用户名: 密码: 验证码:
S-卵白蛋白与鸡蛋鲜度相关性及其纯化、性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵白蛋白是鸡蛋中最丰富的蛋白质组分,占蛋清蛋白总量的54%,为43.0kDa的单体、球状磷酸糖蛋白,自然卵白蛋白(N-卵白蛋白)在鸡蛋贮存或孵化期间不可逆地转化为热稳定形式(S-卵白蛋白)。S-卵白蛋白为N-卵白蛋白的构象异构体,S-构型转化进程中分子特性与理化性质发生相应变化。本课题研究S-卵白蛋白与鸡蛋鲜度的相关性,考察贮藏条件对S-卵白蛋白转化的影响;采用两步超滤技术、聚乙二醇沉淀和阴离子交换层析法分离纯化卵白蛋白;研究S-构型转化对卵白蛋白分子及乳化特性、微观结构的影响;考察白藜芦醇、核黄素、姜黄素等活性小分子与S-卵白蛋白的相互作用,研究超高压处理对S-卵白蛋白结构与功能特性的影响。
     探讨以S-卵白蛋白为指标、通过等价蛋龄评价商业鸡蛋鲜度的可行性。分别测定25℃和37℃条件下85枚鲜蛋的S-卵白蛋白含量、蛋黄指数、蛋清pH值和哈夫单位等指标,并进行相关性分析。结果表明,S-卵白蛋白与贮存时间及鸡蛋鲜度评价常用指标之间具有高度相关性。指数回归模型分析建立了等价蛋龄预测模型,将S-卵白蛋白含量转换为等价蛋龄(25℃),可评价不同条件下贮存鸡蛋鲜度。研究证实以S-卵白蛋白为指标评价商业鸡蛋鲜度是可行的。
     为了探讨贮存条件对鸡蛋清S-卵白蛋白转化的影响,考察了贮存温度、湿度、二氧化碳浓度及涂膜处理等4个影响因素。结果表明,S-卵白蛋白转化与贮存温度呈正相关,高温能加速转化;S-卵白蛋白含量受湿度影响不显著,高湿仅能有限抑制S-卵白蛋白转化;低浓度CO2(2.5%)抑制S-卵白蛋白转化效果不明显,而高浓度CO2(≥5.0%)抑制效果显著;涂膜处理能显著抑制S-卵白蛋白转化,尤其是油溶性涂膜剂、矿物油涂膜处理抑制效果极显著。
     基于超滤机理分析了超滤过程中初始料液体积分数、pH值和跨膜压力等参数对膜通量、透过液蛋白质质量浓度的影响。在考察膜通量变化确定超滤时间的基础上,通过超滤试验获得最佳工艺条件:初始料液体积分数6.0%,pH值2.5,跨膜压力0.12Mpa。超滤产物纯度、回收率较高,卵白蛋白、溶菌酶的纯度分别为85.72%、87.21%,回收率分别为51.36%、62.58%。试验结果表明,两步超滤法可用于鸡蛋清卵白蛋白与溶菌酶的规模化、高效分离。
     采用聚乙二醇(PEG)使其它蛋清蛋白质沉淀,然后用阴离子交换层析进一步纯化上清液,获得高纯度卵白蛋白产物。结果表明,15%PEG-8000沉淀可有效地将卵白蛋白与其它蛋清蛋白分离,上清液经Q-Sepharose FF阴离子交换层析纯化,卵白蛋白产物纯度高达94.84%,回收率达71.45%。该法操作简单、周期短,纯度和回收率均理想,可用于工业化大规模生产。
     采用DEAE Sepharose C1-6B离子交换纯化N-卵白蛋白、碱性条件下热诱导制备S-卵白蛋白,对S-卵白蛋白分子及乳化特性进行研究,探讨二者之间内在联系。研究S-卵白蛋白转化进程中游离氨基含量、Zeta电位、疏水性、乳化液滴平均粒径(d32)与乳化活性的变化情况。在此基础上对以上因子进行相关性分析,并对S-卵白蛋白的乳化液进行显微镜观察。RP-HPLC显示N-卵白蛋白纯度达98%,差示扫描量热(DSC)分析显示诱导制备了S-卵白蛋白,在S-卵白蛋白转化进程中存在过渡产物(Ⅰ-卵白蛋白)。S-构型转化使游离氨基含量增加54.69%、Zeta电位降低7.1mV、乳化液滴平均粒径(d32)减少2.07μm,疏水性提高76.88%,乳化活性提高38.92%,而乳化稳定性减少51.07%。显微镜观察结果表明,S-卵白蛋白易于形成较小的乳化液滴。S-卵白蛋白的转化能有限改善卵白蛋白的乳化活性,却降低乳化稳定性,卵白蛋白的S-构型转化是蛋清蛋白品质劣化的原因之一。
     采用圆二色谱、X射线衍射、ANS荧光探针和紫外光谱研究了S-构型转化对卵白蛋白微观结构的影响。结果显示,不同诱导时间处理的卵白蛋白二级结构的α-螺旋,β-折叠,β-转角和无规卷曲之间相互转化,α-螺旋略有减少,β-折叠相应增加,分子有序性提高。S-构型转化后卵白蛋白晶体结构增加,72h处理后结晶区最大,说明蛋白结构的有序性提高,与CD分析结果一致。卵白蛋白的表面疏水性随诱导时间的延长而增强,72h处理后达到最大值。S-构型转化使卵白蛋白分子表面具有紫外吸收的芳香氨基酸残基包埋于分子内部,导致最大紫外吸光值随诱导时间的延长而下降。研究表明,卵白蛋白的微观结构变化与S-构型转化有关。
     采用荧光猝灭光谱、同步荧光光谱和紫外光谱研究白藜芦醇、核黄素、姜黄素等3种活性小分子与S-卵白蛋白的相互作用机制。根据Stern-Volmer方程研究了结合作用机理,由热力学参数的计算判断了主要作用力类型,并依据能量转移原理求得了结合距离和能量转移效率。研究表明,3种小分子对S-卵白蛋白内源性荧光产生强烈的猝灭作用,猝灭机理主要为静态猝灭和非辐射能量转移;3种小分子与S-卵白蛋白间结合位点数n≈1、结合距离均小于7nm;作用力均以氢键和范德华力为主,且为吉布斯自由能降低的自发过程;同步荧光、紫外光谱研究表明3种小分子能够使S-卵白蛋白的构象发生变化。
     采用激光拉曼光谱、荧光光谱分析超高压(UHP)处理对S-卵白蛋白构象的影响,并考察其对溶解性、乳化性和起泡性等功能特性的影响。结果表明,经UHP处理后S-卵白蛋白的分子量分布没有明显变化。随着压力的增加,无规卷曲含量逐渐增加,二硫键构象变化使得蛋白稳定性降低,酪氨酸残基包埋于侧链中,紧密折叠结构得以舒展。经100Mpa处理后S-卵白蛋白的荧光强度略有增强,此后急剧下降,无峰位位移现象,说明UHP引起蛋白分子构象变化。S-卵白蛋白的溶解性、乳化能力及起泡能力等功能特性均随压力增加而明显改善,以300Mpa处理较为理想,此后压力增加至500Mpa时反而下降。
Ovalbumin, a monomer globular phosphate glycoprotein protein with a molecular mass of43.0kDa, which constitutes about54%of the total proteins in a newly deposited egg, is the most abundant protein component in shell egg. During storage or hatching period, native ovalbumin (N-ovalbumin) gradually converts into S-ovalbumin, which is an irreversible extreme heat-stable form compared with N-ovalbumin. S-ovalbumin is a conformational isomer of native ovalbumin rather than a chemically modified derivative, and certain functional properties of S-ovalbumin are different from that of N-ovalbumin, owing to a series of changes in the molecular and microscopic structure during the process of S-configuration transformation. In the present project, the correlation between S-ovalbumin and egg freshness, and the effect of storage condition on the S-ovalbumin formation in chicken egg white were investigated firstly. Secondly, ovalbumin was separated and purified using two-stage ultrafiltration technique or polyethylene glycol precipitation and anion-exchange chromatography. And then, the effect of S-configuration transformation on molecular characteristics, emulsifying properties and microstructure of ovalbumin was also researched. Finally, the interaction between active small molecules and S-ovalbumin was studied, such as resveratrol, riboflavin and curcumin, and the effect of ultra high pressure (UHP) on the strcture and functional characteristic of S-ovalbumin was also investigated.
