用户名: 密码: 验证码:
大豆突变体库的初步构建及突变类型的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分析基因功能最有效的方法之一是利用突变体。通过比较突变体与其对照在特定环境条件下基因表达的差异可以获取基因功能的重要信息。构建大豆的突变体库,集中各种变异性状,选育和创造近等基因系可以为基因功能的分析提供材料。
     本研究通过对12个大豆品种进行~(60)Co γ射线诱变,主要从品质、耐盐性、农艺性状等方面鉴定和筛选突变体。
     1、通过对3000份大豆辐射M_3代家系蛋白质含量和油份含量的测定和分析,筛选出了大豆高蛋白和低蛋白含量、高油分和低油分含量的家系各200份,方差分析表明,这些家系的蛋白质或油份含量与对照相比差异显著。
     2、对筛选出的200份蛋白质含量或油份含量发生变异的M_3代家系,扩繁至M_4代,并进行鉴定。结果表明:M_4代家系中的蛋白质含量或油份含量与对照相比差异显著,与对应M_3代家系的蛋白质含量和油份含量均达到显著相关的水平。
     3、对五个M_4代辐射材料中的最高蛋白质含量和最低蛋白质含量的家系并结合其相应的对照品种,用200对引物进行SSR分子标记筛选,结果筛选出了两个可能与之相关的标记:Satt031和Satt055。
     4、通过SDS-PAGE电泳,从600份M_4代家系中筛选出了一个11S/7S值为2.8的高比值家系,其对照为南农88-31。此家系的凝胶电泳图谱中出现了7S的亚基条带变浅,11S亚基条带加深现象,从而提高了11S/7S比值,为品质育种提供了新的基因型,并且为控制蛋白质亚基含量的基因功能研究提供了新的研究材料。另外,相关分析结果表明,11S和7S之间具有负相关的关系,与文献报道相一致。
     5、对鉴定出的11S/7S突变体进行SSR标记分析。结果在200对引物中筛选出了一个可能与之相关的标记:Satt193。
     6、在不同浓度NaCl胁迫下,通过不同家系在发芽率、发芽指数、盐害指数、叶片相对电导率、叶绿素等方面的差异筛选出了与耐盐品种Lee68的耐盐性相近的家系12个,耐盐性明显地高于Lee68的家系四个:T30682、T30014、T30935和T4110。
     7、在农艺性状方面发现的突变种质主要为:芽黄、花色变异、茸毛色、结荚习性、株高、不育性等几个方面。
     总之,本研究初步构建了如下突变体库。
     在品质方面的突变有:蛋白质含量变异的家系200份(高蛋白和低蛋白各100份),油份含量变异的家系200份(高、低油份各100份),其中,蛋白质含量超过46%的
    
    大豆突变体库的构建及突变类型的鉴定
    家系32份,油分含蚤超过22%的家系5份.在115/7S值突变方面,其llsns值不
    低于2.5的家系3份.
     在耐盐性方面的突变有:杭盐的家系(较之Lee68)17份.其中,抗盐性比Lee68
    (国际公认耐盐品种)高的家系4份,耐盐性与Lee68相似的家系12份;盐歌感的
    家系5份.
     在农艺性状方面:叶形突变21株,叶绿素缺失突变加株,育性的突变12株,
    来自于南农86一4;花色突变2株,来自于南春201;茸毛色突变20株,分别来自于
    88一31和菜豆1号;种脐色、感病性和结芙习性突变分别为5株、5株和12株,来自
    于88一3 1.
One of the most effective ways in functional genomics research is the application of mutants. By comparing mutants with the control(CK), it is possible to get knowledge of gene functions. Therefore, construction of mutant pools and collection of kinds of elite mutants are the basis fou functional genomics in soybean.
    In this study, soybean mutants were produced by irration of Y -ray of the isotope 60Co, and some of those were further characterized. The main results are as follows:
    1. By measuring of protein and oil contents of 3000 accessions of soybean mutants of the M3 lines, we selected 200 accessions respectively with higher and lower protein or oil contents than control. The variance analysis of irradiation effect showed the selected accessions had a significant difference compared to the control.
