用户名: 密码: 验证码:
中试ABR-CFASR组合工艺处理印染废水效能及数学建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的不断发展和人们环境意识的提高,我国加大了对印染废水的治理。印染废水组分非常复杂,其难降解、有毒有机成分的含量也越来越多,有机物含量高、色度深、化学需氧量高,而生化需氧量相对较低,可生化性差,排放量大,有些甚至是致癌、致突变、致畸变的有机物,对环境尤其是水环境的威胁和危害越来越大。传统的印染废水生物处理方法,只能降低印染废水中的BOD5,对于COD,特别是有毒难降解有机物和色度的降低效果不明显。可见,单一的处理方法已不能满足当前印染废水发展的要求。本文通过分析印染废水水质特点和比较多种废水处理路线与工艺,提出了利用“厌氧折流板反应器(ABR)—交叉流好氧反应器(CFASR)”这一技术路线处理该种废水的中试方案,并在中试试验数据和ADM-ASM1的基础上建立了相关的数学模型以指导中试运行。
     针对印染废水水质特点,提出了ABR-CFASR组合工艺处理印染废水的技术路线,考察了ABR-CFASR组合工艺处理印染废水的中试运行效果,并确定了最佳工艺参数及启动运行方案。ABR运行结果表明,在进水COD为1000mg/L左右波动的情况下,对COD、BOD、SS和色度去除率平均值分别为42%、19.2%、48.6%和30%;印染废水经ABR处理后,出水略有升高,而出水TN比进水略下降,出水TP含量有所提高,同时ABR进出水B/C由0.56提高到0.68,这将有益于后续的CFASR反应器中好氧微生物的生长;确定了ABR启动和运行方案:HRT、pH、MLSS、MLVSS、容积负荷、污泥负荷在启动时应分别控制在60h、7、45g/L、30g/L、2.0kgCOD/(m3·d)、0.1kgCOD/(kgMLVSS·d),在稳定运行时应分别控制在12h、7~9、35~50g/L、20~35g/L、6.0~18.0kgCOD/(m3·d)、0.2~0.5kgCOD/(kgMLVSS·d)。与ABR串联的CFASR中试运行结果表明:在HRT为20h、MLSS为1500~2000mg/L、污泥负荷为0.2~0.8kgCOD/(kgMLSS·d)、温度为15~37℃、pH为7.12~8.86、DO为2.0~3.0mg/L的条件下,出水COD<100mg/L,BOD<20mg/L,满足国家一级排放标准。试验结果还表明,CFASR对TN、TP、SS和色度均具有较高的去除率,分别为90%、80%、90%和80%以上。
     由于印染废水pH值较高(最大可达到10),而传统厌氧生物处理反应器(如UASB)最适pH范围为7.5~8.0,因此传统印染废水处理工艺应加硫酸调节pH。而本中试试验结果表明:与传统的印染废水厌氧处理工艺相比(如UASB),ABR可以承受的最大进水pH为9.5,不必加硫酸调节pH,因此节约大量药剂费用。另外,传统厌氧工艺处理印染废水HRT较长(大于20h),而本中试试验结果表明ABR可以在较短的HRT(12h)下稳定运行,可大大节约用地面积。
     采用GC-MS和LC-MS等分析手段,考察了ABR对印染废水中有机物和染料分子的去除效果。结果表明:ABR进水中均含大量的高级烷烃、酰胺类、有机酸、酮类、酚类和酯类,ABR反应器对其降解效果很好,出水中这些物质含量很低。经过ABR后,物质化学结构基本都发生了较大的变化,许多大分子物质都转化为小分子物质,有利于后续好氧工艺进一步降解。ABR对色酚AS-E、偶氮染料酸性橙、直接蓝、蒽醌类-酸性蓝有较好的去除效果,但对偶氮类-苏丹红1号没有去除。
     以国际水质污染与控制协会(IWA)推出的厌氧活性污泥数学模型(ADM1)和活性污泥数学模型(ASM1)为理论基础,并对其进行了修正和完善,建立了ABR-CFASR处理印染废水的数学模型,从而为ABR-CFASR处理印染废水的设计、优化运行、出水水质预测与控制提供理论依据。基于ADM的ABR模拟结果表明:ABR第一格室出水COD浓度的模拟值和实测值有较大的差距,相对偏差为-32.8%~30.6%,而第三格室和第六格室出水COD模拟效果较好,相对偏差为-20%~20%。另外,ABR模型也表现出对VFA、MLVSS和pH有较好的模拟结果。基于ASM1的CFASR模型模拟结果表明:不同HRT条件下,模型模拟值和试验值非常吻合,相对偏差率为-14%~14%,说明本模型可以用于CFASR出水系统预测。而ADM-ASM1组合模型对出水COD的相对偏差为-18%~19%,最终模拟结果偏差大于CFASR出水模拟结果偏差,原因可能是参数估计误差和由ADM模型所导致的ABR出水水质(即CFASR进水)估计误差所致。
With the rapid development of economic and enhancement of people’senvironmental awareness, our country increases the treatment degree of the printingand dyeing wastewater. As there exists difference between raw materials, productionvarieties, production technology and management level, the quality of the printingand dyeing wastewater is different from each other. As a result, the components ofwastewater discharged by the different processes are extremely complex. Becausethere are more and more organic components that are poisonous and hard to depose.Furthermore, printing and dyeing wastewater has high organisms with high COD butlower BOD, heavy color, poor biodegradability and large emissions, some of whicheven are carcinogenic, mutagenic, distortion organic matters that have increasinglythreatens and hazards to the environment especially the aquatic environment.Traditional biological treatment for printing and dyeing wastewater has a highremoval on BOD5, but inefficient for COD, especially for toxic refractory organicmatter and chroma. It is thus clear that a single approach increasingly facing achallenge to meet the requirement of the development of the printing and dyeingindustry. After analyzing the character of printing and dyeing wastewater andcomparing the different practical wastewater treatment technology route of a sewagedisposal, we bring forward the plan through which the technology route of “anaerobicbaffled reactor (ABR)–cross flow aerobic sludge reactor (CFASR)” is utilized totreat this kind of wastewater, and modeling based on the pilot test data andADM-ASM1to instruct pilot operation.