     The aim of the first chapter was to study S-ovalbumin as a reference index for the freshness of commercial shell egg in terms of equivalent egg age. S-ovalbumin content, yolk index, albumen pH and haugh units were determined at the storage temperature of25℃and37℃respectively, using85fresh laid eggs. Correlation analysis showed a high correlation coefficient of S-ovalbumin content to storage time, as well as to the three frequently used freshness indexs (haugh unit, yolk index and albumen pH). Furthermore, by exponential equation analysis, the prediction model of equivalent egg age was established, which could be used to predict the freshness of commercial shell egg stored in any condition by converting S-ovalbumin content into equivalent egg age at25℃. This study confirmed the possibility of using S-ovalbumin as a reference index to express commercial shell egg freshness with equivalent egg age.
     In order to evaluate the effect of storage condition on the S-ovalbumin formation in chicken egg white, four influential factors, such as storage temperature, humidity, CO2concentration and film coating, were investigated in the second chapter. The results showed that S-ovalbumin formation positively correlated with the storage temperature, and high temperature could accelerate this formation. S-ovalbumin content was not significantly affected by humidity, and high humidity had only a limited inhibition of the S-ovalbumin formation. Low-concentration CO2(2.5%) did not inhibit evidently the formation of S-ovalbumin, but high-concentration CO2(≥5.0%) had a significant inhibitory effect. Film coating could significantly inhibit the S-ovalbumin formation, especially the oil soluble and mineral oil coating processing had a prominent inhibitory effect.
     Based on the mechanism of ultrafiltration, main factors that affecting the permeate flux and total proteins concentration in permeating liquor, such as initial feed concentration, pH value and trans-membrane pressure (TMP) were studied. After ascertaining the ultrafiltration time by examining the change of permeate flux, the optimum ultrafiltration conditions were supposed to be follows:initial feed concentration,1:1; pH value,2.5; TMP,0.12Mpa. In these optimum conditions, purity and yield of ovalbumin was85.72%and51.36%respectively, and that of lysozyme was87.21%and62.58%respectively, implying that separation efficiency was satisfied. The experimental results showed that it is feasible for two-stage ultrafiltration technique to separate ovalbumin and lysozyme from chicken egg white in bulk and high efficiently.
     High purity ovalbumin was obtained by using polyethylene glycol as a precipitate to separate ovalbumin from other proteins of chicken egg white, and then adopting anion exchange chromatography to further purify the supernatant, and the purity of objective product was determined with reversed-phase high-performance liquid chromatography. It was showed in the results that polyethylene glycol precipitation could efficiently separate ovalbumin from other proteins when the PEG-8000concentration is15%(M/V). After purifying the supernatant with Q-Sepharose Fast Flow anion exchange chromatography, the purity of ovalbumin product reached up to94.84%, and recovery of yields was71.45%. This method is simple, high-efficiency, low cost and environmentally friendly, and easy for scale-up preparation.
     N-ovalbumin was purified by ion-exchange with DEAE Sepharose C1-6B, S-ovalbumin prepared by thermal induction in alkalinity condition, and molecular characteristics and emulsifying properties of S-ovalbumin were studied to investigate the relationship between them. Content of free amino group, zeta potential, hydrophobicity, emulsifying activity and average droplet size of emulsion(d32) during S-ovalbumin information process were investigated, and correlation analysis of referred factors and microscopic observation of emulsion of S-ovalbumin were also conducted. The purity of ovalbumin reached up to98%determined with RP-HPLC, and S-ovalbumin was prepared testified with differential scanning calorimetry (DSC) which showed that there was transition-production (I-ovalbumin) during S-ovalbumin information process. S-configuration transformation resulted in increase of54.69%of free amino group,76.88%of hydrophobicity and38.92%of emulsifying activity, and decrease of7.1mV of zeta potential,2.07μm of average droplet size of emulsion(d32) and51.07%of emulsifying stability. Microscopic observation indicated that S-ovalbumin was prone to form small droplet of emulsion. Emulsify activity was improved to a limited extent, but emulsifying stability worsened by the formation of S-ovalbumin. Therefore, it's concluded that S-configuration transformation of ovalbumin is one of the reasons to quality deterioration of chicken egg albumen.
     The effect of S-configuration transformation on the micro structure of ovalbumin was studied by CD spectra, XRD spectra, ANS fluorescence probe emission spectra and UV absorption spectra. CD spectra was used to examine the changes in the secondary structure of the ovalbumin during S-ovalbumin information process. When the induced time prolonged, the mutual transformation between a-helix,β-sheet,β-turn and the random coil was observed, and the orderliness of the secondary structure was increased with a-helix decreasing slightly andβ-sheet increasing correspondingly. XRD spectra analysis showed that the crystal structure content of the ovalbumin increased with prolonging the induced time and the largest data was observed at72h, indicating that the orderliness of the secondary structure was increased, similar to CD spectra analysis. The ANS fluorescence probe emission spectra analysis demonstrated that S-configuration transformation induced an increase in surface hydrophobicity with prolonging the induced time, and the largest data was also observed at72h. In addition, UV absorption spectra analysis indicated that S-configuration transformation resulted in a decrease in the UV-absorption maximum value with prolonging the induced time, indicating that the aromatic amino acid was buried in the molecular interior. The results indicated that the changes in the microstructure of ovalbumin were relevant to S-configuration transformation.
