用户名: 密码: 验证码:
蛋鹌鹑育雏育成期饲粮能量及蛋白质适宜水平的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验采用两因子试验设计,代谢能(A因子)2个水平,粗蛋白质(B因子)3个水平,即分为6个处理组,每个组4个重复,每个重复20只鹌鹑,分为育雏期(0~18日龄)和育成期(18~39日龄)。通过测定生长性能、产蛋性能、蛋品质、养分利用等指标,探讨蛋鹌鹑育雏育成期饲粮能量和蛋白质的适宜水平。试验结果表明:
     A因子(代谢能)对鹌鹑18日龄的体重、0~18日龄的增重及日增重均无显著影响(P>0.05),但低能量组鹌鹑的各指标均呈现出高于高能量组的趋势;B因子(粗蛋白质)对鹌鹑18日龄的体重、0~18日龄的增重及日增重均有显著影响(P<0.05),各指标均随饲料中粗蛋白质水平的提高而升高。
     A因子(代谢能)对鹌鹑的18~39日龄增重及日增重均显著影响(P<0.05),高能量组鹌鹑的两指标均显著高于低能量组;B因子(粗蛋白质)对鹌鹑39日龄的体重、18~39日龄的增重及日增重均有显著影响(P<0.05),中等和高等蛋白水平组鹌鹑的39日龄体重均显著地高于低蛋白水平组;而低蛋白水平组鹌鹑的18~39日龄增重及日增重两指标均显著地高于其他两组(P<0.05)。
     A、B两因子对产蛋率、平均产蛋量有显著的交互作用(P<0.05),产蛋率是低能低蛋白的第1组最高,高能高蛋白的第6组次之,高能低蛋白的第4组最低;平均产蛋量是高能高蛋白的第6组最高,低能低蛋白的第1组次之,低能高蛋白的第3组最低。
     11周龄蛋品质测定:高能量组的蛋壳重、蛋壳相对重、蛋壳强度均极显著地高于低能量组(P<0.05);B因子(粗蛋白质)对各项指标均无明显影响(P>0.5)。二因子对蛋形指数有显著的交互作用(P<0.05),低能中蛋白水平的第2组最大。26周龄蛋品质测定:高能量组的蛋重显著高于低能量组(P<0.05);B因子(粗蛋白质)对各项指标均无明显影响(P>0.05)。
     低能量组鹌鹑的总能代谢率显著地高于高能量组,而高能量组的钙的存留率、总磷存留率显著地高于低能量组(P<0.05)。B因子(粗蛋白质)对总能的代谢率有显著的影响(P<0.05),低蛋白水平组显著地高于其他两组;中等蛋白水平组鹌鹑的总磷存留率最小,与高蛋白水平组间差异显著(P<0.05)。
This experiment was carried out to determine appropriate energy and protein levels in brood and finishing stage diet for laying quail.We used two-factor test experimental design, two energy (A factor) levels and three protein (B factor) levels which were divided into six groups,each with four replications having 20 quails. In the trial period, recorded the growth performance and production performance, deteminationed the eggs quality and nutrient retention.
     The results showed that, factor A (ME) on the 18-day-old weight,weight gain and daily gain of quails were not significantly affected in brood stage (P>0.05),but quails of low-energy group were shown the trend that various indicators was higher than the high - energy group; factor B (CP) were significantly affected on various indicators (P <0.05), all indicators increased with the level of crude protein in feed higher.
     Factor A (ME) on the weight gain and daily gain of quails were significantly affected in finishing time(P <0.05),the two indicators of quails in high-energy group were significantly higher than the low-energy group; There was a significant effect of factor B (CP) on the 39-day-old weight, weight gain and daily gain in finishing stage(P <0.05), the 39-day-old body weight of quails in middle-and higher protein levels groups were significantly higher than the low protein level group; and the quail,s weight gain and ADG of low-protein group were significantly higher than the other two groups (P <0.05).
