rock moved to north along the deep decollement surface and the rock folded and thrusted as the same time. As a result, the crust of the pediment of Tian Shan was tilted and uplifted from south to north. There are three row of folds‐thrusts belts in north blank of Tian Shan. The Qingshuihe‐Shitizi Fault (QSF) in the first row of folds‐thrusts belt propagated to west and made the surface uplift. The Huoerguosi folds, as well as Manas folds and Tugulu folds, of the second rows of folds‐thrusts belt propagated from the middle to the both side. The three folds uplifted and consolidated to a low mountain. The Dushizi folds, as well as Halaande folds and Anjihai folds, of the third rows of folds‐thrusts belt propagated from the middle to the both side. The three folds uplifted to became three isolated mountain. The rock of upper crust in the northern pediment of Tian Shan propagated along the NW direction with the folding and thrusting deformation due to multi‐level subduction that the crust of the Zhunger Basin subducted to the crust of Tian Shan along the SE direction.
     The catchment and the fan is a coupling system. Mass of loose materials covered the upper catchment. In the warm and humid climate stage, the storage materials in mountain were transported to the main stream and carried to the front of mountain. With repeatedly transporting, the fan was formed. For the drier climate, the runoff was so lack that the surface could be hardly eroded. Consequently, incision was limited in the stiff canyon trenched by the main stream and the incision surface only was10percentage of the whole surface. The surfaces keep a stable statue of equilibrium between incision and accumulation. The pediment of the north Tian Shan was tilted and partitioned several parts by the folds and thrusts. Materials aggraded in the partitioned basins and surface accumulated elevation of the basins. On the other hand, partitioned basins were distorted accompanying with deformation of thrust faults and folds. As a result of shortening, the partitioned basins tilted along the northern flank of Tian Shan. Uplift of crust tilt almost totally converted to uplift of surface because of slight erosion. The pediment near the mountain became higher as a part of Tian Shan. As a result, the Tian Shan propagated to north.
     Study of downcutting of the Kuitun River shows that intense river downcutting in northern pediment of Tian Shan controlled by tectonic deformation and drier climate change at the long time scale, and also controlled by warm and humid climate change at the short time scale. The slope was supplied by long‐term deformation and the additional river power was supplied by the short‐term climate change. At the stage of high temperature and mass precipitation about30ka B.P. in the Last Glacial period, the stream power increased. The materials in mountain were transported to the northern blank of Tian Shan and formed fluvial fans. With supply of the river sediment decreasing, the stream power was used to downcut river bed. The fluvial fan in middle Pleistocene was entrenched and the terrace T3formed. At the warm and humid climate stage in early Holocene about11ka B.P., the loose materials in the mountain were carried to deposit on the strath terrace. With supply of the river sediment decreasing, the stream power was used to downcut river bed at10ka B.P. and the terrace T2formed. Since early Holocene, the surface runoff strongly decreased with the more arid climate and the storage of loose materials in upper catchment could be hardly carried to the northern front of Tian Shan. Therefore, all of stream power was used to entrench river bed and the river downcutting became more intensely. At the stage of humid in Holocene, small amounts of materials was transported to the downstream and deposited. At the end of humid stage, the river had not enough deposit materials and the width of river bed was decreased to increase stream power. The river became a new stage of downcutting. For the reason, more arid climate change since early Holocene led to intense river downcutting in the northern pediment of Tian Shan. Moreover, the additional slope was supplied by the deformation of folds and thrusts. It increased additional stream power for entrenching river bed many times and a lot of terraces formed where the river crossed the folds.
引文
Allen M B, Windley B F, Chi Z, et al. Basin evolution within and adjacent to the Tien Shan Range,NW China. Journal of the Geological Society.1991,148(2):369‐378.
    AvouacJP, Burov EB. Erosion as a driving mechanism of intracontinental mountain growth. J.Geophys. Res.1996,101,17747.
    Avouac J, Peltzer G. Active tectonics in southern Xinjiang, China: Analysis of terrace riser andnormal fault scarp degradation along the Hotan‐Qira Fault System. Journal of GeophysicalResearch: Solid Earth.1993,98(B12):21773‐21807.