    2. Analysis of mutation in protein and oil contents of 400 accessions of M4 lines M3 lines showed that the contents of protein and oil in M4 were significantly different from those in control, and the correlation analysis indicated that the M4 lines significantly correlated with M3 both in protein and oil contents.
    3. In research for SSR markers linked with mutation for protein content, 15 templates were screened from five kinds of M4 lines with highest protein content, lowest protein and the control. And 200 random primers were applied to this research. Primers Satt031 and Satt055 found polymorphic bands.
    4. A study was carried on to select elite mutants rich in 11S globulin among 600 accessions of M4. Specific values of seed storage protein component 11S/7S were analyzed using SDS-PAGE. It was found that the range of the specific values was 0.8-2.8 in the mutants. Compared with the control(1.9), the difference is significant. And we obtained one material that had a specific value of 11S/7S with 2.8. And it could be considered as an excellent genotype for quality genetics and breeding.
    5. 200 SSR primers were applied to reveal genomic difference between the 11S/7S mutants(2.8) and the control(1.09). The result showed that only primer Satt193 revealed polymorphic bands between these two materials.
    6.Salt tolerance of 400 accessions in phases of seed germination and seedling screenned. The result of analysis showed that some of the accessions (10) had a similar tolerance in salt with Lee68. Even, T30682 and T4110 were more tolerant than Lee68.
    In conclusion, we constructed main mutant pools as follows:
    For the quality of soybean, we obtained 400 accessions of higher and lower protein and oil contents. And we also selected 12 salt-tolerant and 5 salt-sensitive accessions of M3 lines compared with Lee68. For agromomic characters, we identified 21 mutants in shape of leaf, 5 with absense of chlorophyl 1 and 12 fertility mutants.
引文
1.柏峰等,1999,玉米DNA导入小麦获得矮杆优质和早熟2个新品系[J],作物学报,25(2):261-264
    2.包劲松,李载龙,1996,花粉管通道导入外源DNA技术[J],浙江农业科学,(1):47-50
    3.常汝镇等,1994,盐对大豆农艺性状及籽粒品质的影响[J],大豆科学,13(2):101-105
    4.陈建南等,1985,半野生大豆7S贮藏蛋白的提取及某些特性的研究,大豆科学,4(1):35-42
    5.陈绍江等,1994,大豆贮藏蛋白氨基酸组成与遗传密码的相关性研究,东北农业大学学报,25(2):105-109
    6.陈一舞等,1994,盐胁迫下大豆超氧物歧化酶的变化[J],作物学报,20(3):363-367
    7.陈一舞等,1997,盐胁迫对大豆幼苗子叶各细胞器超氧化物歧化酶(SOD)的影响[J],作物学报,23(1):1-6
    8.陈云昭等,1995,Ca对离体筛选耐盐大豆再生植株的影响,山西农业大学学报,15(3):217-220
    9.初庆刚,曹玉芳等,1998,平流层辐射SP3谷子雄性细胞发育的研究,核农学报,12(2):1-6
    10.崔正飞,1999,植物基因多态性分析[J],植物学报,(3):4
    11.刁丰秋等,1997,盐胁迫对大麦叶片类囊体膜脂组成和功能的影响,植物生理学报,23(2):105-110