     The technology of route which employs a combined process ABR–CFASR totreat the printing and dyeing wastewater was put forward on account of thewastewater characteristics. Pilot-scale operation effect of ABR–CFASR system isexamined and optimal process parameters and start running program weredetermined. The ABR results show that when the influent COD fluctuates at1000mg/L, the average removal of COD, BOD, SS and chroma were42%,19.2%,48.6%and30%, respectively. After the treatment of ABR, effluent NH4+-N raises slightly,effluent TN declines slightly compared with influent TN, and TP content in waterrises, accompany with the B/C of ABR increased from0.56to0.68, this improvements of B/C is favorable for the growth of aerobic micro-organisms in thefollow-up CFASR reactor. According to the results the startup and running programof ABR are determined: the startup HRT, pH, MLSS, MLVSS, volume-load, sludgeload were controlled at60h,7,45g/L,30g/L,2.0kgCOD/(m3·d),01kgCOD/(kgMLVSS·d), respectively;when the system being steady operationthese parameters are controlled at12h,7~9,35~50g/L,20~35g/L,6.0~18.0kgCOD/(m3·d),0.2~0.5kgCOD/(kgMLVSS·d). The result of operationeffect of pilot-scale CFASR in series with ABR show:under the condition ofHRT=20h, MLSS=1500~2000mg/L, pH=7.12~8.86, DO=2.0~3.0mg/L, sludgeload=0.2~0.8kgCOD/(kgMLSS·d), the temperature is15~37℃, the effluentCOD<100mg/L, BOD<20mg/L, which is well fitted the standard of wastewaterdischarge, the result also show that CFASR has a high potential to reduce the TN、TP、SS and chroma, which can reach more than90%,80%,90%and80%,respectively.
     AS printing and dyeing wastewater has a high value of pH which up tomaximum of10,so the traditional anaerobic biological treatment reactor, such asUASB, utilized to treat printing and dying wastewater must adjust pH to theoptimum pH range which is7.5~8.0by addition sulfate to the system. The result ofthe pilot-scale demonstrate that ABR has potential to treat high influent pH, whichcan attainability at9.5, compare to the traditional anaerobic treatment process, ABRsaving a large number of pharmaceutical costs as there is no need to addition sulfateto adjust pH. In addition to, ABR occupied less land as it can steady operates at ashorter HRT (12h) compare to the traditional anaerobic treatment process (morethan20h).
     Using the GC-MS and LC-MS analytical tools to observe the removal oforganisms and dye molecules which attribute to the ABR. The result show that ABRreactor can well degrade the influent higher alkanes, mide acids, ketones, phenols,esters which are high in the influent, but low in the effluent. by analyzing theeffluent detect that most of macromolecular materials were transferred to smallermolecules, such as cycloalkanes, quinolines, phenols, which is beneficial to thefurther degradation in the follow-up aerobic processes. The pilot-scale experimentdetection found ABR has a high reduction of naphthol AS-E, azo-dye acid orange,direct blue, anthraquinone-acid blue, but no detection of the removal of azo sudan1.
     Establishing the mathematical model for the printing and dyeing wastewatertreatment based on the anaerobic digestion model No.1(ADM1) and activatedsludge model No.1(ASM1) which developed by the international water association(IWA), after being amended and improved,we establish model to provide a theoretical basis for the design, optimal operation, forecast and control the effluentwater quality of printing and dying wastewater which treated by ABR-CFASR. TheABR simulated results based on the ADM indicate that the predicted date of the firstcancellus of ABR is far from the true date, the error rate is-32.8%~30.6%, while thesimulation of the third and sixth cancellus is will fitted the real date, error rate is-20%~20%. Otherwise the model of ABR show a perfect simulation for VFA、MLVSS and pH. The CFASR simulated result which based on ASM1show that inunder the different HRT, simulated dates are well inosculation with the experimentaldates at a-14%~14%error rate,which demonstrate that the model can employed topredict the effluent system of CFASR. However the ADM-ASM1combined modelpredict the effluent COD with a-18%~19%error rate, which larger than thesimulated result of CFASR account for the deviation of parameters or the deviationas the ADM simulate the ABR effluent water quality.