    Blair T C, Mcpherson J G. Alluvial fans and their natural distinction from rivers based onmorphology, hydraulic processes, sedimentary processes, and facies assemblages. Journal ofsedimentary research.1994,64(3).
    Blair T C. Alluvial fans and their natural distinction from rivers based on morphology, hydraulicprocesses, sedimentary processes, and facies assemblages. Journal of Sedimentary Research.1997:1‐21.
    Bullen M E. Late Cenozoic tectonic evolution of the northwestern Tien Shan. GSA Bulletin.2001:1‐16.
    Bull WB. Geomorphic Responses to Climatic Change. Oxford University Press, Oxford,1991.
    Burbank D W, Bookhagen B, Gabet E J, et al. Modern climate and erosion in the Himalaya.Comptes Rendus Geoscience.2012,344(11–12):610‐626.
    Calvache M, Viseras C, FernandezJ. Controls on alluvial fan development: evidence from fanmorphometry and sedimentology; Sierra Nevada,SE Spain. Geomorphology,1997,21,69‐84
    Carretier S, Lucazeau F. How does alluvial sedimentation at range fronts modify the erosionaldynamics of mountain catchments?.Basin Research,2005,17(3):361‐381.
    Carretier S, Poisson B, Vassallo R, et al. Tectonic interpretation of transient stage erosion ratesat different spatial scales in an uplifting block. Journal of Geophysical Research: EarthSurface.2009,114(F2): F2003.
    Cockburn H A P, Brown R W, Summerfield M A, et al. Quantifying passive margin denudationand landscape development using a combined fission‐track thermochronology andcosmogenic isotope analysis approach. Earth and Planetary Science Letters.2000,179(3–4):429‐435.
    Charreau J, Chen Y, Gilder S, et al. Magnetostratigraphy and rock magnetism of the NeogeneKuitun He section (northwest China): implications for Late Cenozoic uplift of the Tianshanmountains. Earth and Planetary Science Letters.2005,230(1–2):177‐192.
    Dumitru T A, Zhou D, Chang E Z, et al. Uplift, exhumation, and deformation in the Chinese TianShan. MEMOIRS‐GEOLOGICAL SOCIETY OF AMERICA.2001:71‐100.
    Fu B H. Quaternary folding and faulting in the Tian Shan, China. Poctoral Thsis, ShizuokaUniversity,2002.
    Fu B, Lin A, Kano K, et al. Quaternary folding of the eastern Tian Shan, northwest China.Tectonophysics.2003,369(1–2):79‐101.
    Gosse J C, Phillips F M. Terrestrial in situ cosmogenic nuclides: theory and application.Quaternary Science Reviews.2001,20(14):1475‐1560.
    Harvey AM, Silva PG, Mather AE, et al. The impact of Quaternary sea‐level and climatic changeon coastal alluvial fans in the Cabo de Gata ranges, southeast Spain. Geomorphology,1999,28,1‐22.
    Harvey AM, Wigand PE, Wells SG. Response of alluvial fan systems to the late Pleistocene toHolocene climatic transition: contrasts between the margins of pluvial Lakes Lahontan andMojave, Nevada and California, USA. Catena,1999,36,255‐281.
    Harvey A M, Mather A E, Stokes M. Alluvial fans: geomorphology, sedimentology, dynamics‐‐introduction. A review of alluvial‐fan research. Geological Society, London, SpecialPublications.2005,251(1):1‐7.
    Hendrix M S, Dumitru T A, Graham S A. Late Oligocene‐early Miocene unroofing in the ChineseTian Shan: An early effect of the India‐Asia collision. Geology.1994,22(6):487.
    Howard A D, Dietrich W E, and Seidl M A. Modeling fluvial erosion on regional to continentalscales, J. Geophys. Res.,1994,99,13971–13986.
    Jones S J, Frostick L E, Astin T R. Climatic and tectonic controls on fluvial incision andaggradation in the Spanish Pyrenees. J. Geol. Soc. Lond.2000,156:761–769.
