用户名: 密码: 验证码:
原儿茶酸对脂肪干细胞体外增殖和迁移的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间充质干细胞移植对缺血缺氧性和神经退行性等中枢神经系统疾病的治疗发挥了积极的作用。研究发现,移植入体内的间充质干细胞可以向病变部位迁移,并可在局部微环境的诱导下向组织损伤修复所急需的组织细胞分化,还可以分泌多种细胞因子,通过旁分泌的作用对受损组织发挥营养和保护作用。但是,移植后向病变部位迁移的间充质干细胞的比例较低,在一定程度上限制了细胞移植的作用。因此,在间充质干细胞移植的同时,应用药物等辅助手段促进细胞的迁移和增殖,提高病变局部的移植细胞数量,有可能提高细胞移植的治疗效果。
     在具有神经保护作用的药物中,中药活性单体成分单一、结构明确、易于其作用机制的深入分析。在这些单体中找到具有促进间充质干细胞增殖和迁移作用的成分,辅助应用于中枢神经系统疾病的间充质干细胞移植治疗,可以在提高病变部位移植细胞数量的同时,发挥其对受损神经的保护作用,从而提高疾病治疗的综合效果。但是,具有神经保护作用的中药活性单体成分对间充质干细胞增殖和迁移的影响的研究尚未见报道。因此,在前期筛选工作的基础上,本文深入研究了具有神经保护作用的中药活性单体—原儿茶酸,对人脂肪干细胞体外增殖能力和体外迁移能力的影响,并对其相关机制进行了初步的探讨。
     原儿茶酸处理后,人脂肪干细胞的形态没有显著变化,而且仍表达细胞表面抗原标志CD29、CD13和CD44,不表达CD34、CD45和HLADR。各表面抗原标记的表达量与对照组相比没有显著差异:经体外诱导分化实验证明,原儿茶酸处理后,人脂肪干细胞向成骨细胞、脂肪细胞、心肌细胞和神经细胞分化的能力没有显著变化;酶联免疫吸附实验结果显示,原儿茶酸处理没有影响人脂肪干细胞细胞因子IL-6和生长因子IGF-Ⅰ的分泌能力。因此,原儿茶酸处理后,人脂肪干细胞仍保持其多向分化潜能、细胞因子和生长因子分泌等生物学特性。
     应用WST-8法检测了原儿茶酸对人脂肪干细胞的体外增殖的影响,发现原儿茶酸能够促进人脂肪干细胞的体外增殖能力,其作用呈现明显的剂量依赖性。0.5 mM,1.0mM和1.5 mM的原儿茶酸处理48小时后,人脂肪干细胞增殖能力分别提高51%,78%和103%。原儿茶酸发挥作用的最小浓度为0.5 mM,适宜浓度为1.5 mM。同时,1.5 mM原儿茶酸对人脂肪干细胞的体外增殖的促进作用呈现明显的时间依赖性,其发挥作用的最短时间是24小时,使细胞增殖能力提高66%;适宜作用时间是96小时,提高细胞增殖能力124%。此外,原儿茶酸对人脂肪干细胞的细胞凋亡没有明显的影响。
     进一步通过DNA含量的检测分析了原儿茶酸对人脂肪干细胞细胞周期的影响,发现原儿茶酸能够促进人脂肪干细胞的细胞周期G0/G1期向S期的转换。在0.5 mM-1.5mM的浓度范围内,人脂肪干细胞的S期和G2/M期的细胞所占比例随原儿茶酸浓度的增加而呈明显上升趋势,处于G0/G1期的细胞所占比例随原儿茶酸浓度的增加呈相应的下降趋势。其中,1.5 mM原儿茶酸的作用最为明显,使S期细胞比例增加2倍。免疫蛋白印迹检测发现,原儿茶酸处理明显提高了细胞周期素D1的蛋白水平。为了进一步证明原儿茶酸对脂肪干细胞体外增殖的促进作用是否与细胞周期素D1蛋白表达的变化有关,本文应用RNA干扰技术对人脂肪干细胞的细胞周期素D1进行了转录后水平的基因沉默,结果显示,细胞周期素D1的siRNA干扰使原儿茶酸处理组人脂肪干细胞的体外增殖下降45%,与对照组细胞体外增殖的下降比例(26%)相比具有显著性差异,表明细胞周期素D1的siRNA干扰显著抑制了原儿茶酸对人脂肪干细胞体外增殖的促进作用,证实原儿茶酸通过对细胞周期素D1表达的调控促进了人脂肪干细胞的体外增殖能力。
     应用明胶包被的双层细胞培养板,观察原儿茶酸对人脂肪干细胞体外迁移能力的影响。在0.5 mM-1.8 mM的浓度范围内,原儿茶酸处理人脂肪干细胞48小时能够显著提高其体外迁移能力,其作用呈现明显的剂量依赖性。0.5 mM,1.0 mM和1.5 mM的原儿茶酸处理的细胞迁移率分别提高35%,63%和82%。0.5 mM原儿茶酸是发挥其促进迁移作用的最小浓度,原儿茶酸发挥最大作用的浓度是1.5 mM。同时,原儿茶酸促进人脂肪干细胞迁移的作用具有时间依赖性。在1.5 mM原儿茶酸的作用下,细胞迁移能力显著提高的最短作用时间是24小时,适宜作用时间是48小时。
     应用RT-PCR和荧光定量PCR分析发现,原儿茶酸处理能够使人脂肪干细胞膜型基质金属蛋白酶-1(MT1-MMP)的表达升高45%。明胶酶谱法分析人脂肪干细胞分泌的基质金属蛋白酶-2(MMP-2)的活性变化的结果显示,原儿茶酸对人脂肪干细胞分泌的MMP-2的总量没有明显影响,但是显著促进了MMP-2的活化,使活性型MMP-2增加至对照组的2倍左右。进一步应用MT1-MMP和MMP-2抗体进行阻断实验,分析MT1-MMP和MMP-2在原儿茶酸促进人脂肪干细胞体外迁移中的作用。结果显示,MT1-MMP和MMP-2抗体有效抑制了人脂肪干细胞的体外迁移能力,两种抗体分别使原儿茶酸对人脂肪干细胞迁移的促进作用从182%下降至60%和75%。证实原儿茶酸通过对MT1-MMP的表达和MMP-2酶原的活化的调控,调节人脂肪干细胞的迁移能力。
     原儿茶酸能够提高人脂肪干细胞的迁移能力和增殖能力,因而有可能通过提高损伤组织局部的人脂肪干细胞的数量而提高移植的治疗效果。因此,原儿茶酸有可能在脂肪干细胞移植的辅助治疗中发挥重要作用。
Mesenchymal stem cells(MSCs) transplantation plays an important role in hypoxic-ischemic encephalopathy and neurodegenerative diseases.It has been reported that exogenous transplanted MSCs could migrate to the impaired sites,differentiate into the tissue-specific cells under the induction of local microenviroment,and secrete growth factors and trophic factors to protect the injured cells,thereby promote the restoration of the biological functions.However,the migration ratio of transplanted stem cells is usually low. Therefore,finding suitable pharmaceuticals for facilitating the proliferation and migration of MSCs could contribute to the development of cell therapy strategies.