     The interaction between active small molecules and S-ovalbumin was studied by using fluorescence quenching spectra, synchronous fluorescence spectra and ultraviolet spectra. The active small molecules used in this work were resveratrol, riboflavin and curcumin. Results showed that the quenching of intrinsic fluorescence of S-ovalbumin was produced by the formation of a complex. The value obtained for the binding constant, according to the Stern-Volmer equation, deduced the existence of static quenching mechanism. According to the Forster theory of non-radiation energy transfer, the distance between active small molecules and S-ovalbumin was calculated to be less than7nm. The values obtained for the thermodynamic parameter AH and AS suggested the participation of vad der Waals force and hydrogen bonds in the binding of active small molecules to S-ovalbumin, and the negative value of AG revealed this process is spontaneous. Finally, the conformational change of S-ovalbumin in the presence of active small molecules was confirmed based on the information obtained from the evaluation of synchronous fluorescence spectra and UV-Vis absorption spectra.
     The effect of Ultra High Pressure (UHP) on conformation of S-ovalbumin was studied with raman spectra and fluorescence spectral analysis, and the effect on some functional properties of S-ovalbumin, such as solubility, emulsibility and foamability, were also investigated. It was showed no significant change in the molecular weight distribution of S-ovalbumin after UHP under various pressure treatments. Along with the increase of pressure, the content of random coil was increasing gradually, the stability decreasing owing to the conformation change of disulfide bonds, and tyrosine was buried in the side chain, accordingly the compactly plate sheet structure was to become loose. The fluorescence intensity showed a slight increase after UHP under100Mpa, then a sharp decline with the increase of pressure, no shift of the fluorescence emission peak happening, so it was pointed out that UHP induced conformational change. The solubility, emulsibility and foamability properties had been improved significantly with the increase of pressure, and achived the best effect at300Mpa, however, there was a drop down when pressure was added to500Mpa.
引文
1.陈蓁蓁,张宁,张文申,唐波.蛋白质分子荧光探针研究及其应用新进展.分析化学,2006,34:1341-1347.
    2.陈全胜,赵杰文,岳鹏翔.中空纤维超滤膜分离菜籽饼粕中蛋白质的试验.农业机械学报,2006,37:1-4.
    3.豆玉新.动态超高压微射流均质对卵清蛋白改性机理的研究.[硕士学位论文].南昌:南昌大学图书馆,2008.
    4.付星,马美湖,蔡朝霞,熊伟,陈苗.不同涂膜剂对鸡蛋涂膜保鲜效果的比较研究.食品科学,2010,31:260-263.
    5.高焕春,吕晓玲,李文英.鸡蛋清溶菌酶提取工艺及其应用初探.天津轻工业学报,1996,1:37-38.
    6.黄小波,马美湖,李文革.辐照杀菌对鸡蛋蛋白液特性的影响.农业工程学报,2009,25:244-248.
    7.李乐军,陈树德,乔登江.脉冲电场与牛血清白蛋白相互作用的同步荧光光谱和拉曼光谱比较研究.光谱学与光谱分析,2006,26:81-85.
    8.刘明,潘磊庆,屠康,刘鹏.电子鼻检测鸡蛋货架期新鲜度变化.农业工程学报,2010,26:317-321.
    9.刘燕燕,曾新安,韩忠Raman光谱分析脉冲电场对大豆分离蛋白的影响.光谱学与光谱分析,2010,30:3236-3239.
    10.卢雁,张玮玮,王公轲.FTIR用于变性蛋白质二级结构的研究进展.光谱学与光谱分析,2008,28:88-93.
    11.李汁生,曾庆孝,彭志英.高压处理后大豆分离蛋白溶解性和流变特性的变化及其机理.高压物理学报,1999,13:22-29.
    12.聂珍媛,夏金兰,潘佳民.卵白蛋白的分离及卵白蛋白铁的制备与表征.天然产物研究与开发,2008,20:870-875.
    13.潘超然.卵白蛋白提取及其口服液的研制.福建农林大学学报(自然科学版),2005,4:531-534.
    14.邱宁,马美湖.鸡蛋蛋白质组学研究现状与展望.中国家禽,2011,33:4-10.
    15.宋国胜,胡松青,李琳.超声辅助冷冻对面筋蛋白二级结构影响的红外光谱研究.陕西科技大学学报,2008,26:132-137.
    16.宋国胜,胡娟,沈兴,胡松青,李琳.超声辅助冷冻对面筋蛋白二级结构的影响.现代食品科技,2009,25:860-864.
    17.孙贵宝,王新馨,裴国栋.利用高压静电场保鲜鸡蛋试验.农业工程学报,2009,25:318-323.
    18.涂宗财,迟海霞,刘成梅,陈钢,王辉,陈媛,豆玉新.动态超高压微射流对卵清蛋白功能性质的影响.食品研究与开发,2010a,31:4-6.
    19.涂宗财,王辉,刘光宪,陈钢,豆玉新,张雪春.动态超高压微射流对卵清蛋白微观结构的影响.光谱学与光谱分析,2010b,30:495-498.
    20.魏小彪,王树才.鸡蛋鲜度综合无损检测模型及试验.农业工程学报,2009,25:242-247.
    21.吴丹,徐桂英.光谱法研究蛋白质与表面活性剂的相互作用.物理化学学报,2006,22:254-260.
    22.谢晶,马美湖,高进.植物精油抗菌乳状液涂膜对鸡蛋的保鲜效果.农业工程学报,2009,25:299-303.
    23.许金钩,王尊本.荧光分析方法(第三版).北京:科学出版社,2006.
    24.徐明生.鸡蛋卵白蛋白酶解物抗氧化肤研究.[博士学位论文].西安:陕西师范大学图书馆,2006.
    25.许以明.拉曼光谱及其在结构生物学中的应用.北京:化学工业出版社,2005,4-32.
    26.杨新萍.X射线衍射技术的发展和应用.山西师范大学学报(自然科学版),2007,21:72-76.
    27.杨万根,王璋,徐玉娟,肖更生,马美湖,唐道邦.蛋清利用研究进展.食品科学,2009,30:456-459.
    28.叶怀义,杨素玲,徐倩.高压对淀粉粒结晶结构的影响.中国粮油学报,2000,15:24-28.
    29.于滨,迟玉杰.基于Box-Behnken模型的卵清蛋白糖基化制备技术.农业机械学报,2009,40:138-143.
    30.于滨,迟玉杰.糖基化对卵白蛋白分子特性及乳化性的影响.中国农业科学,2009,42:2499-2504.
    31.余海芬,马美湖,刘岩.阳离子交换法分离蛋清溶菌酶的研究.中国家禽,2008,30:22-25.
    32.袁小军,马美湖,黄群,吴潇.两步超滤法分离鸡蛋清中卵转铁蛋白的研究.食品与机械,2011,27:125-128.