引文
1奚旦立,陈季华,马春燕.印染废水处理现状及存在问题.全国纺织印染废水深度处理及回用和污水达标排放学术研讨会.2005.
    2戴日成,张统,郭茜.印染废水水质特征及处理技术综述.给水排水.2000,26(10):33~37.
    3马春燕.印染废水深度处理及回用技术研究.东华大学博士论文.2008.
    4雷乐成,杨岳平,汪大晕.污水回用新技术及工程设计.北京:化学工业出版社.2002.
    5国家环保总局科技标准司.印染废水污染防治技术指南.北京:中国环境科学出版社.2002:76~78.
    6张彦群.复合生物技术在印染废水集中处理中的应用研究.南京理工大学硕士论文.2006.
    7化学工业出版社.水处理工程典型设计实例.北京:化学工业出版社.2001,5.
    8李茵,奚旦立.兼氧-好氧工艺处理染料废水的研究.环境科学研究.2003,16(2):39~42.
    9邵云海,蒋克彬.水解与接触氧化工艺处理印染废水.中国给水排水.2001,17(8):53~55.
    10孙根行,黄建成.一级强化混凝+缺氧水解酸化+生物膜一活性污泥共生系统处理印染废水.水处理技术.2009,35(2):65~71.
    11陈扬,同帜,程刚.印染废水处理工艺的研究.西北纺织工学院学报.1999,13(2):201~207.
    12Y.F. Wang, B.Y. Gao, Q.Y. Yue, X. Zhan, X.H. Si, C.X. Li. Flocculationperformance of epichlorohydrin-dimethylamine polyamine in treating dyeingwastewater. Journal of Environmental Management.2009,91:423~431.
    13B. Bolto, J. Gregory. Organic polyelectrolytes in water treatment. Water Research.2007,41(11):2301~2324.
    14B.Y. Gao, Q.Y. Yue, Y. Wang, W.Z. Zhou. Color removal from dye-containingwastewater by magnesium chloride. Journal of Environmental Management.2007,82(2):167~172.
    15D.J. Joo, W.S. Shin, J.H. Choi, S.J. Choi, M.C. Kim, M.H. Han, T.W. Ha, Y.H.Kim. Decolorization of reactive dyes using inorganic coagulants and syntheticpolymer. Dyes and Pigments.2007,73(1):59~64.
    16H.Y. Xu, M. Prasad, Y. Liu. Schorl: A novel catalyst in mineral-catalyzedFenton-like system for dyeing wastewater discoloration. Journal of HazardousMaterials.2009,165:1186~1192.
    17顾鼎言.印染废水处理.北京:中国建筑出版社.1985.
    18何强,龙腾锐.印染废水治理技术评价.给水排水.1995,5:47~51.
    19范雪荣.纺织品染整工艺学.北京:中国纺织出版社.1999.
    20陈一飞,施成良.印染废水成分分析及净化处理技术.四川丝绸.2003,3:1~17.
    21赵雪,何瑾馨.印染废水处理技术的研究进展.化学工业与工程技术,2009,30(2):38~43.
    22李新堂,宋军.高唐县水资源资源开发利用现状及可持续利用对策.山东水利.2005,4:23~24.
    23杨书铭,黄长盾.纺织印染工业废水治理技术.北京:化学工业出版社.2002.
    24孔庆安,吴奇藩.印染废水混凝脱色机理.中国给水排水.1995,3:32~34.
    25卢建杭.印染废水混凝脱色与染料结构及混凝剂种类间的关系.工业水处理.1999,19(4):28~30,
    26李家珍.染料、染色工业废水处理.北京:化学工业出版社.1997,74~75.
    27Y.F. Leung. Development of MCM-41based catalysts for the photo-Fenton’sdegradation of dye pollutants. Ph.D. thesis, The Hong Kong University of Scienceand Technology, Hong Kong,2005.
    28黄川.印染工业废水处理的研究现状.重庆大学学报(自然科学版).2001,24(6):139~142.
    29G. Mckay, J.F. Porter, G.R. Prasad. Removal of dye colors from aqueous solutionsby adsorptionon low-cost materials. Water, Air and Soil Pollution.1999,114(3-4):423~438.
    30S.D. Khattri, M.K. Singh. Colour removal from dye wastewater using sugar canedust as an adsorbent. Adsorption Science and Technology.1999,17(4):269~282.
    31O. Ozdemir, M. Turan, A.Z. Turan, A. Faki, A.B. Engin. Feasibility analysis ofcolor removal from textile dyeing wastewater in a fixed-bed column system bysurfactant-modified zeolite (SMZ). Journal of Hazardous Materials.2009,166:647~654.