     There are many active ingredients in Chinese medicines with neuroprotective effect.If suitable pharmaceuticals for facilitating the migration and proliferation of transplanted stem cells are found from them,and used for hypoxic-ischemic encephalopathy and neurodegenerative diseases,combined with stem cell therapy,the therapeutic efficacy of these diseases will be improved.On the basis of screening research,we found that protocatechuic acid(PCA) from Alpinia(A.) oxyphylla could promote the proliferation of hADSCs in vitro.
     The identification of PCA-treated hADSCs and control cells revealed that after PCA treatment,the morphology of hADSCs showed no obvious difference with control cells.Flow cytometric analysis of the cell surface antigens,osteogenic induction,adipogenic induction, cardiomyocyte-like cell induction and neural induction demonstrated that hADSCs retained their functional characteristics of multipotential mesenchymal progenitors after PCA treatment.Enzyme-linked immunosorbent assay showed that the capacity for the secretion of IL-6 and IGF-Ⅰof PCA-treated hADSCs was the same with control cells.
     PCA could promote the proliferation capacity of hADSCs in vitro.The results of cell counts showed that the treatment of hADSCs with PCA for 48 h increased the cell number in a dose-dependent manner.0.5 mM PCA was the minimal dose to stimulate the proliferation enhancement of hADSCs,while the maximum effect of PCA appeared at the concentration of 1.5 mM.In addition,the cell number of hADSCs treated with 1.5 mM PCA at various time points increased in a time-dependent manner.The shortest treatment time for the promotion of hADSCs proliferation was observed at 24 hours,but the most effective time was at about 72 hours.
     The flow cytometric analysis of DNA content demonstrated the cell cycle progressed from the G0/G1 phase to the S phase and the most pronounced effect was seen with 1.5 mM PCA,where the fraction of cells in S phase increased more than 2 folds,accompanied by a significant increase in the fraction of cells in G2/M phase and a significant decrease in the fraction of cells in G0/G1 phase.Western blot analysis revealed the elevated expression of cyclin D1 in hADSCs induced by 1.5 mM PCA treatment.Cyclin D1-siRNA transfection significantly inhibited the promotion of cell proliferation by PCA.These results suggest that PCA from A.oxyphylla promote the proliferation of hADSCs in vitro,which is partially due to the increased expression of cyclin D1.
     PCA could also promote the migration capacity of hADSCs through transwell coated with gelatin in vitro.The migration of hADSCs significantly increased in a dose-dependent manner in the presence of PCA for 48 h,compared with the control.0.5 mM PCA was the minimal dose to stimulate the migration of hADSCs,while the maximum effect of PCA appeared at the concentration of 1.5 mM.In addition,the migration ratio of hADSCs treated with 1.5 mM PCA at various time points increased in a time-dependent manner.The shortest treatment time for the promotion of hADSCs migration was observed at 24 h,but the most effective time was at 48 h.
     Meanwhile,RT-PCR and quantitative RT-PCR analysis revealed the elevation of membrane-type matrix metalloproteinase-1(MT1-MMP) mRNA expression in 1.5 mM PCA-treated hADSCs.In the supernatants of these cells,the active matrix metalloproteinase-2 (MMP-2) increased compared with control cells with zymography.Moreover,the promotion of cell migration by PCA could be effectively and obviously inhibited by anti-MT1-MMP or anti-MMP-2 antibodies.These results suggest that PCA from A.oxyphylla promote the migration of hADSCs in vitro,which is partially due to the increased expression of MT1-MMP and the promotion of MMP-2 zymogen activation.
     The migration and proliferative enhancement of hADSCs with PCA suggests the possibility that PCA may be useful in hADSCs-mediated therapy.
引文
[1] Dicker A, Le Blanc K, Astrom G et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res, 2005, 308(2) :283-290.
    
    [2] Lee R H, Kim B, Choi I et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem, 2004, 14(4-6): 311-324.
    [3] Xu Y, Malladi P, Wagner D R et al. Adipose-derived mesenchymal cells as a potential cell source for skeletal regeneration. Curr Opin Mol Ther, 2005, 7(4):300-305.
    [4] Zuk P A, Zhu M, Mizuno H et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001, 7(2) :211-228.
    [5] Li Y, Chopp M, Chen J et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab, 2000, 20(9):1311-1319.
    [6] Li Y, Chen J, Wang L et al. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology, 2001, 56(12):1666-1672.
    [7] Prockop D J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997, 276(5309): 71-74.
    [8] Friedenstein A J, Gorskaja J F, Kulagina N N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol, 1976, 4(5):267-274.
    [9] Ashton B A, Allen T D, Howlett C R et al. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop Relat Res, 1980, (151):294-307.
    [10] Bab I, Ashton B A, Gazit D et al. Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo. J Cell Sci, 1986, 84:139-151.
    
    [11] Castro-Malaspina H, Gay R E, Resnick G et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood, 1980, 56(2): 289-301.
    
    [12] Baddoo M, Hill K, Wilkinson R et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem, 2003, 89(6): 1235-1249.
    [13] Jones E A, Kinsey S E, English A et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum, 2002, 46(12):3349-3360.
    [14] Campagnoli C, Roberts I A, Kumar S et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 2001, 98(8):2396-2402.