     There was significant interaction on laying rate and average egg production by A, B two factors (P <0.05).Laying rate of group 1 with low-energy and low-protein was the highest, followed by group 6 with high-energy and high-protein levels, group 4 with high-energy and low - protein was the lowest; average egg production of cluster 6 with high-energy and high-protein was the highest, followed by low-energy low-protein group 1, group 3 with low-energy and high-protein was the lowest.
     11 week age egg quality determination: The high energy group's shell weight, relative eggshell weight and eggshell strength were obviously higher than the low energy group (P<0.05); factor B (CP) not obviously affected to each target (P>0.5). Two factors had interaction on the egg-shaped index (P<0.05). 26 week age egg quality determination: The high energy group's egg heavy obviously were higher than the low energy group (P<0.05); The factor B (CP) not obviously affects to each target (P>0.05).
     The quail's metabolic rate of GE in Low-energy group were significantly higher than the high-energy group, and the retention rate of calcium and total phosphorus of the high-energy group were significantly higher than the low - energy group (P <0.05). The factor B (CP) had remarkable influence on metabolic rate of GE (P<0.05), the low protein group obviously were higher than other two groups; Total phosphorus preserving rate of Medium protein group is smallest, with high protein during horizontal group difference remarkable (P<0.05).
引文
[1]佚名.《尔雅》.卷下,第十七.
    [2] Hong Chang.The Animal Husbangry Culture and Animal Genetic Resources in China.Reprinted from Report of the Society for Researchs on Native Livestock[J]. Genetics .2001,19:1-21.
    [3] Wengy.P.Robinson,Marjiorie A.Asmussen and Glenys Thomson.Three-locus systerms impose additional constrains on pairwise disequilibria[J].Genetics.1991,129:925-930.
    [4] Oda,K.Fifteen years’experiment for Japanese quail breeding[J]. Oda-Chorui- Kenkysho: Tokyo.1917.
    [5] Ohmoris S.Ten years,Japanese quail breeding[M].Tobundo-Shorten: Tokyo.1918.
    [6]李难.进化论教程[M].北京:高等教育出版社:1990,135-178.
    [7]宋东亮,曹广之,旁有志等.鹌鹑黄羽纯系部分遗传性状观察试验[J].上海畜牧兽医通讯.2003,4:14-16
    [8]谢成侠.中国养禽史[M],北京:中国农业出版社,1995:166-167.
    [9]谢成侠.中国鹌鹑的考证及展望[J].家禽.1985,1:25-27.
    [10]王峰,程世鹏.珍禽饲养技术[M].沈阳:辽宁科学技术出版社,1998,10.
    [11] Ornithologists Union.Check-list of north: 00ericanbirds. AllenPress[J]. Inc.Lawrence, Kansas,USA.1983.
    [12]常国斌,常洪,刘向萍等.中国野生鹌鹑群体遗传共适应性研究[J].中国科学C辑生命科学.2005,35(5):452-461.
    [13]黄峰,常洪,常国斌.国内鹌鹑资源及其养殖现状[J].吉林畜牧兽医.2005,(2):12-14
    [14]佚名.《尔雅》.卷下,第十九.
    [15]王念孙.《广雅疏正》.卷十,下.
    [16]李时珍.《本草纲目》.第四十八卷.
    [17]常国斌,常洪.我国鹌鹑遗传资源现状考查分析[J].中国家禽.2004,6(9):59-60.
    [18]李冬.国内主要的鹌鹑品种、品系及配套系[J].河南畜牧兽医.2001,22(10):41.
    [19]林其禄.鹌鹑饲养与疾病防治新技术[M] .南京出版社,1995:5-14.
    [20]林其禄.鹌鹑高效益饲养技术[M].金盾出版社,2000:14-21.
    [21] I.L.Mason主编.驯养动物的进化[M].南京出版社,1991:166-167.
    [22] Masaoki Tsudzki.Excalfactoria quail as a new laboratory research animal[J]. Poultry. Sci. 1994,763-768.