    33.郅文波,邓秋云,宋江楠,欧阳藩.采用高速逆流双水相色谱法纯化卵白蛋白.生物工程学报,2005,21:129-134.
    34.周殿凤,柯惟中,衡航,籍康.紫外辐射对牛血清白蛋白影响的拉曼光谱分析.光散射学报,2006,18:241-247.
    35.左娟,马美湖.鸡蛋涂膜保鲜剂中抑菌物质的筛选.食品科学,2010,31:19-22.
    36. Ahlned J, Ramaswamy HS, Alli I, Ngadi M. Effect of high pressure on the rheological characteristics of liquid egg. Lebnsm-Wiss Technol,2003,36:517-524.
    37. Aleman GD, Walker M, Farkas DF, Torres JA, Ting EY, Morder SC, Hawes ACO. Pulsed ultra high pressure treatments for pasteurization of pineapple juice. J Food Sci, 1996,61:388-390.
    38. Alexander J. Immunonutrition:the role of ω-3 fatty acids. Nutrition,1998,14: 627-633.
    39. Alhakkak J, Kavale S. Improvement of emulsification properties of sodium caseinate by conjugating to pectin through the maillard reaction. Int Congr Series,2002, 1245:491-499.
    40. Alleoni ACC, Antunes AJ. Albumen foam stability and S-ovalbumin contents in eggs coated with whey protein concentrate. Braz J Poultry Sci,2004,6:105-110.
    41. Ammon HPT, Safayhi H, Mack T, Sabieraj J. Mechanism of antiinflammatory actions of curcumine and boswellic acids. J Ethnopharmacol,1993,38:105-112.
    42. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin:problems and promises. Mol Pharm,2007.4:807-818.
    43. Aoki T, Hiidome Y, Kitahata K, Sugimotoa Y, Ibrahima HR, Katob Y. Improvement of heat stability and emulsifying activity of ovalbumin by conjugation with glucuronic acid through the maillard reaction. Food Res Int,1999,32:129-133.
    44. Arakawa T, Timasheff SN. Mechanism of polyethylene glycol interaction with proteins. Biochemistry,1985,24:6756-6762.
    45. Atha DH, Ingham KC. Mechanism of precipitation of proteins by polyethylene glycols. analysis in terms of excluded volume. J Biol Chem,1981,256:12108-12117.
    46. Awade AC, Moreau S, Molle D, Bruleb G, Mauboisa JL. Two-step chromatographic procedure for the purification of hen egg white ovomucin, lysozyme, ovotransferrin and ovalbumin and characterization of purified proteins. J Chromatogr A, 1994,677:279-288.
    47. Awade AC. On egg fractionation:applications of liquid chromatography to the isolation and the purification of hen egg white and egg yolk proteins. Z Lebensm Unters F A,1996,202:1-14.
    48. Azari PR, Feeney RE. Resistance of metal complexes of conalbumin and transferrin to proteolysis and to thermal denaturation. J Biol Chem,1958,232:293-302.
    49. Bachali S, Bailly X. The lysozyme of the starfish asteria rubens. a paradygmatic type I lysozyme. European J Biochem,2004,271:237-241.
    50. Becker JS, Thomas ORT, Franzreb M. Protein separation with magnetic adsorbents in micellar aqueous two-phase systems. Sep Purif Technol,2009,65:46-53.
    51. Belitz HD, Grosch W, Schieberle P. Food chemistry.3rd ed. New York: Springer-Verlag,2004.552.
    52. Berman HM, Westbrook J, Feng Z, Gilliland G. Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acidy Res,2000,28:235-242.
    53. Beveridge T, Arntfield S, Ko S, Chung JKL. Firmness of heat induced albumen coagulum. Poultry Sci,1980,59:1229-1236.
    54. Bi S, Song D, Tian Y. Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim Acta A,2005,61:629-636.
    55. Bi SY, Yan LL, Wang BB, Bian JY, Sun YT. Spectroscopic and voltammetric characterizations of the interaction of two local anesthetics with bovine serum albumin. J Lumin,2011,131:866-873.
    56. Billman GE, Kang JX, Leaf A. Prevention of sudden cardiac death by dietary pure co-3 polyunsaturated fatty acids in dogs. Circulation,1999.8:2452-2457.
    57. Blusztajn JK, Wurtman RJ. Choline and cholinergic neurons. Science,1983,21: 614-620.
    58. Bretzel W, Schurter W, Ludwig B, Kupfer E, Doswald S, Pfister M, Van Loon APGM. Commercial riboflavin production by recombinant bacillus subtilis:down-stream processing and comparison of the composition of riboflavin produced by fermentation or chemical synthesis. J Ind Microbiol Biotechnol,1999,22:19-26.
    59. Burley RW, Vadehra DV. The avian egg chemistry and biology. New York:John Wiley & Sons,1989.65-128.
    60. Cai ZX, Yu HF, Ma MH. Determination of lysozyme at the nanogram level in food sample using resonance rayleigh-scattering method with aunanoparticles as probe. Spectrochimica Acta A,2011,78:1266-1271.
    61. Carmen AM, Ibanez R, Guadix A, Guadix EM. Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane. J Membrane Sci,2007,288: 28-35.
    62. Castellano AC, Barteri M, Bianconi A, Bruni F, Della Longa S, Paolinelli C. Conformational changes involved in the switch from ovalbumin to S-ovalbumin. Z Naturforsch C,1996,51:379-385.
    63. Castellari M, Arfelli G, Riponi C, Carpi G, Amati A. High hydrostatic pressure treatments for beer stabilization. J Food Sci,2000,65:974-977.
    64. Chang YI, Chen TC, Lee GH, Chang KS. Rheological, surface and colorimetric properties of egg albumen gel affected by pH. Int J Food Prop,1999,2:101-111.
    65. Chapleau N, Lamballerie-Anton M. Improvement of emulsifying properties of lupin proteins by high pressure induced aggregation. Food Hydrocolloid,2003,17: 273-280.
    66. Chen TT, Zhu SJ, Cao H, Shang Y, Wang M. Studies on the interaction of salvianolic acid B with human hemoglobin by multi-spectroscopic techniques. Spectrochim Acta A,2011,78:1295-1301.
    67. Chiang BH, Su CK, Tsai GJ, Tsao GT. Egg white lysozyme purification by ultrafiltration and affinity chromatography. J Food Sci,1993,58:303-306.
    68. Chiu HC, Lin CW, Suen SY. Isolation of lysozyme from hen egg albumen using glass fiber-based cation-exchange membranes. J Membrane Sci,2007,290:259-266.
    69. Choi SJ, Lee SE, Moon TW. Influence of sodium chloride and glucose on acid-induced gelation of heat-denatured ovalbumin. J Food Sci,2008,73:313-322.
    70. Crawford YJ, Murano EA, Olson DG, Shenoy K. Use of high hydrostatic pressure and irradiation to eliminate clostridium sporogenes spores in chicken breast. J Food Prot,1996,59:711-715.