    Kirby E, Whipple K X. Expression of active tectonics in erosional landscapes. Journal ofStructural Geology.2012,44(0):54‐75.
    Koons P O. Some thermal and mechanical consequences of rapid uplift: an example from theSouthern Alps, New Zealand. Earth and planetary science letters.1987,86(2):307‐319.
    Lal D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosionmodels. Earth and Planetary Science Letters.1991,104(2–4):424‐439.
    Lu H, Burbank D W, Li Y. Alluvial sequence in the north piedmont of the Chinese Tian Shan overthe past550 kyr and its relationship to climate change. Palaeogeography,Palaeoclimatology, Palaeoecology.2010,285(3–4):343‐353.
    Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision. Science.1975,189(4201):419‐426.
    Tapponnier P, Molnar P. Active faulting and tectonics in China. Journal of Geophysical Research.1977,82(20):2905‐2930.
    Molnar P, Qidong D. Faulting associated with large earthquakes and the average rate ofdeformation in central and eastern Asia. Journal of Geophysical Research: Solid Earth(1978–2012).1984,89(B7):6203‐6227.
    Molnar P, England P. Late Cenozoic uplift of mountain ranges and global climate change:chicken or egg?. Nature.1990,346(6279):29‐34.
    Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indianmonsoon. Reviews of Geophysics.1993,31(4):357‐396.
    Molnar P, Erik T B, Burchfiel B C, et al. Quaternary Climate Change and the Formation of RiverTerraces across Growing Anticlines on the North Flank of the Tien Shan, China. The Journalof Geology.1994,102(5):583‐602.
    Molnar P, Ghose S. Seismic moments of major earthquakes and the rate of shortening acrossthe Tien Shan. Geophysical Research Letters.2000,27(16):2377‐2380.
    Parker G. Progress in the modeling of alluvial fans. Journal of Hydraulic Research.1999,37(6):805‐825.
    Parker K C. Effects of complex geomorphic history on soil and vegetation patterns on aridalluvial fans. Journal of Arid Environments.1995,30(1):19‐39.
    Blanche P, Jean P A. Holocene Hydrological Changes Inferred from Alluvial StreamEntrenchment in North Tian Shan (Northwestern China)[J]. The Journal of Geology.2004,112(2):231‐249.
    Silva P G, Harvey A M, Zazo C, et al. Geomorphology, depositional style and morphometricrelationships of Quaternary alluvial fans in the Guadalentin depression (Murcia, southeastSpain)[J]. Zeitschrift fur Geomorphologie.1992,36(3):325‐341.
    Sun J, Zhu R, Bowler J. Timing of the Tianshan Mountains uplift constrained bymagnetostratigraphic analysis of molasse deposits. Earth and Planetary Science Letters.2004,219(3–4):239‐253.
    Sun J, Xu Q, Huang B. Late Cenozoic magnetochronology and paleoenvironmental changes inthe northern foreland basin of the Tian Shan Mountains. Journal of Geophysical Research:Solid Earth (1978–2012).2007,112(B4).
    Sun J, Zhang Z. Syntectonic growth strata and implications for late Cenozoic tectonic uplift inthe northern Tian Shan, China. Tectonophysics.2009,463(1):60‐68.
    Suppe J, Chou G T, Hook S C. Rates of folding and faulting determined from growth strata.Thrust tectonics. Springer Netherlands,1992:105‐121.
    Sobel ER, Dumitru TA. Thrusting and exhumation around the margins of the western Tarimbasin during the India–Asia collision. Journal of Geophysical Research,1997,102,5043–5063.
    Sobel E R, Chen J, Heermance R V. Late Oligocene–Early Miocene initiation of shortening in theSouthwestern Chinese Tian Shan: Implications for Neogene shortening rate variations. Earthand Planetary Science Letters.2006,247(1–2):70‐81.
    Snow R S, Slingerland R L. Stream profileadjustment to crustal warping: nonlinear results fromasimple model. Geology,1990,98:699–708.
    Tucker GE, Slingerland R. Drainage basin responsesto climate change.Water Resour. Res.,1997,33,2031‐2047.