    [23] Mills A.D.,Jones R.B.,Faure J.M.Species specificity of social reinstatement in Japanese quail genetically selected for high of low levels of social reinstatement behaviour[J]. Behavioural-Processes.1995,34:12-2.
    [24] Minvielle F.,Ito.S.Inoue-Muray:00a M.,et al.Genetic analysis of plumage colormutations on the Zchromosome of Japanese quail[J]. Hered.2000,91(6):499-501.
    [25] TruaxR.E.,JohnsonW.A.Genetics of plumage color mutants in Japanese quail[J]. Poult.Sci. 1979.58:1-9.
    [26] Wakasugi N.,Kondo K.Breeding methods for maintenance of mutant genes and establishment of strains in the Japanese quail[J].Exp.Anim.1973,22(l):151-159.
    [27] Kimuar M.Protein polymorphism in poultry Science[J],1978,15:43-54.
    [28] Katoh H.,Wakasugi N.Studies on the blood groups in the Japanese quail:detection of three antigens and their inheritance[J].Develo:00ental and Compara tiveImmu nology.1 980, 4: 99 -100.
    [29]范世忠.秋季进补话鹌鹑.食品与健康[J].2004,10:18.
    [30]常国斌.两种野生鹌鹑与家鹑进化趋异水平的研究[D].扬州大学博士论文.2004.
    [31]赵永国,王卫国.鹌鹑标准化饲养新技术[M].中国农业出版社,2005,6.
    [32]耿浩.滋补食疗话鹌鹑[J].食品与健康.2003,5:18.
    [33]邬时明.五禽之首——鹌鹑[J].食品与健康.2002,8:14.
    [34]吴绍强,译.新型实验动物——鹌鹑[J].国外畜牧学,猪与禽.1994,(6):55.
    [35]牛乐耕,封福..国内外养鹑业发展现状及前景[J].衡水师范专科学报.2000(6) :39-41.
    [36]杨凤.动物营养学[M].北京:中国农业出版社,2000,12:36-40.
    [37]杨凤.动物营养学[M].北京:中国农业出版社,2000,12:89-90.
    [38] He-WM.Parenteral nutition support for surgical patients and its modification[J].Chinese Journal of Clinical Nutrition.1993,3:23-26.
    [39]李伟忠,李焕江.饲粮中适宜能量蛋白比选择的研究[J].饲料博览.2003,4:20-22.
    [40]刘桂林,王锦平.能蛋比失衡致奶牛代谢障碍的研究[J].中国奶牛.1995,4:36-37.
    [41] Fris.Effect of dietary protein and energy levels on pullet development.Poultry Science. 1996,75:973
    [42] Jensen.Effect of dietary protein and energy on broiler carcass composition and efficiency of nutrient utilization[J].Poultry Science,1985,62(9)476-481.
    [43] Planik.The significance of caloric-protein tatio of the ratio on growth feed efficiency and organ weights of broiler chicks[J].Pout.Sci,1998,(3):97-100.
    [44]刘素洁,孙可兵.日粮能量蛋白水平对肉用型种公鸡繁殖性能的影响[J].饲料工业. 2002,23(5):29-31.
    [45]吴庆鹉,林海.蛋鸡对能量和蛋白质需要与环境温度的数学模型[J].畜牧兽医学报. 1993,2:3-5.
    [46]李凯,张秀芳.肉种鸡饲养的温度管理[J].禽业科技.1997,13(2):20-22.
    [47] Shim, K.F. and Lee, T.K. (1988a). Influence of supplemented methionine in practical rations for young growing Japanese quail[J]. Nutr. Rep. Int., 38: 157-164.
    [48] Shim, K.F. and Lee, T.K. (1988b). Methionine requirements of Coturnix coturnix japonica for reproduction using practical diets[J]. Nutr. Rep. Int., 38: 681-686 .