    71. Creighton TE. Disulfide bonds as probes of protein folding pathways. Methods Enzymol,1986,131:83-106.
    72. Croguennec T, Nau F, Pezennec S, Piot M, Brule G. Two-step chromatographic procedure for the preparation of hen egg white ovotransferrin. Eur Food Res Technol, 2001,12:296-301.
    73. Cruz-Romero M, Smiddy M, Hill C, Kerry JP. Effects of high pressure treatment on physicochemical characteristics of fresh oysters (crassostrea gigas). Innov Food Sci Emerg,2004,5:161-169.
    74. Datta D, Bhattacharjee S, Nath A, Das R. Separation of ovalbumin from chicken egg white using two-stage ultrafiltration technique. Sep Purif Technol,2009,66:353-361.
    75. De Groot J, De Jongh HHJ. The presence of heat-stable conformers of ovalbumin affects properties of thermally formed aggregates. Protein Eng,2003,16: 1035-1040.
    76. De Groot J, Kosters HA, De Jongh HHJ. Deglycosylation of ovalbumin prohibits formation of a heat-stable conformer. Biotechnol Bioneg,2007,97:735-741.
    77. Dekoster GT, Robertson AD. Thermodynamics of unfolding for kazal-type serine protease inhibitors:entropic stabilization of ovomucoid first domain by glycosylation. Biochemistry,1997,36:2323-2331.
    78. Donovan JW, Mapes CJ, Davis JG, Garibaldi JA. A differential scanning calorimetric study of the stability of egg white to heat denaturation. J Sci Food Agr,1975, 26:73-83.
    79. Donovan JW, Ross KD. Iron binding to conalbumin. Calorimetric evidence for two distinct species with one bound iron atom. J Biol Chem,1975a,250:6026-6031.
    80. Donovan JW, Ross KD. Nonequivalence of the metal binding sites of conalbumin. calorimetric and spectrophotometric studies of aluminium binding. J Biol Chem,1975b,250:6022-6025.
    81. Donovan JW. Mapes CJ. A differential scanning calorimetric study of conversion of ovalbumin to S-ovalbumin in eggs. J Sci Food Agr,1976,27:197-204.
    82. Dubiard CG, Pasco M, Hietanen A, Del Bosque AQ, Nau F. Hen egg white fractionation by ion-exchange chromatography. J Chromatogr A,2005,1090:58-67.
    83. Dufour E, Bon Hoa GH, Haertle T. High pressure effects on β-lactoglobulin interactions with ligands studied by fluorescence. Biochem Biophys Acta,1994,1206: 166-172.
    84. Dumay E, Kalichevsky M, Cheftel JC. High pressure unfolding and aggregation of β-lactoglobulin and the baroprotective effects of sucrose. J Agr Food Chem,1994,42: 1861-1868.
    85. Dutta R, Hines EL, Gardner JW, Udrea DD, Boilot P. Non-destructive egg freshness determination:an electronic nose based approach. Meas Sci Technol,2003,14: 190-198.
    86. Egelandsdal B. Heat-induced gelling in solutions of ovalbumin. J Food Sci,1980, 45:570-574.
    87. Elysee CB, Lencki RW. Protein ternary phase diagrams, effect of ethanol, ammonium sulfate and temperature on the phase behaviour of S-ovalbumin. J Agr Food Chem,1996,44:1651-1657.
    88. Enomoto H, Ishimaru T, Li CP, Hayashi Y. Phosphorylation of ovalbumin by dry-heating in the presence of pyrophosphate:effect of carbohydrate chain on the phosphorylation level and heat stability. Food Chem,2010,122:526-532.
    89. Evans RJ, Bandemer SL. Separation of egg white proteins by paper electrophoresis. J Agr Food Chem,1956,4:802-810.
    90. Fechner A, Knoth A, Scherze I, Muschiolik G. Stability and release properties of double-emulsions stabilized by caseinate-dextran conjugates. Food Hydrocolloid.2007, 21:943-952.
    91. Feeney RE, Abplanalp H, Clary JJ, Edwards DL, Clark JR. A genetically varying minor protein constituent of chicken egg white. J Biol Chem,1963,238:1732-1736.
    92. Fernandez-Mar MI, Mateos R, Garcia-Parrilla MC, Puertas B, Cantos-Villar E. Bioactive compounds in wine:resveratrol, hydroxytyrosol and melatonin:A review. Food Chem,2012,130:797-813.
    93. Francis GE, Fisher D, Delgado C, Malik F, Gardiner A, Neale D. Pegylation of cytokines and other therapeutic proteins and peptides:the importance of biological optimisation of coupling techniques. Int J Hematol,1998,68:1-18.
    94. Gao H, Lei L, Liu J, Kong Q, Chen X. The study on the interaction between human serum albumin and a new reagent with antitumour activity by spectroscopic methods. J Photochem Photobiol A,2004,167:213-221.
    95. Ge F, Jiang LX, Liu DQ, Chen CY. Interaction between alizarin and human serum albumin by fluorescence spectroscopy. Anal Sci,2011,27:79-84.
    96. Guerin C, Brule G. Separation of three proteins from egg white. Sci Aliment, 1992,12:705-720.
    97. Guerin DC, Pasco M, Hietanen A, Quiros Del BA, Naua F, Croguenneca T. Hen egg white fractionation by ion-exchange chromatography. J Chromatogr A,2005,1090: 58-67.
    98. Hammershoj M, Larsen LB, Qvist KB. The textural properties of egg albumen gels affected by the hen egg production and protein composition. J Texture Stud,2001,32: 105-129.
    99. Hammershoj M, Larsen LB, Andersen AB, Qvist KB. Storage of shell eggs influences the albumen gelling properties. Lebensm-Wiss Technol,2002,35:62-69.
    100. Handa A, Takahashi K, Kuroda N, Froning GW. Heat-induced egg white gels as affected by pH. J Food Sci,1998,63:403-407.
    101. Hassan N, Paula VM, Veronica ID, Ruso JM. Rheological properties of ovalbumin hydrogels as affected by surfactants addition. Int J Biol Macromol,2011,48: 495-500.
    102. Hayakawa I, Kanno T, Yoshiyama K, Fujio Y. Oscillatory compared with high pressure sterilization on bacillus stearothermophilus spores. J Food Sci,1994,59: 164-167.
    103. Hayakawa I, Linkob Y, Linkob P. Mechanism of high pressure denaturation of proteins. LWT-Food Sci Technol,1996,29:756-762.
    104. Hidalgo A, Rossi M, Pompei C. Estimation of equivalent egg age through furosine analysis. Food Chem,2006,94:608-612.
    105. Hirose M. S-ovalbumin as a deterioration factor of stored eggs. Foods & Food Ingred J Jpn,2005,210:770-777.
    106. Hisil Y, Otles S. Changes of vitamin B1 concentrations during storage of hen eggs. Lebensm-Wiss Technol,1997,30:320-323.