    Tucker G E. Drainage basin sensitivity to tectonic and climatic forcing: implications of astochastic model for the role of entrainment and erosion thresholds. Earth Surface Processesand Landforms.2004,29(2):185‐205.
    Vandenberghe J. Timescales, climate and river development.Quat. Sci. Rev.1995,14,631–638.
    Viseras C, Calvache ML, Soria JM, et al. Differential features of alluvial fans controlledbytectonic or eustatic accommodation space.Examples from the Betic cordillera,Spain.Geomorphology,2003,50,181‐202.
    Whipple KX. Fluvial landscape response time: howplausible is steady‐state denudation? Am. J.Sci.,2001,301,313‐325.
    Whipple K X, Tucker G E. Dynamics of the stream‐powerriver incision model: Implications forheight limits of mountain ranges,landscape response timescales, and research needs, J.Geophys. Res.,1999,104(B8),17661‐17674.
    Yin A, Nie S, Craig P, et al. Late Cenozoic tectonic evolution of southernChinese Tianshan.Tectonics,1998,17,1‐27.
    陈一萌,饶志国,张家武,等.中国黄土高原西部马兰黄土记录的MIS3气候特征与全球气候记录的对比研究.第四纪研究.2004,24(3):359‐365.
    陈正位,谢平,申旭辉,等.构造和气候共同控制下的藏南热隆盆地中更新世以来的演化.地震.2007,27(3):131‐138.
    邓起东,冯先岳,张培震,等,2000.天山活动构造,2000,北京:地震出版社.
    方小敏,史正涛,杨胜利,等.天山黄土和古尔班通古特沙漠发育及北疆干旱化.科学通报.2002,47(7):540‐545.
    冯先岳,邓起东,石监邦,等.天山南北缘活动构造及其演化,活动断裂研究1,北京,地震出版社,1991,1‐15.
    冯先岳,李军,陈杰,等,1992.新疆霍尔果斯断裂古地震初步研究,活动断裂研究2,北京,地震出版社,1992,95‐104.
    杜治利,王清晨.中新生代天山地区隆升历史的裂变径迹证据.地质学报.2007,81(8):1081‐1101.
    郭飚,刘启元,陈九辉,等.2006.中国境内天山地壳上地幔结构的地震层析成像.地球物理学报,49(6),1693‐1700.
    郭召杰,张志诚,吴朝东,等.中、新生代天山隆升过程及其与准噶尔、阿尔泰山比较研究.地质学报.2006,80(1):1‐15.
    顾兆炎,赵惠敏.末次间冰期以来新疆巴里坤湖蒸发盐的沉积环境记录.第四纪研究.1998(4):328‐334.
    韩淑媞,袁玉江.新疆巴里坤湖3.5万年以来气候变化序列.地理学报.1990,45(3),350‐362.
    何登发,John,Suppe,等.断层相关褶皱理论与应用研究新进展.地学前缘.2005,12(4):353‐364.
    胡二伢.5Ma以来祁连山侵蚀速率研究.南京师范大学,2012.
    景民昌,孙镇城,杨革联,等,2001.柴达木盆地达布逊湖地区3万年来气候演化的微古生物记录.海洋地质与第四纪地质,21(2),55‐58.
    鞠远江,刘耕年.天山玛纳斯河源鹿角湾冰川地貌与冰期序列.冰川冻土.2005,27(6):907‐912.
    李秋生,卢德源,高锐,等.新疆地学断面(泉水沟‐独山子)深地震测深成果综合研究.地球学报.2001(6).
    李昱,刘启元,陈九辉,等.天山地壳上地幔的S波速度结构.中国科学:D辑.2007,37(3):344‐352.
    李志伟,胥颐,Steven W R,等.中天山地区的Pn波速度结构与各向异性.地球物理学报,2007,50(4),1066‐1072.
    李杰,王晓强,谭凯,等.北天山现今活动构造的运动特征.大地测量与地球动力学.2010,30(6):1‐5.
    李军,杨青,史玉光.基于DEM的新疆降水量空间分布.干旱区地理.2010(6):868‐873.