    [15] in' tAnker P S, Scherjon S A, Kleijburg-van der Keur C et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003, 102(4):1548-1549.
    [16] Nakahara H, Dennis J E, Bruder S P et al. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res, 1991, 195(2): 492-503.
    [17] Zuk P A, Zhu M, Ashjian P et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002, 13(12):4279-4295.
    [18] Javazon E H, Beggs K J, Flake A W. Mesenchymal stem cells: paradoxes of passaging. Exp Hematol, 2004, 32(5):414-425.
    [19] Boiret N, Rapatel C, Veyrat-Masson R et al. Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp Hematol, 2005, 33(2): 219-225.
    [20] Gronthos S, Zannettino A C, Hay S J et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci, 2003, 116(Pt 9):1827-1835.
    [21] Mitchell J B, McIntosh K, Zvonic S et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 2006, 24(2):376-385.
    [22] Conget P A, Minguell J J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999, 181(1):67-73.
    [23] Galmiche M C, Koteliansky V E, Briere J et al. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood, 1993, 82(1):66-76.
    [24] Haynesworth S E, Baber M A, Caplan A I. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone, 1992, 13(1):69—80.
    [25] Le Blanc K, Tammik C, Rosendahl K et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol, 2003, 31(10):890-896.
    [26] Pittenger M F, Mackay A M, Beck S C et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411):143-147.
    [27] Sordi V, Malosio M L, Marchesi F et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 2005, 106(2):419-427.
    [28] Le Blanc K, Ringden O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant, 2005, 11(5):321-334.
    [29] Deans R J, Moseley A B. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol, 2000, 28(8):875-884.
    [30] Gotherstrom C, Ringden O, Tammik C et al. Immunologic properties of human fetal mesenchymal stem cells. Am J Obstet Gynecol, 2004, 190(1):239-245.
    [31] Friedman MS, Long M W, Hankenson K D. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J Cell Biochem, 2006, 98(3):538-554.
    [32] Noel D, Gazit D, Bouquet C et al. Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells, 2004, 22(1): 74-85.
    [33] Vidal M A, Kilroy G E, Lopez M J et al. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg, 2007, 36(7):613-622.
    [34] Lennon D P, Edmison J M, Caplan A I. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol, 2001, 187(3):345-355.
    [35] Digirolamo C M, Stokes D, Colter D et al. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol, 1999, 107(2): 275-281.
    [36] Woodbury D, Schwarz E J, Prockop D J et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000, 61(4):364-370.
    [37] Bertani N, Malatesta P, Volpi G et al. Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray. J Cell Sci, 2005, 118(Pt 17):3925-3936.
    [38] Lu P, Blesch A, Tuszynski M H. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res, 2004, 77 (2): 174-191.
    [39] Neuhuber B, GalloG, Howard L et al. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res, 2004, 77(2):192-204.
    [40] Bossolasco P, Cova L, Calzarossa C et al. Neuro-glial differentiation of human bone marrow stem cells in vitro. Exp Neurol, 2005, 193(2):312-325.
    [41] Wislet-Gendebien S, Hans G, Leprince P et al. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells, 2005, 23(3): 392-402.
    [42] Makino S, Fukuda K, Miyoshi S et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest, 1999, 103(5):697-705.
    [43] Li X, Yu X, Lin Q et al. Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol, 2007, 42(2):295-303.
    [44] Crigler L, Robey R C, Asawachaicharn A et al. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol, 2006, 198(1):54-64.
    [45] Kopen G C, Prockop D J, Phinney D G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A, 1999, 96(19):10711-10716.
    [46] Miyahara Y, Nagaya N, Kataoka M et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med, 2006, 12(4):459-465.
    [47] Strem B M, Zhu M, Alfonso Z et al. Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy, 2005, 7(3): 282-291.
    [48] Assmus B, Schachinger V, Teupe C et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation, 2002, 106(24):3009-3017.
    [49] Schachinger V, Assmus B, Britten M B et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol, 2004, 44(8):1690-1699.
    [50] Freyman T, Polin G, Osman H et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J, 2006, 27(9):1114-1122.
    [51] Fuchs S, Kornowski R, Weisz G et al. Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. Am J Cardiol, 2006, 97(6):823-829.
    [52] Fuchs S, Satler L F, Kornowski R et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol, 2003, 41(10):1721-1724.
    [53] Barbash I M, Chouraqui P, Baron J et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation, 2003, 108(7):863-868.
    [54] Miranville A, Heeschen C, Sengenes C et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 2004, 110(3): 349-355.
    [55] Planat-Benard V, Silvestre J S, Cousin B et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 2004, 109(5):656-663.
    [56] Quarto R, Mastrogiacomo M, Cancedda R et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med, 2001, 344(5):385-386.
    [57] Satoh H, Kishi K, Tanaka T et al. Transplanted mesenchymal stem cells are effective for skin regeneration in acute cutaneous wounds. Cell Transplant, 2004, 13(4) :405-412.
    [58] Lee K, Majumdar M K, Buyaner D et al. Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol Ther, 2001, 3(6):857-866.
    [59] Lieberman J R, Le L Q, Wu L et al. Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res, 1998, 16(3):330-339.
    
    [60] Morgan D O. Principles of CDK regulation. Nature, 1995, 374(6518):131-134.
    [61] Pines J. Cyclins and cyclin-dependent kinases: theme and variations. Adv Cancer Res, 1995, 66:181-212.
    [62] Harper J W, Elledge S J, Keyomarsi K et al. Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell, 1995, 6(4):387-400.
    [63] Hengst L, Reed S I. Inhibitors of the Cip/Kip family. Curr Top Microbiol Immunol, 1998, 227:25-41.
    [64] Pan Z Q, Reardon J T, Li L et al. Inhibition of nucleotide excision repair by the cyclin-dependent kinase inhibitor p21. J Biol Chem, 1995, 270(37):22008-22016.
    [65] Lew D J, Kornbluth S. Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr Opin Cell Biol, 1996, 8(6):795-804.
    [66] Sherr C J, Roberts J M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev, 1995, 9(10):1149-1163.
    [67] Carnero A, Hannon G J. The INK4 family of CDK inhibitors. Curr Top Microbiol Immunol, 1998, 227:43-55.