    107. Holt DL, Watson MA, Dill CW, Alford ES, Edwards RL, Diehl KC, Gardenr FA. Correlation of the rheological behavior of egg albumen to temperature, pH, and NaC1 concentration. J Food Sci,1984,49:137-141.
    108. Huntington JA, Gettins PGW, Patston PA. S-ovalbumin, an ovalbumin conformer with properties analogous to those of loop-inserted serpins. Protein Sci,1995, 4:613-621.
    109. Iametti S, Donnizzelli E, Pittia P, Rovere PP. Squarcina N, Bonomi F. Characterization of high-pressure-treated egg albumen. J Agr Food Chem,1999,47: 3611-3616.
    110. Iesel VP, Ann VL, Marc E. Hendrickx, foaming proterties of egg white protein affected by heat or high pressure treatment. J Food Eng,2007,78:1410-1426.
    111. Jennifer KN, Marshall P, Yoshinori M. Advances in the value of eggs and egg components for human health. Food Chem,2005,53:8421-8431.
    112. Karoui R, Kemps B, Bamelis F, De Ketelaere B, Decuypere E, De Baerdemaeker J. Methods to evaluate egg freshness in research and industry:A review. Eur Food Res Technol,2006,222:727-732.
    113. Kato A, Minaki K, Kobayashi K. Improvement of emulsifying properties of egg white proteins by the attachment of polysaccharide through maillard reaction in a dry state. J Agr Food Chem,1993,41:540-543.
    114. Kint S, Tomimatsu Y. Raman differece spectroscopic investigation of ovalbumin and S-ovalbumin. Biopolymers,1979,18:1073-1079.
    115. Klajnert B, Bryszewska M. Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin. Bioelectrochemistry,2002,55:33-35.
    116. Knorr D. Effects of high hydrostatic pressure processes on food safety and quality. Food Technol,1993,47:156-161.
    117. Kumar V, Sharma V. Effect of polyols on polyethylene glycol(PEG)-induced precipitation of proteins:impact on solubility, stability and conformation. Int J Pharm, 2009,366:38-43.
    118. Kyung HY, Kyu NK, Joon HL. Comparative study on characteristics of lysozymes from the hemolymph of three lepidopteron larvae galleria mellonella, bombyx mori, agrius convolvuli. Dev Comp Immunol,2002,26:707-713.
    119. Lakowicz JR. Principles of Fluorescence Spectroscopy. Thirded. New York: Plenum Press.2006.
    120. Lane L, Koscielny ML, Levison PR, Toome DW, Butts ET. Chromatography of hen egg-white proteins on anion-exchange cellulose at high flow rates using a radial flow column. Bioseparation,1990,1:141-147.
    121. Lee DU, Heinz V, Knorr D. Evaluation of processing criteria for the high pressure treatment of the high pressure treatment of liquid whole egg:rheological study. Lebnsm-Wiss Technol,1999,32:299-304.
    122. Levison PR, Badger SE, Toome DW, Koscielny ML, Lane L, Butts ET. Economic considerations important in the scale-up of an ovalbumin separation from hen egg-white on the anion-exchange cellulose DE92. J Chromatogr A,1992,590:49-58.
    123. Li YB, Shahbazi A, Kadzere CT. Separation of cells and proteins from fermentation broth using ultrafiltration. J Food Eng,2006,75:574-580.
    124. Li ZY Youravong W, Hkittikun A. Separation of proteases from yellow we tuna spleen by ultrafiltration. Bioresource Technol,2006,97:2364-2370.
    125. Lim SH, Ming H, Park EY, Choi JS. Improvement of riboflavin production using mineral support in the culture of ashbya gossypii. Food Technol Biotechnol,2003, 41:137-144.
    126. Lin LN, Mason AB, Woodworm RC, Brandts JF. Calorimetric studies of serum transferrin and ovotransferrin. estimates of domain interactions, and study of the kinetic complexities of ferric ion binding. Biochemistry,1994,33:1881-1888.
    127. Lin SH, Hung CL, Juang RS. Effect of operating parameters on the separation of proteins in aqueous solutions by dead-end ultrafiltration. Desalination,2008,234: 116-125.
    128. Liu JQ, Tian JN, Zhang JY. Interaction of magnolol with bovine serum albumin: a fluorescence-quenching study. Anal Bioanal Chem,2003,376:864-867.
    129. Lu JR. Wan YH, Cui ZF. Strategy to separate lysozyme and ovalbumin from CEW using UF. Desalination,2006,232:477-479.
    130. Lucisano M, Hidalgo A, Comelli EM, Rossi M. Evolution of chemical and physical albumen characteristics during the storage of shell eggs. J Agr Food Chem,1996, 44:1235-1240.
    131. Lullien PV, Balny C. High pressure as a tool to study some proteins'properties: conformational modification, activity and oligomeric dissociation. Innov Food Sci Emerg, 2002,3:209-221.
    132. Maggi A, Cassara A, Rovere P. Use of high pressure for inactivation of butyric clostridia in tomato serum. Ind Conserve,1995,70:289-293.
    133. Mandal P, Bardhan M, Ganguly T. A detailed spectroscopic study on the interaction of rhodamine 6G with human hemoglobin. J Photoch Photobio B,2010,99: 78-86.
    134. Masson P, Arciero DM, Hooper AB, Balny C. Electrophoresis at elevated hydrostatic pressure of the imultiheme hydroxylamine oxidoreductase. Electrophoresis, 1990,11:128-133.
    135. Mellet P, Michels B, Bieth JG. Heat-induced conversion of ovalbumin into a proteinase inhibitor. J Biol Chem,1996,271:30311-30314.
    136. Mertens B. Hydrostatic pressure treatment of food:equipment and processing. New Method of Food Preservation. London:Blackie.1994.159-175.
    137. Mine Y, Noutomi T, Haga N. Emulsifying and structural properties of ovalbumin. J Agr Food Chem,1991,39:443-446.
    138. Mine Y. Effect of dry heat and mild alkaline treatment on functional properties of egg white proteins. J Agr Food Chem,1997,45:2924-2928.
    139. Mine Y. Recent advances in egg protein functionality in the food system. World Poultry Sci J,2002,58:31-39.
    140. Mine Y, Ebrary I. Egg bioscience and biotechnology. Wiley Online Library, 2008.
    141. Ming F, Howell J, Acosta F, Hubble J. Study on separation of conalbumin and lysozyme from high concentration fresh egg-white at high flow rates by a novel ion-exchanger. Biotechnol Bioeng,1993,42:1086-1091.
    142. Mizumachi K, Kurisaki J. Localization of T-cell epitope regions of chicken ovomucoid recognized by mice. Biosci Biotech Bioch,2003,67:712-719.