    12.龚明,刘友良,丁念诚等,1994,大麦不同生育期的耐盐性差异[J],西北植物学报,14(1):1-7
    13.郭蓓,邱丽娟,邵桂花等,2000,大豆耐盐基因的PCR标记[J],中国农业科学,33(1):10-16
    14.郭明学,1985,大豆多小叶基因突变系的研究,北京:原子能农业应用,(增):142-143
    15.韩天富等,2000,美国大豆科研和生产的新动向,国外动态,(2):26-28
    16.何飞,1997,细菌基因突变分型技术[J],微生物学报,(15):64
    17.胡志昂等,1986,栽培大豆和野生大豆种子蛋白的变异,大豆科学,5(3):205-20
    18.贾林贵,辜义芳等,1999,γ辐照与赤霉素复合处理育成小麦新品种西辐九号,核农学报,13(2):65-69
    19.贾林贵等,1993,利用慢照射育成小麦新品种西辐七号,核农学通报,14(2):58-60
    20.贾盘兴,蔡金科,微生物遗传实验技术[M],北京:科学出版社,1992,102
    21.蒋兴村,李金国等,1991,“8885”返地卫星搭载对水稻遗传性的影响,科学通报,36(23):1820-1824
    22.金东淳等,1996,大豆籽粒7S球蛋白变异品系蛋白质氨基酸组分的相关分析,第十一届全国大豆科研生产座谈会资料
    23.金哲等,1986,非真空脉冲电子束与平阳霉素复合处理对豌豆的损伤效应,吉林农大学报,3(4):12-15
    
    
    24.雷勃钧等,1984,大豆属贮存蛋白的研究Ⅰ-大豆及某些野生类型大豆球蛋白构成的比较,大豆科学,3(1):36-39
    25.李春兰等,1988,咖啡因前处理与后处理对小麦种子M_1代辐射损伤修复抑制效应的比较,核农学通报,9(1):15-16
    26.李春秋,1998,~(61)Coγ射线慢照射处理玉米自交系MO17不同生育时期的活体植株及其诱变效果的研究,黑龙江八一农垦大学学报,10(3):20-24
    27.李弘剑,2000,基因随机突变的研究方法[J],遗传,(22):96-100
    28.林鸿宣等,1998,应用分子标记检测水稻耐盐性的QTL[J],中国水稻科学,12(2):72-78
    29.刘家尧等,1998,盐胁迫对不同抗盐性小麦叶片荧光诱导动力学的影响,植物学通报,15(2):46-49
    30.刘谭主编,1985,细菌突变株筛选[M],北京:人民卫生出版社,323
    31.刘云英,周晋,李维琦,1996,新疆大赖草DNA导入小麦后代种子醇溶蛋白的分析[J],新疆农业科学,3:102-104
    32.刘祖祺,张石城主编,1993,植物抗性生理学[M],北京:中国农业出版社,278
    33.陆庆国,1998,基因突变分析[J],国外医学遗传学,(21):5
    34.吕秀珍等,1983,~(60)Co射线照射大豆风干种子当代贮藏效应的研究,北京:原子能农业应用,4:15-19
    35.马传喜,吴兆苏,1993,我国主要冬小麦推广品种的高分子量麦谷蛋白亚基变异分析[J],20(4):298-302
    36.马淑时,王伟,1994,大豆品种资源的抗盐碱性研究[J],吉林农业科学,4:69-71
    37.马向东等,2002,基因体外诱变,微生物学通报,29(1):70-73
    38.毛达如主编,1994,植株营养研究方法[J],北京:北京农业大学出版社,17
    39.庞伯良,万贤国,1998,核农学报,γ射线与激光复合处理对水稻的诱变效果及其应用,12(1):12-15
    40.彭贵洪,马忠,薛宇鸣等,1997,尿激酶变体Glu154-mtcu-PA的构建及其性质研究[J],生物化学与生物物理学报,29(6):547-552
    41.朴铁夫等,1998,平阳霉素对小麦诱变效应的研究,核农学报,2(3):139-14
    42.桑建利,王玉秀,朱至清,1992,小麦体细胞无性系种子醇溶蛋白和谷蛋白的变异[J],植物学报,34(11):845-849
    43.邵桂花,1987,大豆种质资源耐盐性田间鉴定方法[J],作物杂志,(3):36-37
    44.邵桂花等,1986,大豆种质资源耐盐性鉴定初报[J],中国农业科学,(6):30-34
    45.邵桂花等,1993,大豆耐盐性研究进展[J],大豆科学,12(3):244-248
    46.邵桂花等,1994,大豆萌发期耐盐生理初步研究[J],作物杂志,(6):25-27
    47.邵桂花等,1994,大豆耐盐性遗传的研究[J],作物学报,20(6):721-726
    48.沈光平等,1984,平阳霉素三种成分诱发染色体畸变的研究,遗传学报,11(2):109-112
    49.盛祖嘉,微生物遗传学[M],第二版,北京:科学出版社,1987
    
    
    50.王宝山,赵可夫,1995,小麦叶片中Na~+、K~+提取方法的比较[J],植物生理学通讯,31(1):50-52
    51.王宏达,1999,细菌被膜抗药作用[J],微生物学报,(2):4
    52.王琳清,1985,我国植物突变育种的发展和成就,原子能农业应用,增刊:7-14
    53.王琳清,1992,辐射诱变改良作物的综合技术及应用,科技导报,11:24-26
    54.王琳清等,1995,诱发突变与作物改良,北京:原子能出版社,
    55.王培英等,γ射线幅照大豆花期植株的诱变效应,核农学报,1986,(增):210-214
    56.王平荣,邓晓建,2001,分子标记及其在作物遗传育种研究中的应用,种子,(3):83-86
    57.王树林,雷勃钧,钱华,1989,快速提取大豆DNA的方法[J],中国油料,(2):63-65
    58.王以光等,2000,国外耐药性基因情况及战胜途径[J],国外医药,(21):3
    59.王义琼等,“辽豆3号”大豆新品种选育报告,北京:原子能应用,1980(增)23-28