    [68] Polyak K, Lee M H, Erdjument-Bromage H et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell, 1994, 78(1): 59-66.
    [69] Okamoto K, Beach D. Cyclin G is a transcriptional target of the p53 tumor suppressor protein. Embo J, 1994, 13(20):4816-4822.
    [70] Peng J, Marshall N F, Price D H. Identification of a cyclin subunit required for the function of Drosophila P-TEFb. J Biol Chem, 1998, 273(22):13855-13860.
    [71] Rickert P, Seghezzi W, Shanahan F et al. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene, 1996, 12(12):2631-2640.
    
    [72] King R W, Jackson P K, KirschnerMW. Mitosis in transition. Cell, 1994, 79(4):563-571.
    [73] Arellano M, Moreno S. Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem Cell Biol, 1997, 29(4):559-573.
    [74] Walker D H, Mailer J L. Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature, 1991, 354(6351):314-317.
    [75] Girard F, Strausfeld U, Fernandez A et al. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell, 1991, 67(6):1169-1179.
    [76] Molinari M. Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif, 2000, 33(5): 261-274.
    [77] Vermeulen K, Van Bockstaele D R, Berneman Z N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 2003, 36(3):131-149.
    [78] Oren M. Regulation of the p53 tumor suppressor protein. J Biol Chem, 1999, 274(51): 36031-36034.
    [79] Hartwell L H, Weinert T A. Checkpoints: controls that ensure the order of cell cycle events. Science, 1989, 246(4930):629-634.
    [80] Bartek J, Lukas J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol, 2001, 13(6):738-747.
    [81] Owen-Schaub L B, Zhang W, Cusack J C et al. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol, 1995, 15(6):3032-3040.
    [82] Cheng M, Sexl V, Sherr C J et al. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci U S A, 1998, 95(3):1091-1096.
    [83] Montagnoli A, Fiore F, Eytan E et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev, 1999, 13(9):1181-1189.
    [84] Ewen M E. The cell cycle and the retinoblastoma protein family. Cancer Metastasis Rev, 1994, 13(1): 45-66.
    [85] Weinberg R A. The retinoblastoma protein and cell cycle control. Cell, 1995, 81(3): 323-330.
    [86] Brehm A, Miska E A, McCance D J et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature, 1998, 391(6667):597-601.
    [87] Luo R X, Postigo A A, Dean D C. Rb interacts with histone deacetylase to repress transcription. Cell, 1998, 92(4):463-473.
    [88] Magnaghi-Jaulin L, Groisman R, Naguibneva I et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature, 1998, 391(6667) :601-605.
    [89] Zhang H S, Postigo A A, Dean D C. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by pl6INK4a, TGFbeta, and contact inhibition. Cell, 1999, 97(1):53-61.
    [90] Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev, 1998, 12(15):2245-2262.
    [91] Harbour J W, Luo R X, Dei Santi A et al. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell, 1999, 98(6):859-869.
    [92] Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res, 1996, 68:67-108.
    [93] Born T L, Frost J A, Schonthal A et al. c-Myc cooperates with activated Ras to induce the cdc2 promoter. Mol Cell Biol, 1994, 14(9):5710-5718.
    
    [94] Gottlieb T M, Oren M. p53 and apoptosis. Semin Cancer Biol, 1998, 8(5) :359-368.
    [95] Conzen S D, Gottlob K, Kandel E S et al. Induction of cell cycle progression and acceleration of apoptosis are two separable functions of c-Myc: transrepression correlates with acceleration of apoptosis. Mol Cell Biol, 2000, 20(16):6008-6018.
    [96] Vermeulen K, Strnad M, Havlicek L et al. Plant cytokinin analogues with inhibitory activity on cyclin-dependent kinases exert their antiproliferative effect through induction of apoptosis initiated by the mitochondrial pathway: determination by a multiparametric flow cytometric analysis. Exp Hematol, 2002, 30(10):1107—1114.
    [97] Kim Y H, Buchholz M A, Chrest F J et al. Up-regulation of c-myc induces the gene expression of the murine homologues of p34cdc2 and cyclin-dependent kinase-2 in T lymphocytes. J Immunol, 1994, 152(9):4328-4335.
    [98] Facchini L M, Penn L Z. The molecular role of Myc in growth and transformation: recent discoveries lead to new insights. Faseb J, 1998, 12(9):633—651.
    [99] Alvarez E, Northwood I C, Gonzalez F A et al. Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. J Biol Chem, 1991, 266(23):15277-15285.
    [100]Arguello F, Alexander M, Sterry J A et al. Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity In vivo against human leukemia and lymphoma xenografts. Blood, 1998, 91(7):2482-2490.
    [101]Beier R, Burgin A, Kiermaier A et al. Induction of cyclin E-cdk2 kinase activity, E2F-dependent transcription and cell growth by Myc are genetically separable events. Embo J, 2000, 19(21):5813-5823.
    [102]Byrd J C, Shinn C, Waselenko J K et al. Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of caspase-3 without evidence of bcl-2 modulation or dependence on functional p53. Blood, 1998, 92(10):3804-3816.
    [103]Chang D W, Claassen G F, Hann S R et al. The c-Myc transactivation domain is a direct modulator of apoptotic versus proliferative signals. Mol Cell Biol, 2000, 20(12):4309-4319.
    [104]Le-Niculescu H, Bonfoco E, Kasuya Y et al. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol, 1999, 19(1):751-763.
    [105] Park D S, Farinelli S E, Greene L A. Inhibitors of cyclin-dependent kinases promote survival of post-mitotic neuronally differentiated PC12 cells and sympathetic neurons. J Biol Chem, 1996, 271(14):8161-8169.
    [106]Maundrell K, Antonsson B, Magnenat E et al. Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J Biol Chem, 1997, 272(40):25238-25242.
    [107] Fan G, Ma X, Kren B T et al. The retinoblastoma gene product inhibits TGF-beta1 induced apoptosis in primary rat hepatocytes and human HuH-7 hepatoma cells. Oncogene, 1996, 12(9): 1909-1919.