    32M.S. Xia, C.H. Hu, H.M. Zhang. Effects of tourmaline addition on thedehydrogenase activity of Rhodopseudomonas palustris. Process Biochem.2006,41:221~225.
    33曹佩文,姚国琴.涤纶碱减量废水处理现状简析.印染.2006,32:36~37.
    34曹佩文,陈畅,董晓芳.碱减量废水资源化回收处理及其应用.印染.2007,13:29~31.
    35M. Alkan, O. Demirbas, M. Dogan. Adsorption kinetics and thermodynamics ofan anionic dye onto sepiolite. Micropor. Mesopor. Mater.2007,101:388~396.
    36张林生,蒋岚岚.染料废水的脱色方法.化工环保.2000,20(l):14~17.
    37S.G. Huling, P.K. Jones, T.R. Lee. Iron optimization for Fenton-driven oxidationof MTBE-spent granular activated carbon. Environ. Sci. Technol.2007,41:4090~4096.
    38X.L. Guo, Y.D. Yao, G.F. Yin, Y.Q. Kang, Y. Luo, L. Zhuo. Preparation ofdecolorizing ceramsites for printing and dyeing wastewater with acid and basetreated clay. Applied Clay Science.2008,40:20~26
    39J. Wang, M.C. Long, Z.J. Zhang, L.N. Chi, X.L. Qiao, H.X. Zhu, Z.F. Zhang.Removal of organic compounds during treating printing and dyeing wastewater ofdifferent process units. Chemosphere.2008,71:195~202.
    40D.G. Hager. Industrial wastewater Treatment by Granular Activated Carbon. Am.Dyestuff RePorter.1998,62(11):69~75.
    41肖敏,李丽,钟龙飞,陈桂泉,黄泽城,苏晓银.活性炭吸附法处理印染废水的研究.辽宁化工.2009,38(8):537~539.
    42陈天虎.改性凹凸棒石粘土吸附性能对比实验研究.工业水处理.2000,20(4):27~29.
    43赵东源.天然蒙脱土对印染废水吸附处理的研究.环境污染与防治.1996,16(l):23~27.
    44张建平.粉煤灰处理废水机理及应用.粉煤灰综合利用.1996,4:33~35.
    45李春,魏玉君,黄俊.膜分离技术在印染废水中的应用.纺织科技进展.2009,4:19~21.
    46S.J. You, D.H. Tseng, J.Y. Deng. Using combined membrane processes for textiledyeing wastewater reclamation. Desalination.2008,234:426~432
    47任建新.膜分离技术及其应用.北京:化学工业出版社.2002.
    48税永红.超滤在印染废水处理中的应用.成都纺织高等专科学校学报.2004, l:1~3.
    49郑辉东,董声雄.中空纤维超滤膜回收PVA废水研究.福建化工.2004, l:1~3.
    50彭晓文,杨迎新.膜分离技术在印染废水处理中的应用.江西化工.2003, l:21~23.
    51蔡惠如,高从.纳滤技术治理染料废水的尝试.环境工程.2002,20(l):24~25.
    52余跃,冯晖.纳滤膜处理印染废水的研究.北工时刊.2004,18(9):26~29.
    53高廷耀,顾国维.水污染控制工程.北京:高等教育出版社.1999.
    54鲍廷镛,方孟伟.反渗透法处理绵纶染色废水.水处理技术.1981,7(4):19~21.
    55J.J. Porter, C. Brandon. Zero discharge as exemplified by textile dyeing andfinishing.Chemical technology.1976,6:402~407.
    56W.G. Kuo. Decolorizing Dye Wastewater with Fentons Reagent. WaterResearch.1992,26(7):881~886.
    57杨书名,黄长盾.纺织印染工业废水治理技术.北京:化学工业出版社.2002.
    58贺启环,张勇.印染废水复合混凝剂的研究.染料工业.2002,39(3):38~41.
    59汤心虎,黄秀微.无机/有机复合絮凝剂对印染废水脱色的研究.水处理技术.2001,27(5):267~269.
    60陈鸿林,张长寿.混凝沉淀-二氧化氯氧化法处理印染废水.化工环保.1999,19(4):223~225.
    61施银桃,夏东升.紫外光助臭氧化处理活性绝红K-2BP废水研究.环境污染治理技术与设备.2004,5(l):28~31.
    62D.H. Ahn, W.S. Chang, T.I. Yoon. Dyestuff wastewater treatment using chemicaloxidation Physical absorption and fixed bed biofilm process. ProcessBiochemical.1999,34(5):429~439.
    63P.C. Fung, Q. Huang, S.M. Tsui, C.S. Poon. Treat ability study of organic andcolor removal in dyeing wasterwater by UV/US system combined with hydrogenperoxide.Wate Science and Technology.1999,40(l):153~160.
    64S. Ledakowicz, M. Gonera. Optimization of oxidants dose for combined chemicaland biological treatment of textile wastewater. Water Research.1999,39(12):2107~2115.