    60.王中仁编,1996,植物等位酶分析,北京:科学出版社,69-73
    61.翁秀英等,1980,大豆辐射育种研究,北京:原子能农业应用,3:1-6
    62.吴谡琦等,2001,分子标记技术的进展及其应用,高技术通讯,(4):99-103
    63.夏英武等,1997,平阳霉素对水稻诱变效应的研究,核农学报,11(1):26-30
    64.谢承陶等,1993,盐渍土改良原理与作物抗性[M],北京:中国农业科技出版社,56
    65.徐豹等,1990,野生大豆种子贮藏蛋白组份11S/7S的研究,作物学报,16(3):235-241
    66.徐冠仁等,1996,植物诱交育种学,北京:中国农业出版杜,23
    67.徐云岭,余叔文,1990,植物适应盐逆境过程中的能量消耗[J],植物生理学通讯,(6):70-73
    68.许显滨等,1991,大豆品种11S A5端球蛋白与豆腐加工特性的研究,大豆科学,10(3):250
    69.许耀奎,1991,作物诱变育种的回顾与展望,作物研究,5(4):1-7
    70.薛柏等,2000,~(60)Coγ射线照射大豆植株的诱变效果,大豆科学,19(2):150-153
    71.杨琳,王金发,植物基因工程中的转座子标签[J].生物技术,2000(1):40-48
    72.杨岐生编著,1998,分子生物学基础[M],浙江:浙江大学出版社,195
    73.杨庆凯,2000,论大豆蛋白质与油分含量品质的变化及影响的因素,大豆科学,19(4):386-391
    74.伊虎英等,1993,微波处理提高γ射线辐照小麦诱变效率的探讨,核农学通报,14(5):213-216
    75.原亚萍等,1993,平阳霉素对大豆诱变效应的研究,作物学报,19(1):7-16
    76.张驰,陈受宜,1995,利用DDRT-PCR技术分析在盐胁迫下水稻耐盐突变体中特异表达的基因[J],中国科学,25(8):840-847
    77.张耕耘等,九个水稻耐盐突变体的RFLP分析[J],植物学报,1994,36(5):345-350
    78.张浩等,定点突变技术的研究进展,免疫学杂志,2000,16(4):108-110
    79.张立荣等,2002,SSR和ISSR分子标记及其在植物遗传育种研究中的应用,河北农业大学学报,25(1):90-94
    80.张士功等,1999,水杨酸和阿斯匹林对盐胁迫下小麦种子萌发的作用,植物生理学通讯,35(1):29-32
    81.张性坦等,1997,超高产大豆(诱处4号的某些特性研究,作物学报,23(3):296-300
    
    
    82.赵经荣等,1986,夏大豆辐射诱变类型与频率的研究,大豆科学,5(1):1-10
    83.赵可夫,李法曾主编,1999,中国盐生植物,北京:科学出版社
    84.赵丽梅等,1990,平阳霉素对大麦诱变效应,核农学报,4(4):199-205
    85.郑云兰,李霞辉主编,1991,大豆营养分析技术,黑龙江科学技术出版社
    86.诸葛键,工业微生物实验技术手册[M],长沙:湖南科技出版社,1994,611-625
    87. 山田, 1984.Induced Mutation in crop Breeding Tokyo.Intemal.symp.Gen.Manipul Crops, 43
    88. Abdel TFMet al., 1997. Molecular markers for salt tolerance in some inbreds of maize (ZeamaysL) .Arab Uni-versities Journal of Agricultural Sciences, 5 (2): 389-417
    89. Abel GH., 1964. Salt tolerance of soybean varieties during germination and later growth. Crop Science, 4:157-160
    90. Abel GH., 1969. Inheritance of the capacity for chloridein clusion and chlorideex clusion by soybeans. Crop Science, 9 (6): 697-698
    91. Alfons Gireland Heinz, Saedler, Plant transposable elements and gene tagging[J].Plant Mol. Biol,, 1992, 19, 39~49
    92. Boulter D., 1981. Biochemistry of storage protein synthesis and deposition in the developing legume seed. Advances in Botanical Research, 9:1-31
    93. Boyer JS., 1982. Plant productivity and environment. Sci., 218:443-448
    94. Chasan R, 1995. GA biosynthesis: A glimgse at the genes. Plant cell, 7:141
    95. Chin H G, Choe M S, Lee S H, 1999. Molecular analysis of rice plants harboring an Ac/Ds transposable elemant mediated gene trapping system, Plant Journal, 19 (5): 615-623