    [108]Gil-Gomez G, Berns A, Brady H J. A link between cell cycle and cell death: Bax and Bcl-2 modulate Cdk2 activation during thymocyte apoptosis. Embo J, 1998, 17(24):7209-7218.
    [109] Kang Y J, Jeon E S, Song H Y et al. Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem, 2005, 95(6):1135-1145.
    [110] Choi S C, Kim S J, Choi J H et al. Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem Cells Dev, 2008, 17(4):725-736.
    [111] Levy O, Dvir T, Tsur-Gang O et al. Signal transducer and activator of transcription 3-A key molecular switch for human mesenchymal stem cell proliferation. Int J Biochem Cell Biol, 2008, 40(11):2606-2618.
    [112]Neth P, Ciccarella M, Egea V et al. Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells, 2006, 24(8):1892-1903.
    [113] Li D, Wang G Y, Dong B H et al. Biological characteristics of human placental mesenchymal stem cells and their proliferative response to various cytokines. Cells Tissues Organs, 2007, 186(3):169-179.
    [114] Huang W, La Russa V, Alzoubi A et al. Interleukin-17A: a T-cell-derived growth factor for murine and human mesenchymal stem cells. Stem Cells, 2006, 24(6):1512-1518.
    [115]Horwitz R, Webb D. Cell migration. Curr Biol, 2003, 13(19):R756-759.
    [116]Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Dev Biol, 2004, 265(1): 23-32.
    [117] Schwarzbauer J E. Cell migration: may the force be with you. Curr Biol, 1997, 7(5):R292-294.
    [118]Aiuti A, Webb I J, Bleul C et al. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med, 1997, 185(1): 111-120.
    
    [119]Baggiolini M. Chemokines and leukocyte traffic. Nature, 1998, 392(6676):565-568.
    [120]Baggiolini M. Chemokines in pathology and medicine. J Intern Med, 2001, 250(2) : 91-104.
    [121] Ebert L M, Schaerli P, MoserB. Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol Immunol, 2005, 42(7):799-809.
    [122] Kelner G S, Kennedy J, Bacon K B et al. Lymphotactin: a cytokine that represents a new class of chemokine. Science, 1994, 266(5189):1395-1399.
    [123] Bazan J F, Bacon K B, Hardiman G et al. A new class of membrane-bound chemokine with a CX3C motif. Nature, 1997, 385(6617):640-644.
    [124] Sanchez-Madrid F, del Pozo M A. Leukocyte polarization in cell migration and immune interactions. Embo J, 1999, 18(3):501-511.
    [125]Wynn R F, Hart C A, Corradi-Perini C et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 2004, 104(9):2643-2645.
    [126] Honczarenko M, Le Y, Swierkowski M et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 2006, 24(4):1030-1041.
    [127]Ringe J, Strassburg S, Neumann K et al. Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem, 2007, 101(1):135-146.
    [128] Ponte A L, Marais E, Gallay N et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells, 2007, 25(7):1737-1745.
    [129] Li Z, Li L. Understanding hematopoietic stem-cell microenvironments. Trends Biochem Sci, 2006, 31(10):589-595.
    [130] Anton E S, Kreidberg J A, Rakic P. Distinct functions of alpha3 and alpha(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron, 1999, 22(2):277-289.
    [131]Hynes R O. Integrins: bidirectional, allosteric signaling machines. Cell, 2002, 110(6): 673-687.
    [132]Liu S, Calderwood D A, Ginsberg M H. Integrin cytoplasmic domain-binding proteins. J Cell Sci, 2000, 113 ( Pt 20):3563-3571.
    [133]Miranti C K, Brugge J S. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol, 2002, 4(4):E83-90.
    
    [134]Giancotti FG, Ruoslahti E. Integrin signaling. Science, 1999, 285 (5430): 1028-1032.
    [135]Martin K H, Slack J K, Boerner S A et al. Integrin connections map: to infinity and beyond. Science, 2002, 296(5573):1652-1653.
    [136] van der Flier A, Sonnenberg A. Function and interactions of integrins. Cell Tissue Res, 2001, 305(3):285-298.
    [137]Vuori K. Integrin signaling: tyrosine phosphorylation events in focal adhesions. J Membr Biol, 1998, 165(3):191-199.
    [138]Ruster B, GottigS, Ludwig R J et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, 2006, 108(12):3938-3944.
    [139]Krampera M, Pizzolo G, Aprili G et al. Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 2006, 39(4):678-683.
    [140]Segers V F, Van Riet I, Andries L J et al. Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms. Am J Physiol Heart Circ Physiol, 2006, 290(4):H1370-1377.
    [141]Cawston T E, Billington C. Metalloproteinases in the rheumatic diseases. J Pathol, 1996, 180(2):115-117.
    
    [142]Bode W, Fernandez-Catalan C, Tschesche H et al. Structural properties of matrix metalloproteinases. Cell Mol Life Sci, 1999, 55(4):639-652.
    [143] Rasmussen H S, McCann P P. Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol Ther, 1997, 75(1): 69-75.
    
    [144]Carmeliet P, Moons L, Lijnen R et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet, 1997, 17(4):439-444.
    
    [145]Sedlacek R, Mauch S, Kolb B et al. Matrix metalloproteinase MMP-19 (RASI-1) is expressed on the surface of activated peripheral blood mononuclear cells and is detected as an autoantigen in rheumatoid arthritis. Immunobiology, 1998, 198(4):408-423.
    [146] Costigan M, Chambers D A, Boot-Handford R P. Collagen turnover in renal disease. Exp Nephrol, 1995, 3(2):114-121.
    [147] Sharma A K, Mauer S M, Kim Y et al. Altered expression of matrix metalloproteinase-2, TIMP, and TIMP-2 in obstructive nephropathy. J Lab Clin Med, 1995, 125(6):754-761.
    [148]Murphy G, KnauperV, Cowell S et al. Evaluation of some newer matrix metalloproteinases. Ann N Y Acad Sci, 1999, 878:25-39.
    [149]Alper O, Bergmann-Leitner E S, Bennett T A et al. Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. J Natl Cancer Inst, 2001, 93(18):1375-1384.
    [150]Hozumi A, Nishimura Y, Nishiuma T et al. Induction of MMP-9 in normal human bronchial epithelial cells by TNF-alpha via NF-kappa B-mediated pathway. Am J Physiol Lung Cell Mol Physiol, 2001, 281(6):L1444-1452.