    李秉孝,蔡碧琴,梁青生.1989.吐鲁番盆地艾丁湖沉积特征.科学通报,34(8),608‐610.
    林瑞芬,Gasse F.新疆玛纳斯湖沉积柱样的古气候古环境研究.地球化学.1996,25(1):63‐72.
    吕红华,李有利,南峰,等.天山北麓河流阶地序列及形成年代.地理学报.2008(1):65‐74.
    吕红华,李有利.天山北麓活动背斜带的变形特征.第四纪研究.2010(5):1003‐1011.
    卢德源,李秋生.横跨天山的人工爆炸地震剖面.科学通报.2000,45(9):982‐988.
    刘训.新疆地壳结构和演化中的若干问题.地学前缘.2006,13(6):111‐117.
    刘小汉,韦利杰,黄费新,等.东南极冰盖上新世大规模退缩事件.地质科学.2013,48(2):419‐434.
    雷显权,陈运平,赵俊猛,等.天山造山带深部探测及地球动力学研究进展.地球物理学进展.2012,27(2):417‐428.
    那春光,孔屏,黄费新,等.原地生成宇宙成因核素10Be和26Al样品采集及处理.岩矿测试.2006(02):101‐106.
    南峰.新疆玛纳斯河流域地貌特征及演化模式,北京大学博士研究生学位论文,2006.
    牛之俊,游新兆,杨少敏.利用GPS分析天山现今地壳形变特征.大地测量与地球动力学.2007,27(2):1‐9.
    彭希龄.新疆第四纪沉积序列.干旱区新疆第四纪研究论文集.乌鲁木齐,新疆人民出版社,1985,121‐136.
    沈军,杨晓平.博洛科努断裂西北段古地震形变带初步研究.内陆地震.1998,12(3):248‐255.
    沈军,汪一鹏,李莹甄,等.中国新疆天山博阿断裂晚第四纪右旋走滑运动特征.地震地质.2003,25(2):183‐194.
    孙继敏.中国黄土的物质来源及其粉尘的产生机制与搬运过程.第四纪研究.2004,24(2):175‐183.
    施雅风,贾玉连,等.40‐30kaBP青藏高原及邻区高温大降水事件的特征、影响及原因探讨.湖泊科学.2002,14(1):1‐11.
    史正涛,方小敏,宋友桂,等.天山北坡黄土记录的中更新世以来干旱化过程.海洋地质与第四纪地质.2006,26(3):109‐114.
    史正涛.亚洲中部中更新世以来气候环境变化—来自天山北坡黄土沉积的证据.云南师范大学学报:自然科学版.2006,26(4):66‐69.
    史正涛,董铭.天山黄土粒度特征及粉尘来源.云南师范大学学报:自然科学版.2007,27(3):55‐57.
    史兴民,李有利,杨景春.新疆玛纳斯湖变迁的气候和构造分析.地理科学.2008,28(2):266‐271.
    史兴民,杨景春,李有利,等.天山北麓玛纳斯河河流阶地变形与新构造运动.北京大学学报:自然科学版.2004,40(6):971‐978.
    王晓强,李杰,Alexander,等.利用GPS形变资料研究天山及邻近地区地壳水平位移与应变特征.地震学报.2007,29(1):31‐37.
    王晓强,李杰,王琪,等.天山现今地壳运动的形变场分析.大地测量与地球动力学.2005,25(3):63‐68.
    王琪,丁国瑜.天山现今地壳快速缩短与南北地块的相对运动.科学通报.2000,45(14):1543‐1547.
    王永,王彦斌.北天山山前安集海河阶地形成的时代及意义.地质论评.2000,46(6):584‐587.
    王椿镛,楼海,魏修成,等.天山北缘的地壳结构和1906年玛纳斯地震的地震构造.地震学报.2001,23(5):460-470.
    文启忠,郑洪汉.北疆地区晚更新世以来的气候环境变迁.科学通报,1988,33(10),771‐774.
    吴敬禄,沈吉,王苏民,等.新疆艾比湖地区湖泊沉积记录的早全新世气候环境特征.中国科学:D辑.2003,33(6):569‐575.