    65朱辉. O3/UV工艺处理染废水二级出水的试验研究.应用化工.2009,38(8):1230~1240.
    66刘刚,雷乐成.纺织印染废水的湿式空气氧化处理.浙江大学学报(工学版).2001,35(l):37~40.
    67陈玉峰,陈力,张坤玲. UV/Fenton法在废水处理中的应用.石家庄职业技术学院学报.2007,6:15~18.
    68K. Swaminathan, S. Sandhya, S.A. Carmalin. Decolorization and degradation ofH-acid and other dyes using ferrous-hydrogen peroxide system. Chemosphere.2003,50(5):619~625.
    69张良林,徐晓军,郭建.均相Fenton氧化-混凝法强化处理印染废水.化工环保.2006,1:38~40.
    70顾晓扬,汪晓军,林德贤. O3和Fenton试剂化学氧化处理酸性玫瑰红印染废水.染料与染色.2006,1:34~36.
    71李亚峰,张玲玲,袁晓东.混凝-Fenton法处理印染废水的试验研究.沈阳建筑大学学报.2006,1:137~140.
    72G. Ipek, A.S. Gulerman, D. Filizb. Importance of H2O2/Fe2+ratio in Fenton'streatment of a carpet dyeingwastewater. Journal of Hazardous Materials.2006,136:763~769.
    73L. Lei, G.H. Chen. Homogeneous Catalytic wet-air oxidation for treatment oftexile wastewater. Water Environment Research.2000,72(2):19~21.
    74X.J. Hu, L. Lei, G.H. Chen, P.L. Yue. On the degradability of Printing and dyeingwastewater by wet-air oxidation. Water Researeh.2001,35(8):2078~2080.
    75马红芳.内电解提高印染废水生物处理的研究.工业用水与废水.2003,34(4):29~32.
    76E. Fockedey, A.V. Lieede. Coupling of anodic and cathod reactions for phenolelectro-oxidat ion using three-dimesional electodes. Water Research.2002,36:416~417.
    77X. Ya, H. Chun, H. Karlsson. Performance three-phase three-dimensionalelectrode reactor for the reduction of COD in simulated wastewater containingphenol. Chemoshere.2003,50(1):131~136.
    78王林红,程爱华,王志盈.三维电极法处理染料废水的研究.山西建筑.2007,14:147~148.
    79景晓辉,蔡再生.三维电极法降解活性染料废水.印染.2006,14:1~4.
    80熊林,李明玉,尹华等.三维电极流化床对印染废水降解脱色作用.给水排水.2005,1:59~62.
    81郭玉凤,王振川,李景印.三维电极降解阴离子表面活性剂废水的研究.水处理技术.2006,5:20~22.
    82陈武,杨昌柱,梅平.三维电极电化学方法处理印染废水实验研究.工业水处理.2004,8:43~45.
    83蓝连贺.内电解法处理印染废水的效果研究与分析.工业水处理.2004,24(7):24~27.
    84张旭,陈胜,孙德智.印染废水生物法处理技术研究进展.长春工业大学学报.2009,30(1):26~31.
    85胡文容,裴海燕.超声强化O3氧化偶氮染料的特性.科学通报.2001,46(24):2049~2052.
    86关小燕,王竞,周集体.絮凝剂产生菌的筛选及其培养条件优化.环境科学研究.1999,12(4):9~11.
    87Fu Y., Viraraghavan T. Dye biosorption sites in aspergillus niger. BioresourceTechnology.2002,82:139~145.
    88黄民生,孙萍,李朝辉.微生物絮凝剂的絮凝实验研究.上海环境科学.1999,18(8):360~367.
    89黄民生,孙萍,朱莉.微生物絮凝剂的研制及其絮凝条件.环境科学.2000,21(l):23~26.
    90庄源益,戴树桂,李彤.生物絮凝剂对水中染料絮凝效果探讨.水处理技术.1997,23(6):348~353.
    91叶晶蓄,谭天伟.微生物絮凝剂的研制一菌种选育、絮凝效果及提取工艺.微生物学通报.2001,28(4):31~35.
    92高廷耀,顾国维.水污染控制工程.第二版.北京:高等教育出版社.1999:95~192.
    93J.S. Knapp, P.S. Newby. The microbiological decolorization of an industrialeffluent containing a diazo-linked chromophore.Water Researeh.1995,29(7):1807~1809.
    94E. Razo-flores, M. Luijten, B.E.A. Donlon. Biodegradation of selected azo dyesunder methanogenic conditions.Water Science Technology.1997,36(6-7):65~72.
    95K.C.A. Bromley-challenor, J.S. Kapp, Z. Zhang. Decolorization of an azo dyesbyunacclimated activated sludge under anaerobic conditions.Water Research.2000,34(18):4410~4418.
    96B. Manu, S. Chaudhari. Anaerobic decolorisation of simulated textile wastewatercontaining azo dyes. Bioresource Technology.2002,82:225~231.