    [151]Mengshol J A, Vincenti M P, Brinckerhoff C E. IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Res, 2001, 29(21):4361-4372.
    [152]Benbow U, Brinckerhoff C E. The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol, 1997, 15(8-9):519-526.
    [153] Luo X H, Liao E Y. Progesterone differentially regulates the membrane-type matrix metalloproteinase-1 (MT1-MMP) compartment of proMMP-2 activation in MG-63 cells. Horm Metab Res, 2001, 33(7):383-388.
    [154] Wick W, Platten M, Weller M. Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol, 2001, 53(2):177-185.
    [155]Rutter J L, Mitchell T I, Buttice G et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res, 1998, 58(23):5321-5325.
    [156] Itoh Y, Takamura A, Ito N et al. Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. Embo J, 2001, 20(17):4782-4793.
    [157] Fedarko N S, Jain A, Karadag A et al. Three small integrin binding ligand N-linked glycoproteins (SIBLINGs) bind and activate specific matrix metalloproteinases. Faseb J, 2004, 18(6): 734-736.
    [158]Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta, 2000, 1477(1-2):267-283.
    [159] Vu T H, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev, 2000, 14(17):2123-2133.
    [160] Gomez D E, Alonso D F, Yoshiji H et al. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol, 1997, 74(2) : 111-122.
    [161]Schaefer L,Hart X,Gretz N et al.Tubular gelatinase A(MMP-2) and its tissue inhibitors in polycystic kidney disease in the Han:SPRD rat.Kidney Int,1996,49(1):75-81.
    [162]Kasper G,Glaeser J D,Geissler S et al.Matrix metalloprotease activity is an essential link between mechanical stimulus and mesenchymal stem cell behavior.Stem Cells,2007,25(8):1985-1994.
    [163]Ries C,Egea V,Karow M et al.MMP-2,MT1-MMP,and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells:differential regulation by inflammatory cytokines.Blood,2007,109(9):4055-4063.
    [164]Son B R,Marquez-Curtis L A,Kucia Met al.Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases.Stem Cells,2006,24(5):1254-1264.
    [165]杜少辉,张悦,黄洁等.牛珀至宝微丸对局灶性脑缺血再灌注后Nestin表达的影响.中国中医基础医学杂志,2002,8(10):17-21.
    [166]陈东风,杜少辉,李伊为等.龟板对局灶性脑缺血再灌注后Nestin表达的影响.解剖学杂志,2002,25(4):315-318.
    [167]安红梅,胡兵,史云峰等。补肾阴对胚胎干细胞活动的影响.中国中医药信息杂志,2007,14(6):24-26.
    [168]张越华,曾和平,陈东风。龟板浸膏甲酯化GC-MS干细胞活性指纹图谱的研究与应用.安徽农业科学,2008,36(1):148-150.
    [169]李熙灿,周健洪,黎晖等.荜茇提取物对大鼠骨髓间质干细胞的增殖作用及与化学官能团的关系.中药材,2005,28(7):570-573.
    [170]周健洪,陈东风,黎晖等.龟板含药血清对大鼠骨髓间质干细胞体外增殖的影响.广州中医药大学学报,2005,22(1):35-38.
    [171]陈薇,曾和平,王春艳等.中药龟板提取物化学成分及其调控鼠骨髓间充质干细胞(rMSCs)增殖活性的实验研究.化学学报,2007,65(3):265-270.
    [172]修忠标,林建华.鹿茸多肽对人骨髓间质干细胞体外增殖的影响.福建中医学院学报,2005,15(1):34-37.
    [173]王明宁,林洪,胡琳等.香丹注射液对大鼠骨髓间充质干细胞的增殖作用.华西药学杂志,2007,22(3).
    [174]李志泉,冼绍祥,汪朝晖等.三七总皂苷对骨髓间充质干细胞增殖和向心肌样细胞分化的影响.广州中医药大学学报,2007,24(6):470-475.
    [175]张国福,王和鸣.补阳还五汤对骨髓间质干细胞移植治疗大鼠脊髓损伤的影响.中国骨伤,2006,19(8):452-454.
    [176]陈蔚文.健脾益气中药的小肠隐窝细胞药理靶点探讨.广州中医药大学学报,2004,21(5):356-360.
    [177]郭国庆,沈伟哉,钟世镇.丹参素和丹酚酸对胎鼠脑神经干细胞迁移的诱导.中国组织工程研究与临床康复,2007,11(7):1225-12258.
    [178]陈晓锋,唐礼江,朱敏等.丹参酮ⅡA对外周血内皮祖细胞增殖、粘附和迁移功能的影响.中国药理学通报,2007 23(2):274-275.
    [179]董晓先,刘金保,董燕湘等。黄芪诱导骨髓间质干细胞分化为神经元样细胞.中国现代厌学杂志,2004,14(19):19-21.
    [180]董燕湘,董晓先,何慧华等.大鼠骨髓间质干细胞用中药绞股蓝诱导为神经细胞的研究.中华神经科杂志,2003,36(5):355-337.
    [181]夏文杰,陈振光,张丽蓉等.隐丹参酮诱导骨髓间质干细胞分化为神经元样细胞的实验研究.中国中西医结合杂志,2002,22(12):921-923.
    [182]伍参荣,唐小梅,贺双腾等.生黄液对大鼠骨髓间质干细胞分化为神经细胞的定向诱导作用.湖南中医学院学报,2003,23(6):7-9.
    [183]撒亚莲,李海标.三七总皂甙诱导骨髓间质干细胞分化为神经元样细胞.中山医科大学学报,2002,23(6):409-410.
    [184]肖庆忠,温冠媚,李浩威等.麝香组分诱导成年大鼠骨髓间质干细胞体外定向分化为神经元样细胞的能力.中山医科大学学报,2002,23(6):405-407.
    [185]项鹏,夏文杰,王连荣等.丹参注射液诱导间质干细胞分化为神经元样细胞.中山医科大学学报,2001,22(5):321-323.
    [186]刘金保,董晓先,董燕湘等.多种中药成分诱导大鼠骨髓间质干细胞转变为神经元样细胞.中国药物与临床,2003,3(3):234.