    [49]中华人民共和国专业标准.肉仔鸡及生长期蛋用鸡的饲养标准.(ZB B 43005-86). 1986, 10:1.
    [50]张宏付,张子仪.动物营养参数与饲养标准[M] .北京:中国农业出版社,1998,6:460-469
    [51]张丽英.饲料分析及饲料质量检测技术[M] .(第二版),北京:中国农业大学出版社,2003,1:46-70.
    [52]杨宁.家禽生产学.北京:中国农业出版社,2003,7:122-132.
    [53]胡坚,张婉如,王振权,主编.动物饲养学(实验指导)[M].吉林:吉林科学技术出版社.1994,71-78.
    [54]张丽英.饲料分析及饲料质量检测技术[M].(第二版),北京:中国农业大学出版社,2003,1:81-94.
    [55]卢纹岱.SPSS FOR WINDOWS统计软件[M].北京:电子工业出社,2002,406-407.
    [56] Siegel C R. Growth, feed conversion, and carcass composition in females of four broiler crosses fed diets with different energy levels and energy to protein ration[J]. Poultry Science. 1993,62(8):825-829.
    [57]石天虹,张桂芝,黄宝华,等.蛋雏鸡营养水平与经济效益的研究[J].饲料研究. 1999( 3): 7-9.
    [58]姜宁.生长期能量采食水平对生长蛋鸡的影响[J].黑龙江畜牧兽医.2003,4:3-4.
    [59] Milton L. Scottetal .周毓平.等.鸡的营养[M].北京:北京农业大学出版社, 1989,321-347.
    [60] WALROU P.Prodective perfofmance and progeny development in swine as influenced by feed intake during pregnancy.Nutr.1976,12:489-495.
    [61]薛凌壮,付太银,王升荣.影响蛋鸡产蛋性能与鸡蛋品质的因素[J].养禽与禽病防治.2000.(8):6-9.
    [62]王得芹,王金文.不同营养水平对海兰白蛋鸡育雏期增重及效益的影响[J].山东家禽.2001,5:3-4.
    [63]张佳兰,高玉鹏.鸡蛋品质研究现状[J].山东家禽.2003,5:43-47.
    [64]杨山,李辉.现代养鸡[M].北京:中国农业出版社,2002,1-58.
    [65]艾文森.蛋鸡生产[M].北京:农业出版社,1984.
    [66]马霞,朱连勤,朱风华.低钙日粮对海兰褐蛋种鸡血浆指标的影响[J].饲料研究.2007,5:24-26.
    [67] R.EAustioM:CNesheim著,王金文,译.家禽生产[M].北京:中国农业出版社,1999,244-256.
    [68]王修启,郑海刚,安汝义.影响蛋壳质量的因素及改善措施[J].中国家禽.1999,(21)7:39-41.
    [69]刘燕德,乔振先.鸡蛋鲜度与贮存条件的相关性分析[J].江西农业大学学报.2002,24(2):44-51.
    [70]戴有理.青壳蛋鸡常规蛋品质的观察与改进[J].中国家禽.2001,23(10):42-43.
    [71]何仁春.不同日粮组成对肉仔鸡养分表观消化率的影响[J].动物科学与动物医学.2003,2:55-56.
    [72] Sumers,J.D.Reducing nitrogen excretion of the laying hen by feeding lower crude protein diets.Poultry Science.1993,72:1473-1474.
    [73] Goihl,J.Amino acid supplementation on flow-protein swine diet explored. Feedstuff. 1985, 11:27-28.
    [74]张朴民.浅谈蛋鸡开产体重对生产性能的影响[J].中国家禽.2005,27(15):44-45.
    [75]张淑芬,杨桂坦.均匀度对蛋种鸡生产性能的影响[J].中国家禽.2006,28(20):12-13.
    [76]宋东亮,范伟杰.蛋用鹌鹑生长发育的整齐度及其对生产性能的影响[J].中国家禽,2006,28:24-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700