    97T.A. Mahdavi, T. Donnelly, G.K. Anderson. Colour removal from a simulated dyewastewater using a two-Phase anserobid packed bed reactor.Water Researeh.2001,35(2):425~432.
    98付莉燕,文湘华,徐丽捷.活性翠蓝生物降解性能的试验研究.环境科学.2001,22(4):100~103.
    99竺建荣,杨艳茹,安虎仁.厌氧UASB-好氧工艺处理染料废水的研究.环境科学.1994,15(4):31~34.
    100徐向阳,郑平,俞秀娥.染化废水仄氧生物处理技术的研究.环境科学学报.1998,18(2):153~160.
    101贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社.1998:8,17-18,465~469.
    102彭跃莲,韩燕助,李建中.生物技术在印染和染料废水处理中的应用.环境科学进展.1997,5(3):56~64.
    103李茵,奚旦立.兼氧-好氧工艺处理染料废水的研究.环境科学研究.2003,16(2):39~42.
    104奚旦立,陈季华.兼氧技术-有机废水处理的新方法.中国纺织大学学报.1997,23(4):52~58.
    105M.B. Ibrahim, P. Nigam, D. Singh. Microbial decolorization of textile-dye-containing effluents. Bioresouce Technology.1996,55:217~227.
    106T. Panswad, A. Techovanich, J. Anotai. Comparison of dye wastewater treatmentby normal and anoxic+anaerobic/aerobic sbr activated sludge processes. WaterScience and Technology.2001,43(2):355~362.
    107T. Panswad, W. Luangdilok. Decolorization of reactive dyes with differentmolecular structures under different environmental conditions. Water Researeh.2000,34(17):4177~4184.
    108W. Luangdilok, T. Panswad. Effect of chemical structures of reactive dyes oncolor removal by an anaerobic-aerobic process. Water Science and Technology.2000,42(3-4):377~382.
    109C. O neill, F.R. Hawkes, D.L. Hawkes. Anaerobic-aerobic biotreatment ofsimulated textile effluent containing varied ratios of starch and azo dye. WaterResearch.2000,34(8):2355~2361.
    110H. An, Y. Qian, X. Gu. Biological treatment of dye wastewater usingananaerobic-oxic system. Chemosphere.1996,33(12):2533~2542.
    111安虎仁,钱易,顾夏声.厌氧过程在厌氧-好氧工艺处理染料工业废水中的作用.环境科学研究.1994,7(3):36~40.
    112鲁玉龙.厌氧-好氧工艺处理印染废水技术的现状及发展.污染防治技术.1998,11(l):12~14.
    113陈扬,同帜,程刚.印染废水处理工艺的研究.西北纺织工学院学报.1999,13(2):201~207.
    114邵云海,蒋克彬.水解与接触氧化工艺处理印染废水.中国给水排水.2001,17(8):53~55.
    115李跃.生物接触氧化-高效气浮-过滤法处理印染废水.环境工程.1995,13(4):13~14,17.
    116沈耀良.厌氧折流板反应器(ABR)一种新型的厌氧处理工艺.苏州城建环保学院学报.1994,7(4):33~40.
    117龚敏,赵九旭,蒲仕刁. ABR工艺预处理木薯酒糟废水的工程应用.环境科学与技术.2002,25(5):36~37.
    118沈耀良,王惠民,赵丹.厌氧折流板反应器处理淀粉废水及污泥特性.上海环境科学.2002,21(3):131~134.
    119邱波,郭静,邵敏. ABR反应器处理制药废水的启动运行.中国给水排水.2000,16(8):42~44.
    120王宝贞,沈耀良.水解酸化-好氧工艺处理渗滤液与城市污水混合废水的研究.哈尔滨建筑大学学报.1999,15(5):10~12.
    121雷中方,陆雍森,徐庆平.用厌氧折流板反应器处理碱法草浆黑液.上海环境科学.1995,14(5):19~22.
    122J. Bell, J.J. Plumb, C.A. Buckley, et al. Treatment and decolorization of dyes in ananaerobic baffled reactor. J Environ Eng.2000,126(11):1026~1032.
    123J.J. Plumb, J. Bell, D.C. Stucky. Microbial populations associated with treatmentof an industrial dye effluent in an anaerobic baffled reactor. Appl EnvironMicrobiol.2001,67(7):3226~3235.
    124杨颖波,王连俊. ABR-MBR处理纺织废水.污染防治技术.2003,1l:44~46.
    125印春生.混凝-水解酸化-好氧-混凝工艺处理印染废水.污染防治技术.2008,21(5):78~80.
    126喻敏学. ABR反应器预处理综合印染废水研究.环境工程学报.2009,3(6):981~984.
    127吴惠芳.折流式水解-复合膜生物法处理印染废水的特性.环境工程学报.2008,2(6):775~779.
    128A.W. Lawrence, P.L. McCarty. Kinetics of methane fermentation in anaerobictreatment. Water Pollution Control Federation.1998,41(2):1~17.