    [187]张进,徐志伟.补肾法诱导间允质干细胞向神经方向分化研究.现代医院,2004,4(9):15-17.
    [188]张艳军,范祥,胡利民等.不同治则中药单体对体外培养神经干细胞分化的影响.天津中医药,2004,21(2):156-157.
    [189]杨萍,王继明,应大君等.中药制剂-肌萎灵注射液对神经干细胞的促分化作用.神经解剖学杂志,2005,21(2):45-47.
    [190]郑良朴,李楠,王和鸣.补骨合剂对体外培养骨髓基质细胞分化影响的观察.福建中医学院学报,2003,13(6):33-35.
    [191]赵燕玲,曲友直.补阳还五汤及拆方对脑缺血后髓过氧化物酶活性及神经细胞凋亡的影响.中国中医急症,2007,16(3):317-318.
    [192]周国钰,胡学强,陈晓红等.步长脑心通含药血清抗缺氧诱导的皮质神经元凋亡的实验研究.中国中西医结合杂志,2007,27(9):835-838.
    [193]刘长杰,赵军旗,侯学寨等.仙方口服液治疗脑梗死急性期88例临床观察.河北中医,2005,27(3):169-170.
    [194]李国辉.中西医结合治疗脑血栓92例.福建中医药,2004,35(6):30-31.
    [195]袁琼兰,李瑞祥,羊惠君等.大鼠局灶性脑缺血后再灌流时神经元的改变与巨噬细胞应答.华西医科大学学报,1999,30(2):155-157.
    [196]张斌,雄鹰.黄芪对大鼠急性脑缺血后神经元凋亡的影响.中国临床康复,2004,8(31):6968-6969.
    [197]李维祖,明亮,何婷等.黄芪提取物对大鼠海马神经元迟发性死亡的影响.中国药理学通报,2005,21(5):584-587.
    [198]闵小芬,李卫平,王绍斌等.黄芪提取物对局灶性脑缺血再灌注损伤的抗氧化及线粒体保护作用.中国药理学通报通报,2005,21(2):216-219.
    [199]樊兴娟,姜正林,王国华等.人参总皂苷对大鼠脑缺血再灌注的神经保护研究.交通医学,2006,20(6):662-664.
    [200]李刚,程兰英,徐亚平等.人参总皂甙对大鼠脑缺血的保护机制的研究.中日友好医院学报,2005,19(3):164-166.
    [201]王洁,吴俊芳,张均田.总丹酚酸的抗脑缺血研究.中国药理学报,1999,15(2):164-166.
    [202]Gao Z,Huang K,Yang X et al.Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi.Biochim Biophys Acta,1999,1472(3):643-650.
    [203]Dok-Go H,Lee K H,Kim H J et al.Neuroprotective effects of antioxidative flavonoids,quercetin,(+)-dihydroquercetin and quercetin 3-methyl ether,isolated from Opuntia ficus-indica var.saboten.Brain Res,2003,965(1-2):130-136.
    [204]Chandrasekaran K,Mehrabian Z,Spinnewyn Bet al.Bilobalide,a component of the Ginkgo biloba extract(EGb 761),protects against neuronal death in global brain ischemia and in glutamate-induced excitotoxicity.Cell Mol Biol(Noisy-le-grand),2002,48(6):663-669.
    [205]Jiang B,Liu J H,Bao Y M et al.Catalpol inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade.Toxicon,2004,43(1):53-59.
    [206]Li D Q,Bao Y M,Zhao J Jet al.Neuroprotective properties of catalpol in transient global cerebral ischemia in gerbils:dose-response,therapeutic time-window and long-term efficacy.Brain Res,2004,1029(2):179-185.
    [207]Guan S,Bao Y M,Jiang Bet al.Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death.Eur J Pharmacol,2006,538(1-3):73-79.
    [208]An L J,Guan S,Shi G F et al.Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells.Food Chem Toxicol,2006,44(3):436-443.
    [209]Liu Y M,Jiang B,Bao Y M et al.Protocatechuic acid inhibits apoptosis by mitochondrial dysfunction in rotenone-induced PC12 cells.Toxicol In Vitro,2008,22(2):430-437.
    [210]Ueda J,Saito N,Shimazu Y et al.A comparison of scavenging abilities of antioxidants against hydroxyl radicals.Arch Biochem Biophys,1996,333(2):377-384.
    [211]Lin W L, Hsieh Y J, Chou F P et al. Hibiscus protocatechuic acid inhibits lipopolysaccharide-induced rat hepatic damage. Arch Toxicol, 2003, 77(1):42-47.
    [212]Tseng T H, Wang C J, Kao E S et al. Hibiscus protocatechuic acid protects against oxidative damage induced by tert-butylhydroperoxide in rat primary hepatocytes. Chem Biol Interact, 1996, 101(2):137-148.
    [213]Tseng T H, Kao T W, Chu C Y et al. Induction of apoptosis by hibiscus protocatechuic acid in human leukemia cells via reduction of retinoblastoma (RB) phosphorylation and Bcl-2 expression. Biochem Pharmacol, 2000, 60(3):307-315.
    [214]Lee I R, Yang M Y. Phenolic compounds from Duchesnea chrysantha and their cytotoxic activities in human cancer cell. Arch Pharm Res, 1994, 17(6):476-479.
    [215]Tanaka T, Kojima T, Kawamori T et al. Chemoprevention of diethylnitrosamine-induced hepatocarcinogenesis by a simple phenolic acid protocatechuic acid in rats. Cancer Res, 1993, 53(12):2775-2779.
    [216]Tanaka T, Kawamori T, Ohnishi M et al. Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary protocatechuic acid during initiation and postinitiation phases. Cancer Res, 1994, 54(9):2359-2365.
    [217]Kawamori T, Tanaka T, Kojima T et al. Suppression of azoxymethane-induced rat colon aberrant crypt foci by dietary protocatechuic acid. Jpn J Cancer Res, 1994, 85(7): 686-691.
    [218]Tanaka T, Kojima T, Kawamori T et al. Chemoprevention of digestive organs carcinogenesis by natural product protocatechuic acid. Cancer, 1995, 75(6 Suppl):1433-1439.