    143. Molek J, Ruanjaikaen K, Zydney AL. Effect of electrostatic interactions on transmission of pegylated proteins through charged ultrafiltration membranes. J Membrane Sci,2010,353:60-69.
    144. Molina E, Papadopoulou A, Ledward DA. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocolloid,2001, 15:263-269.
    145. Molina E, Papadopoulou A, Ledward DA. Effects of combined high-pressure and heat treatment on the textural properties of soya gels. Food Chem,2003.80:367-370.
    146. Myint SL, Shimogiri T, Kawabe K, Hashiguchi T, Maeda Y, Okamoto S. Characteristics of seven japanese native chicken breeds based on egg white protein polymorphisms. Asian-Austral J Anim,2010,23:1137-1144.
    147. Myung SW, Choi IH, Lee SM, Park JY, Kim IC, Lee KH. Separation of silk proteins and silk oligopeptides by thin film composite ultrafiltration membrane. Desalination,2008,234:158-165.
    148. Nakamura R, Hirai M, Takemori Y. Some differences noted between the properties of ovalbumin and S-ovalbumin in native state. Agric Biol Chem,1980,44: 149-153.
    149. Nakamura R, Takemori Y, Shitamori S. Liberation of carboxyl groups on conversion of ovalbumin to S-ovalbumin. Agric Biol Chem,1981a,45:1653-1659.
    150. Nakamura R, Ishimaru M. Changes in the shape and surface hydrophobicity of ovalbumin during its transformation to S-ovalbumin. Agric Biol Chem,1981b,45: 2775-2780.
    151. Nau F, Mallard A, Pages J. Reversed-phase liquid chromatoprofiley of egg white proteins:optimization of ovalbumin elution. J Liq Chrom Relat Technol,1999,22: 1129-1147.
    152. Nicolas AN, Ngadi M, Prasher S, Karimi Y. Prediction of egg freshness and albumen quality using visible/near infrared spectroscopy. Food Bioprocess Tech,2009,10: 265-270.
    153. Nienaber U. High-pressure processing of orange juice:combination treatment and a shelf life study. J Food Sci, 2001,66:331-336.
    154. Nisbet AD, Saundry RH, Moir AJ, Fothergill LA, Fothergill JE. The complete amino-acid sequence of hen ovalbumin. Biochem,1981,115:335-346.
    155. Nishikimi M, Kyogoku Y. Flavin-protein interaction in egg white flavoprotein. J Biochem,1973,73:1233-1242.
    156. Omana DA, Wu JP. A new method of separating ovomucin from egg white. J Agr Food Chem,2009,57:3596-3603.
    157. Omana DA, Wang JP, Wu JP. Co-extraction of egg white proteins using ion-exchange chromatography from ovomucin-removed egg whites. J Chromatogr B, 2010,878:1771-1776.
    158. Park SJ, Lee JI, Park J. Effects of a combined process of high-pressure carbon dioxide and high hydrostatic pressure on the quality of carrot juice. J Food Sci,2002,67: 1827-1834.
    159. Perez-Ruiz T, Martinez-Lozano C, Tomas V, Fenoll J. Determination of proteins in serum by fluorescence quenching of rose bengal using the stopped-flow mixing technique. The Analyst,2000,125:507-510.
    160. Perlmann G. Enzymatic dephosphorylaton of ovalbumin and plak albumin. J Gen Physiol,1952,35:711.
    161. Peter RL, Stephen EB, David WT. DE92. J Chromatogr A,1992,590:49-58.
    162. Piotrowska H, Kucinska M, Murias M. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res-Rev Mutat,2012,1:60-82.
    163. Puppo MC, Speroni F, Chapleau N, De Lamballerieb M, Anona MC, Antonc M. Effect of high-pressure treatment on emulsifying properties of soybean proteins. Food Hydrocolloid,2005,19:289-296.
    164. Raeker MO, Johnson LA. Thermal and functional properties of bovine blood plasma and egg white proteins. J Food Sci,1995,60:685-690.
    165. Ramalingam A, Sivaram BM, Palanisamy PK, Masilamania V. Photophysics of TICT states of 7-diethylamino-4-methyl coumarin dye by energy transfer techniques. Spectrochim Acta A,2000,6:1205-1210.
    166. Ramos B, Pinho O, Ferreira IMPLVO. Changes of yolk biogenic amine concentrations during storage of shell hen eggs. Food Chem,2009,116:340-344.
    167. Rao PF, Liu ST, Wei Z, Li JC, Chen RM, Chen GR, Zheng YQ. Isolation of flavoprotein from chicken egg white by a single step deae ion-exchange chromatographic procedure. J Food Biochem,1996,20:473-479.
    168. Raymond DE, Harwalkar VR, Ma CY. Detection of incubator reject eggs by differential scanning calorimetry. Food Res Int,1992,25:31-35.
    169. Rhodes MB, Bennett N, Feeney RE. The trypsin and chymotrypsin inhibitors from avian egg whites. J Biol Chem,1960,235:1686-1693.
    170. Rosenthal AJ. Application of aged egg in enabling increased substitution of sucrose by litesse (polydextrose) in high-ratio cakes. J Sci Food Agr,1995,68:127-131.
    171. Saikh SMT, Seetharamappa J, Kandagal PB, Manjunatha DH, Ashoka S. Spectroscopic investigations on the mechanism of interaction of bioactive dye with bovine serum albumin. Dyes Pigments,2007,74:665-671.
    172. Saiko P, Szakmary A, Jaeger W, Szekeres T. Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res-Rev Mutat,2008,658:68-94.
    173. Sale AJH, Gould GW, Hamilton WA. Inactivation of bacterial spores by hydrostatic pressure. J Gen Microbial,1970,60:323-334.
    174. Scott TA, Silversides FG. The effect of storage and strain of hen on egg quality. Poultry Sci,2000,79:1725-1729.
    175. Shirai N, Tani F, Higasa T, Yasumoto K. Linear polymerization caused by the defective folding of a noninhibitory serpin ovalbumin. J Biochem,1997,121:787-797.
    176. Shitamori S, Kojima E, Nakamura R. Changes in the heat-induced gelling properties of ovalbumin during its conversion to S-ovalbumin. Agr Biol Chem,1984,48: 1529-1544.
    177. Silversides FG, Twizeyimana F, Villeneuve P. Research note:a study relating to the validity of the haugh unit correction for egg weight in fresh eggs. Poultry Sci,1993, 72:760-764.
    178. Silversides FG, Villeneuve P. Is the haugh unit correction for egg weight valid for eggs stored at room temperature. Poult Sci,1994,73:50-55.
    179. Silversides FG, Scott TA. Effect of storage and layer age on quality of eggs from two lines of hens. Poultry Sci,2001,80:1240-1245.
    180. Silversides FG, Budgell K. The relationships among measures of egg albumen height, pH, and whipping volume. Poultry Sci,2004,83:1619-1623.