    129J.F. Andrews. Dynamic model of the anaerobic digestion process. Water PollutionControl Federation.1969,95:95~109.
    130J.K. Andrews. Dynamic modeling of anaerobic digestion process. SanitaryEngineering.1969,5(2):95~102.
    131D.T. Hill. A dynamic model for simulation of animal waste digestion. WaterPollution Control Federation.1977,15:2129~2144.
    132D.T. Hill. A comprehensive by namic model for animal easte methannogensis.Water Research.1982,25(5):1374~1379.
    133B.N. Lohani. Adynamic model for simulation of animal waste digestion. WaterPollution Control Federation.1977,49(10):2129~2143.
    134F.E. Mosey. Mathematical modeling of the anaerobic digestion process:regulatory mechanisms for the formation of short-chain volatile acids fromglucose. Water Science and Technology.1983,15(2):209~232.
    135D.J. Costello, P.F. Greenfield, P.L. Lee. Dynamic modeling of asingle-stagehigh-rate anaerobic rector-I model derivation. Water Research.1991,25(7):77~81.
    136D.J. Costello, P.F. Greenfield, P.L. Lee. Dynamic modeling of asingle-stagehigh-rate anaerobicrector-II model verification. Water Research.1991,25(7):859~871.
    137I.R. Ramsay. Modelling and Control of high-rate anaerobic wastewater treatmentsystem.University of Queensland Brisbane.1997:25~53.
    138D.J. Batstone, J. Keller, R.B. Newell. Modelling anaerobic degradation ofcomplex wastewater. Ⅱ: parameter estimation and validation using slaughterhouseeffluent. Bioresource Technology.2000,75:75~85.
    139张亚雷,周雪飞.国际水协厌氧消化工艺数学模型课题组著译.同济大学出版社.2004:1~69.
    140F. Blumensaat, J. Keller. Modelling of two-stage anaerobic digestion using theIWA Anaerobic Digestion Model No.1. Water Research.2005,39:171~183.
    141W.J. Parker. Application of the ADM1model to advanced anaerobic digestion.Bioresource Technology.2005,96:1832~1842.
    142H. Siegrist. Mathematical model for meso-and thermophilic anaerobic sewagesludge digestion. Environment Science Technological.2002,36:1113~1123.
    143M. Lübken, M. Wichern. Modelling the energy balance of an anaerobic digesterfed with cattle manure and renewable energy crop. Water Reaserch.2007,41:4085~4096.
    144H. Yasui, K. Komatsu, R. Goel, et al. Evaluation of state variable interfacebetween the activated sludge models and an-aerobic digestion model No.1.WaterScience and Technology.2008,57(6):901~907.
    145J. Kauder, N. Boes, C. Pasel, et al. Combining models ADM1and ASM2D in asequencing batch reactor simulation. Chemical Engineering&Technology.2007,30(8):1100~1112.
    146D. Brdjanovic, M. Mithaiwala, M.S. Moussa, et al. Use of modelling foroptimization and upgrade of a tropical wastewater treatment plant in a developingcountry. Water Science and Technology.2007,56(7):21~31.
    147U. Jeppsson, C. Rosen, J. Alex, et al. Towards a bench-mark simulation model forplant-wide control strategy per-formance evaluation of WWTPs. Water Scienceand Technology.2006,53(1):287~295.
    148O. Bernard, B. Chachuat, A. Héllas, et al. An integrated system to remote monitorand control anaerobic wastewater treatment plants through the internet. WaterScience and Technology.2005,52(1/2):457~464.
    149D.J. Batstone, J. Keller, L.L. Blackall. The influence of substrate kinetics on themicrobial community structure in granular anaerobic biomass. Water Research.2004,38(6):1390~1404.
    150C. Picioreanu, D.J. Batstone, M.C.M.Loosdrecht. Multidimensional modelling ofanaerobic granules. Water Science and Technology.2005,52(1/2):501~507.
    151S.J. Mu, Y. Zeng, B. Tartakovsky, et al. Simulation and control of an upflowanaerobic sludge blanket (UASB) reactor using an ADM1-based distributedparameter model. Industrial&Engineering Chemistry Research.2007,46(5):1519~1526.
    152S. J. Mu, Y. Zeng, P. Wu, et al. Anaerobic digestion model No.1-based distributedparameter model of an anaerobic reactor: Ⅰmodel development. BioresourceTechnology.2008,99(9):3665~3675.
    153B. Tartakovsky, S.J. Mu, Y. Zeng, et al. Anaerobic digestion model No.1-baseddistributed parameter model of an anaerobic reactor: Ⅱmodel validation.Bioresource Technology.2008,99(9):3676~3684.
    154D.J. Batstone, J.L.A. Hernandez, J.E. Schmidt. Hydraulics of laboratory andfull-scale upflow anaerobic sludge blanket (UASB) reactors. Biotechnology andBioengineering.2005,91(3):387~391.