    96. De mucia G, 1990. Poly (ADP-ribose) polymerase, a zinc finger protein which specially recognizes a single-strand break on DNA. Int J Radiat Biol, 57 (6): 1271
    97. Enoki H., Izama T., Kawahara M et al., 1999.Ac as a tool for the functional genomies of rice, The plant Journal, 19 (5): 605-613
    98. Falk A, Feys B J, Frost L N et al., 1999. EDS1, an essential component of R-gene mediated disease resistance in Arabidopsis has homology to eukaryotic lipasese, Proc. Natl. Acad. Sci. USA, 96 (6):3292-3297
    99. FedoroffN V, Furtek D B et al., 1984. Cloning of the bronze locus in maize by a simple and gene ralizable processing using the transposable controlling element activator (Ac), Proc. Natl. Acad. Sci. USA, 81:3825
    100. Fletchermc et al., 1998. Creation ofa ribonuclease abzyme through site-directed rautagenesis [J]. NatBiotechnol, 16 (11): 1065-1067
    101. Foolad MR et al., 1997. Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Molecular Breeding, 3 (4): 269-277
    102. Gai X, Lai S et al., 2000. Gene discovery using the maize genome database ZmDB, Nucleic Acids Res., 28 (1): 94-96
    103. Guo Pei et al., 1998. A RAPD marker linked to the salt tolerant genein soybean [J]. Soybean
    
    Genetics Newsletter, 25:30-31
    104. Hamada H., Kakunaga T., 1982. Potential Z-DNA forming sequences are highly dispersed in the human genome, nature, 298:396-398
    105. Izawa T., Miyazaki C., Yamamoto M. et al., 1997.Transposon tagging in rice, Plant Mol Biol., 35: 219-229
    106. Kieber JJ, Rothenberg M, Roman G et al., 1993. CTR1, a negative regulator of the ethylene response pathway in encodes a member of the Raf family of protein kinases. Cell, 72:427
    107. Kitamura K., 1993. Trends in Food Science and Technology.Theor. Appl. Genet., 4:258
    108. Klimynk V I et al., 1999. A Chromodomain protein encoded by the arabidopsis CAO gene is a plant specific component of the chloroplast signal recognition particle path way that is involved in LHCP targeting, The Plant Cell, 11 (1): 87-100
    109. Konom, Miyazakig et al. 1998. Site-directed mutagenesis in hemoglobin: attempts to control the oxygen affinity with cooperativity preserved [J]. Protein Eng., 11(3):199-204
    110. Kunkel TA., 1985. Rapid and efficient site-specific mutagenesis without phenotypic selectior [J]. Proc Natl. Acad. Sci. USA, 82 (2): 488-492
    111. Larkins B.A., 1983. Genetic engineering of seed storage proteins. Genetic Engineering of Plants, 93-111
    112. Mano Y. et al., 1997. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.) . Euphytica, 94 (3): 263-272
    113. Marrs EV., 1985. Crop tolerance to saline spfinlding water. Plant Soil, 89:273-284