    徐锡伟,邓起东,张培震,等.新疆玛纳斯‐霍尔果斯逆断裂‐褶皱带河流阶地的变形及其构造含义,活动断裂研究2,北京,地震出版社,1992,117‐127.
    新疆维吾尔自治区区域地层表编写组,西北地区区域地层表,新疆维吾尔自治区分册,地质出版社,1981.
    新疆维吾尔自治区地质矿产局,新疆维吾尔自治区地质图和说明书,地质出版社,1985.
    新疆维吾尔自治区地质矿产局,新疆维吾尔自治区区域地质志,地质出版社,1982.
    熊小松,高锐,李秋生,等.天山造山带的深部结构.地球物理学进展.2011,26(6):1906‐1914.
    杨晓平,邓起东,张培震,等,1995.利用阶地变形资料研究北天山吐鲁谷逆断裂-背斜带晚更新世以来的褶皱变形特征,活动断裂研究4,北京,地震出版社,1995,46‐60.
    杨晓平,沈军.2000.天山内部博罗科努断裂精河‐阿拉山口段晚更新世以来的活动特征.地震地质,22(3),305‐315.
    杨晓平,邓起东,张培震,等.天山山前主要推覆构造区的地壳缩短.地震地质.2008,30(1):111‐131.
    杨晓平,李安,黄伟亮,等.天山北麓活动背斜区河流阶地与古地震事件.地震地质.2011,33(4):739‐751.
    杨晓平,李安,黄伟亮.天山北麓活动褶皱带晚第四纪时期隆升的差异性.中国科学:地球科学.2012,42(12):1877‐1888.
    杨少敏,李杰,王琪. GPS研究天山现今变形与断层活动.中国科学:D辑.2008,38(7):872‐880.
    杨保,施雅风.40‐30kaB.P.中国西北地区暖湿气候的地质记录及成因探讨.第四纪研究.2003,23(1):60‐68.
    闫顺,穆桂金,许英勤,等.新疆罗布泊地区第四纪环境演变.地理学报,1998,53(4),332‐340.
    姚檀栋,Thom L G.古里雅冰芯中末次间冰期以来气候变化记录研究.中国科学:D辑.1997,27(5):447‐452.
    袁庆东,郭召杰,张志诚,等.天山北麓塔西河河流阶地的变形特征及成因探讨.新疆地质.2004,22(1):83‐86.
    袁庆东,郭召杰,张志诚,等.天山北缘河流阶地形成及构造变形定量分析.地质学报.2006,80(2):210‐216.
    易朝路,焦克勤,等.冰碛物ESR测年与天山乌鲁木齐河源末次冰期系列.冰川冻土.2001,23(4):389‐393.
    赵俊猛,刘国栋,赵国泽,等.天山造山带与准噶尔盆地壳幔过渡带及其动力学含义.中国科学D辑.2001,31(4):272‐282.
    赵俊猛,李植纯,马宗晋.天山分段性的地球物理学分析.地学前缘.2003,10:125‐131.
    赵俊猛,李植纯,程宏岗,等.天山造山带岩石圈密度与磁性结构研究及其动力学分析.地球物理学报.2004,47(6):1061‐1067.
    赵井东,周尚哲,崔建新,等.乌鲁木齐河源冰碛物的ESR测年研究.冰川冻土.2002,24(6):737‐743.
    赵成义,施枫芝,盛钰,等.近50a来新疆降水随海拔变化的区域分异特征.冰川冻土.2011,33(6):1203‐1213.
    张锐,郭召杰,张志诚,等.天山北麓晚新生代独山子‐安集海褶皱冲断带构造分析及其对河流改道的影响.新疆地质.2005,23(3):215‐219.
    张培震,邓起东,徐锡伟,等,1994.盲断裂、褶皱地震与新疆1906年玛纳斯地震.地震地质,16(3),193‐204.
    张培震,邓起东,杨晓平,等.天山北麓的冰水冲洪积地貌与新构造运动.活动断裂研究4,北京,地震出版社,1995,63‐78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700