    181. Smith MB, Back JF. Studies on ovalbumin II. the formation and properties of S-ovalbumin, a more stable form of ovalbumin. Aust J Biol Sci,1965,18:365-377.
    182. Smith MB, Back JF. Studies on ovalbumin III. denaturation of ovalbumin to S-ovalbumin. Aust J Biol Sci,1968a,21:539-548.
    183. Smith MB, Back JF. Studies on ovalbumin IV. trypsin digestion and the cystine peptides of ovalbumin and S-ovalbumin. Aust J Biol Sci,1968b,21:549-558.
    184. Smith MB, Nguyen L. Measuring the age of stored eggs. CSIRO Food Research Q,1984,44:94-96.
    185. Stadelman WJ, Cotterill JO. Egg science and technology. New York:The Haworth Press, Inc,1995.
    186. Stein PE, Leslie AG, Finch JT, Turnell WG, Mclaughlin PJ, Carrell RW. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature,1990, 347:99-102.
    187. Surh J, Deceer EA, Mcclements DJ. Influence of pH and pectin type on properties and stability of sodium-cascinate stabilized oil-in-water emulsions. Food Hydrocolloid.2006,20:607-618.
    188. Takahashi N, Hirose M. Reversible denaturation of disulfide-reduced ovalbumin and its reoxidation generating the native cystine cross-link. J Biol Chem,1992, 267:11565-11572.
    189. Takahashi N, Tatsumi E, Orita T, Hirose M. Role of the intrachain disulfide bond of ovalbumin during conversion into S-ovalbumin. Biosci Biotech Bioch.1996,60: 1464-1468.
    190. Takahashi KG, Nakamura A, Mori K. Inhibitory effects of ovoglobulins on bacillary necrosis in larvae of the pacific oyster, crassostrea gigas. J Invertebr Pathol, 2000,75:212-217.
    191. Tani F, Shirai N, Venelle F, Yasumoto K, Onishi T, Doi E. Temperature control for kinetic refolding of heat-denatured ovalbumin. Protein Sci,1997,6:1491-1502.
    192. Tankrathok A, Daduang S, Patramanon R, Araki T, Thammasirirak S. Purification process for the preparation and characterizations of hen egg white ovalbumin, lysozyme, ovotransferrin, and ovomucoid. Prep Biochem Biotech,2009,39:380-399.
    193. Tian JN, Liu JQ, Zhang JY. Fluorescence studies on the interactions of barbaloin with bovine serum albumin. Chem Pharmaceut Bull,2003,51:579-582.
    194. Trentalance A, Bruscalupi G, Conti Devirgiliis L, Leoni S, Mangiantini MT, Rossini L, Spagnuolo S, Erickson SK. Changes in lipoprotein binding and uptake by hepatocytes during rat liver regeneration. Bioscience Rep,1989,9:231-241.
    195. Vachier MC, Piot M, Awadr AC. Isolation of hen egg white lysozyme, ovotransferrin and ovalbumin, using a quaternary ammonium bound to a highly crosslinked agarose matrix. J Chromatogr B,1995,664:201-210.
    196. Van Der PI, Van Loey A, Hendrickx M. Foaming properties of egg white proteins affected by heat or high pressure treatment. Ifset,2005,6:11-20.
    197. Ventura AM, Lahore HMF, Smolko EE, Grasselli M. High-speed protein purification by adsorptive cation-exchange hollow-fiber cartridges. J Membrane Sci,2008, 321:350-355.
    198. Wan YH, Lu JR, Cui ZF. Separation of lysozyme from chicken egg white using ultrafiltration. Sep Purif Technol,2006,48:133-142.
    199. Wang YP, Wei YL, Dong C. Study on the interaction of 3,3-bis(4-hydroxy-1-naphthyl)-phthalide with bovine serum albumin by fluorescence spectroscopy. J Photochem Photobiol A,2006,177:6-11.
    200. Wang ZQ, Gao JQ, Wang J, Jin XD, Zou MM, Li K, Kang PL. Spectroscopic analyses on interaction of amantadine-Salicylaldehyde, amantadine-5-chloro-salicylaldehyde and amantadine-o-vanillin schiff-Bases with bovine serum albumin (BSA). Spectrochim Acta A,2011,83:511-517.
    201. Wilkinson L, Hill M, Welna JP. Correlations and distance measures. In SYSTAT for windows:statistics, version 5 edition. Evanston IL:SYSTATInc,1992.
    202. Williams KC. Some factors affecting albumen quality with particular reference to haugh unit score. World's Poult Sci J,1992,48:5-16.
    203. Wu DD, Chen Z, Liu XG. Study of the interaction between bovine serum albumin and ZnS quantum dots with spectroscopic techniques. Spectrochim Acta A,2011, 84:178-183.
    204. Xi JQ, Guo R. Interactions between flavonoids and hemoglobin in lecithin liposomes. Int J Biol Macromol,2007,40:305-311.
    205. Xu H, Gao SL, Lv JB, Liu QW, Zuo Y, Wang X. Spectroscopic investigations on the mechanism of interaction of crystal violet with bovine serum albumin. J Mol Struct, 2009,919:334-338.
    206. Yamasaki M, Takahashi N, Hirose M. Crystal structure of S-ovalbumin as a non-loop-inserted thermostabilized serpin formm. J Biol Chem,2003,278:35524-35530.
    207. Yang XJ, Chou J, Sun GQ. Synchronous fluorescence spectra of hemoglobin a study of aggregation states in aqueous solution. J Microchem,1998,60:210-216.
    208. Yoshinori M. Laser light scattering study on the heat-induced ovalbumin aggregates related to its gelling property. J Agr Food Chem,1996,44:2086-2090.
    209. Yue QL, Niu LC, Li X, Shao XD, Xie XF, Song ZH. Study on the interaction mechanism of lysozyme and bromophenol blue by fluorescence spectroscopy. J Fluorsc, 2008,18:11-15.
    210. Yu XY, Yang Y, Lu SY. The fluorescence spectroscopic study on the interaction between imidazo[2,1-b]thiazole analogues and bovine serum albumin. Spectrochim Acta A,2011a,83:322-328.
    211. Yu XY, Lu SY, Yang Y, Li XF, Yi PG. The investigation of the interaction between NCP-EDA and bovine serum albumin by spectroscopic approaches. Spectrochim ActaA,2011b,83:609-613.
    212. Zandomeneghi G, Zandomeneghi M. Determination of holo-and apo-riboflavin binding protein in avian egg whites through circular dichroism and fluorescence spectroscopy. J Agr Food Chem,2009,57:6510-6517.
    213. Zhang HK, Li LT, Tatsumi E, Isobe S. High-pressure treatment effects on proteins in soy milk. LWT-Food Sci Technol,2005,38:7-14.
    214. Zhang SQ, Zhu JJ, Wang CZ. Novel high pressure extraction technology. Int J Pharm,2004,278:471-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700