    114. Marshak DR., Kadoraga JT.et al., 1996. Strategies for Protein Purification and Characterization : A Laboratory Course Manual. Cold Spring Harbor Laboratory Press
    115. Metakorsky EV., Akhrnedov MG., 1987. Genetic analysis of gliadin-encoding genes reveals gene clusters as well as single remote genes [J]. Theor. Appl.Genet., 73: 278-285
    116. Michelmore RW et al., 1991. Identification of marker slinked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations [J], Proc. Natl. A-cad. Sci. USA., 88:9828-9832
    117. Millis foloona et al., 1986. Specific enzyme Matica amplification of DNA in vito: The polymerize chain reaction. Cold Spring Harbor Sy.Mp.Quant.Bio., 51 : 263
    118. Mukhop, Roykb., 1998. Protein engineering of Barn HI restriction endonuclease: replacement of Cys54 by Ala enhances catalytic activity [J]. Protein Eng., 11 (10): 931-935
    119. Payne PI, Tackson EA., 1984. Genetic linkage between endosperm storage protein genes on each of the short arms of chromosomes 1 Aand 1 Binwheat [J]. Theor. Appl.Genet., (6): 235-243
    120. Payne PI., Lawrence GJ., 1983. Catalogueo fallelos for the Complexgeneloci, Glu-A, Glu-DI, which code for high-molecular-weignt subunits of gluteninin hexaploid wheat [J]. Cereal Res Commun., 11:29-35
    121. Phinney BO., 1984. Giberellin A1 dwarfism and the control of shoot elongation in higher plants. In Crozier A, Hillman JR (eds) . The Biosynthesis and Metabolism of Plant Hormones. Cambridge:
    
    Cambridgee University Press, 17
    122. Raffaella G, Ouwerkerk P et al., 1999., Fuctional genomics with transpesons in rice, Present at general meeting of the international program on rice biotechnology, Tailand
    123. Shewry PR, Halford NG, 1992. High molecular Weight Subunits of wheat glutenin [J]. Cereal Sci., 15: 105-120
    124. Shimamoto K, Miyazaki C et al., 1993.Trans-activation and stable integration of the maize transposable element Ds co-transfected with Ac transposase gene in transgenic rice plants, Mol. Gen Genet, 239:354-360
    125. Stiefel V, Becerra E L at el., 1992. TM20, a gene coding for a new class of transmembrane proteins expressed in the meristematic tissues of maize, J Biol. Chem., 274 (39): 27734-27739
    126. Takagi, Y., 1986.Mutation breeding in Leguminous crop plants, Gamma Field Symposia, 25:73-85
    127. Wanea, Paklka., 1998. Mutual stabilization of VL and VH in single-chain antibody fragments, investigated with mutants engineered for stability[J]. Bioche-mistry, 37 (38): 13120-13127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700