    155左剑恶,凌雪峰,顾夏声.厌氧消化1号模型(ADMl)简介.环境科学研究.2003,16(1):57~61.
    156周雪飞,张亚雷,顾国维.厌氧消化模型对生化反应抑制形式的模拟.中国给水排水.2004,20(6):19~21.
    157谭艳忠,张冰,周雪飞.厌氧消化1号模型(ADM1)的发展及其应用.环境污染与防治.2009,31(6):69~72,100.
    158W.W., Eckenfelder. Biological waste treatment. New York: Pergamon Press.1961,45~52.
    159R.E., McKinney, J., San. Mathematics of complete mixing activated sludge. WaterScience Technological.1962,88(3):125~143.
    160张亚雷,李咏梅译.国际水协废水生物处理设计与运行数学模型课题组著.活性污泥数学模型.同济大学出版社.2002,55~78.
    161L.S. Anastasios. Modelling of oxidation ditches using an open channel flow1-Dadvection-dispersion equation and ASMl process description. Water ScienceTechnological.1997,36(5/6):269~289.
    162V. Veldhuizen, H.M. Jone. Modelling biological phosphorus and nitrogen removalin a full scale activated sludge process. Water Research.1999,33:34~59.
    163C. Andreottla, G. Bortone. Experimental validation of a simulation and designmodel for nitrogen removal in sequencing batch reactors. Water Science andTechnology.1997,43(3):69~78.
    164J.J.W. Hulsbeek. A practical protocol for dynamic modelling of activated sludgesystems. Water Science and Technology.2002,45(6):127~136.
    165施汉昌,刁惠芳,刘恒等.污水处理厂运行模拟、预测软件的应用.中国给水排水.2001,17(10):61~63.
    166季民,霍金胜.活性污泥数学模型的研究和应用.中国给水排水.2001,17(8):18~22.
    167杨青,刘遂庆,甘树应.城市污水处理厂动态模拟研究.上海环境科学.2001,21(5):278~281.
    168陈晓龙,杨海真,顾国维.活性污泥2号模型的应用与校正.工业用水与废水.2003,4(1):1~4.
    169陈莉荣,彭党聪,李义科等.活性污泥处理系统的计算机模拟.环境污染与防治.2004,26(1):33~35.
    170申晨亮.活性污泥ASM2D与脱氮除磷代谢耦合数学模型的研究及应用.北京:北京交通大学.2006.
    171于广平.基于简化活性污泥数学模型的污水处理仿真研究.系统仿真学报.2007,19(23):1~4.
    172孙大伟.活性污泥2D模型在无锡城北污水厂的应用研究.南京:河海大学.2008.
    173刘光莲.活性污泥数学模型在污水处理中的研究和应用进展.水科学与工程技术.2009,1:31~33.
    174刘峻岭. SBR工艺数学模型的研究与应用.北京交通大学硕士论文.2007,45~62.
    175J.I. Horiuchi, T. Shimizu, K. Tada, et al. Selective production of organic acids inanaerobic acid reactor by pH control. Bioresource Technology.2002,82(3):209~213.
    176J. Rodríguez, J.M. Lema, M.C.M. Loosdrecht, et al. Variable stoichiometry withthermodynamic control in ADM1. Water Science and Technology.2006,54(4):101~110.
    177J. Rodríguez, R. Kleerebezem, J.M. Lema, et al. Modeling product formation inanaerobic mixed culture fermentations. Biotechnology and Bioengineering.2006,93(3):592~606.
    178R. Kleerebezem, J. Rodriguez, M.F. Temudo, et al. Modeling mixed culturefermentations: the role of different electron carriers. Water Science andTechnology.2008,57(4):493~497.
    179R. Kleerebezem, M.C.M. Loosdrecht. Waste characterization for implementationin ADM1. Water Science and Technology.2006,54(4):167~174.
    180王进.高效厌氧技术在印染废水处理中的应用研究.上海:上海交通大学博士学位论文.2007.
    181刘正芹.染料生物降解脱色及印染废水ABR/O处理工艺研究.上海:东华大学博士学位论文.2006.
    182李晓丹.水解酸化-膜生物反应器处理印染废水的研究.吉林:吉林大学硕士学位论文.2007.
    183王涛.厌氧折流板——循环移动载体膜生物反应器处理印染废水的研究.天津:天津大学硕士学位论文.2007.
    184X.J. Lu, L. Liu, B. Yang, J.H. Chen. Reuse of printing and dyeing wastewater inprocessess assessed by pilot-scale test using combined biological process andsub-filter technology. Journal of Cleaner Production.2009,17:111~114.
    185H.L. Kong, H.F. Wu. Pretreatment of textile dyeing wastewater using an anoxicbaffled reactor. Bioresource Technology.2008,99:7886~7891.
    186C.T. Wang, W.L. Chou, Y.M. Kuo, F.L. Chang. Paired removal of color and CODfrom textile dyeing wastewater by simultaneous anodic and indirect cathodicoxidation. Journal of Hazardous Materials.2009,169:16~22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700