    [219]Hirose Y, Tanaka T, Kawamori T et al. Chemoprevention of urinary bladder carcinogenesis by the natural phenolic compound protocatechuic acid in rats. Carcinogenesis, 1995, 16(10):2337-2342.
    [220]Nakamura Y, Torikai K, Ohto Y et al. A simple phenolic antioxidant protocatechuic acid enhances tumor promotion and oxidative stress in female ICR mouse skin: dose-and timing-dependent enhancement and involvement of bioactivation by tyrosinase. Carcinogenesis, 2000, 21 (10):1899-1907.
    [221]Li Y, Trush M A, Yager J D. DNA damage caused by reactive oxygen species originating from a copper-dependent oxidation of the 2-hydroxy catechol of estradiol. Carcinogenesis, 1994, 15(7):1421-1427.
    [222]Monks T J, Lau S S. Biological reactivity of polyphenolic-glutathione conjugates. Chem Res Toxicol, 1997, 10(12):1296-1313.
    [223]Tsuda T, Shiga K, Ohshima K et al. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem Pharmacol, 1996, 52(7):1033-1039.
    [224]Tseng T H, Hsu J D, Lo M H et al. Inhibitory effect of Hibiscus protocatechuic acid on tumor promotion in mouse skin. Cancer Lett, 1998, 126(2):199-207.
    [225]Zhu Y, Liu T, Song K et al. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct, 2008, 26(6):664-675.
    [226]Zhao L R, Duan W M, Reyes M et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol, 2002, 174(1):11-20.
    [227]Worby C A, Simonson-Leff N, Dixon J E. RNA interference of gene expression (RNAi) in cultured Drosophila cells. Sci STKE, 2001, 2001(95):PL1.
    [228]Yin J Q, Wan Y. RNA-mediated gene regulation system: now and the future (Review). Int J Mol Med, 2002, 10(4):355-365.
    [229]Monks T J, Hanzlik R P, Cohen G M et al. Quinone chemistry and toxicity. Toxicol Appl Pharmacol, 1992, 112(1):2-16.
    [230]Thannickal V J, Fanburg B L. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol, 2000, 279(6):L1005-1028.
    [231]Haddad J J. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal, 2002, 14(11):879-897.
    [232]Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem, 2001, 11(4):173-186.
    [233]Burdon R H, Rice-Evans C. Free radicals and the regulation of mammalian cell proliferation. Free Radic Res Commun, 1989, 6(6):345-358.
    [234]Burdon R H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med, 1995, 18(4):775-794.
    [235]Hutvagner G, Zamore P D. RNAi: nature abhors a double-strand. Curr Opin Genet Dev, 2002, 12(2): 225-232.
    [236]Caudy A A, Retting R F, Hammond S M et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature, 2003, 425(6956):411-414.
    [237]Nykanen A, Haley B, Zamore P D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 2001, 107(3):309-321.
    [238] Sharp P A. RNA interference—2001. Genes Dev, 2001, 15(5): 485-490.
    [239]Grunweller A, Hartmann R K. RNA interference as a gene-specific approach for molecular medicine. Curr Med Chem, 2005, 12(26):3143-3161.
    [240]Ueda M, Yamashita Y, Takehara M et al. Gene expression of adhesion molecules and matrix metalloproteinases in endometriosis. Gynecol Endocrinol, 2002, 16(5):391-402.
    [241]Koshikawa N, Giannelli G, Cirulli V et al. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol, 2000, 148(3):615-624.
    [242]Belkin A M, Akimov S S, Zaritskaya L S et al. Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion. J Biol Chem, 2001, 276(21):18415-18422.
    [243]Deryugina E I, Ratnikov B I, Postnova T I et al. Processing of integrin alpha(v) subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. J Biol Chem, 2002, 277(12):9749-9756.
    [244]Kajita M, Itoh Y, Chiba T et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol, 2001, 153(5):893-904.
    [245]Mu D, Cambier S, Fjellbirkeland L et al. The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol, 2002, 157(3): 493-507.
    [246]Watt N T, Routledge M N, Wild C P et al. Cellular prion protein protects against reactive-oxygen-species-induced DNA damage. Free Radic Biol Med, 2007, 43(6):959-967.
    [247] Watt N T, Hooper N M. Reactive oxygen species (ROS) -mediated beta-cleavage of the prion protein in the mechanism of the cellular response to oxidative stress. Biochem Soc Trans, 2005, 33 (Pt 5):1123-1125.
    [248]Policastro L, Molinari B, Larcher F et al. Imbalance of antioxidant enzymes in tumor cells and inhibition of proliferation and malignant features by scavenging hydrogen peroxide. Mol Carcinog, 2004, 39(2):103-113.
    [249]Holbrook N J, Ikeyama S. Age-related decline in cellular response to oxidative stress: links to growth factor signaling pathways with common defects. Biochem Pharmacol, 2002, 64(5-6):999-1005.
    [250] Johnson G L, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002, 298(5600):1911-1912.
    [251]Martindale J L, Holbrook N J. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol, 2002, 192(1):1-15.
    [252]Hehner S P, Breitkreutz R, Shubinsky G et al. Enhancement of T cell receptor signaling by a mild oxidative shift in the intracellular thiol pool. J Immunol, 2000, 165(8):4319-4328.
    [253]Schreck R, Baeuerle P A. A role for oxygen radicals as second messengers. Trends Cell Biol, 1991, 1(2-3): 39-42.
    [254]Hirota K, Murata M, Sachi Y et al. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem, 1999, 274(39):27891-27897.
    [255]Pahl H L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 1999, 18(49):6853-6866.
    [256]Bogdan C, Rollinghoff M, Diefenbach A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol, 2000, 12(1):64-76.
    [257]Fu X, Kassim S Y, Parks W C et al. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metal loproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem, 2001, 276(44):41279-41287.
    [258]Galis Z S, Khatri J J. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res, 2002, 90(3):251-262.
    [259]Grote K, Flach I, Luchtefeld M et al. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res, 2003, 92(11):e80-86.
    [260]Li P F, Dietz R, von Harsdorf R. Reactive oxygen species induce apoptosis of vascular smooth muscle cell. FEBS Lett, 1997, 404(2-3):249-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700