用户名: 密码: 验证码:
日本血吸虫肺期童虫与其宿主细胞共培养体系建立的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在终宿主体内的肺期童虫阶段,被视作宿主免疫系统攻击的最佳靶标,其抗原可诱导Thl介导的保护性免疫反应。故肺期童虫的特异性靶分子被认为是血吸虫病新一代疫苗的最佳候选分子,其筛选对血吸虫病疫苗的研制极为重要。然而,肺期童虫的材料来源较为困难,目前国内外研究者常使用体外培养的童虫替代。研究显示,体外培养的日本血吸虫童虫,尽管在超微结构上与宿主体内的相差甚微,但在基因表达上存在显著差别。据此推测,宿主的内环境影响血吸虫的生长、发育与基因表达。为此,本文将日本血吸虫机械断尾童虫与其宿主细胞共培养,摸索共培养的适合条件,研究体外培养童虫、共培养童虫以及宿主体内发育童虫之间形态学、基因表达谱以及可溶性蛋白的生化与免疫特性等方面的差异,建立日本血吸虫肺期童虫的共培养体系,为血吸虫病疫苗、转基因、基因组学与后基因组学等研究提供更接近于宿主体内状态的童虫材料。现概述如下:
     一、共培养条件筛选
     (一)宿主细胞种类筛选:将机械断尾法转变的日本血吸虫童虫以400-500条/ml的密度分别与接种密度为2.0×105个/ml、传代24h的人肝静脉内皮细胞(ED25)、人肺腺癌细胞(H1299)、鼠成纤维细胞(3T3)共培养72h,以童虫的体长、体宽、长宽比、体表面积和体积为指标,分别以“841”培养基常规培养(Conventional culture, CC)童虫和从宿主小鼠体内收集的感染72h的童虫(Host, H)为对照,比较与宿主细胞ED25(Co-culture1, CoE)、H1299(CoH)、3T3(CoT)共培养童虫和对照间的差别,筛选出与H组童虫差别最小的共培养的最佳宿主细胞种类。结果显示,H组童虫的体长、长宽比的值最大,分别为196.94±27.14gm和6.80±1.74;体宽、体表面积和体积最小,分别为30.13±5.32gm、(1.99±0.30)×104μm2和(1.33±0.37)×105μm3。CC组童虫体长、长宽比的值最小,分别为154.19±22.76μm和3.83±0.81;体宽、体表面积和体积最大,分别为40.88±3.78μm、(2.22±0.25)×104μm2和(1.82±0.30)×105μm3。共培养组童虫的各指标值居中;其中,体长、长宽比与H组童虫最接近的是CoE组童虫,分别为185.07±35.81μm、5.57±1.72;其次是CoiH组童虫,分别为179.57±31.37μm、5.46±1.38。体宽、体表面积和体积与H组童虫最接近的是CoH组童虫,分别为33.72±3.40μm、(2.06±0.23)×104μm (1.47±0.22)×105μm3;其次是CoE组童虫,分别为34.40×4.40μm、(2.15×0.23)×104um2、(1.57×0.24)×105μm3。差别最大的是CoT组童虫,其体长、体宽、长宽比、体表面积和体积分别为172.52×29.26μm、39.30×5.65μm、4.54×1.28、(2.34×0.26)×104μm2、(1.89×0.35)×105μm3。统计分析发现,CoE组和CoH组童虫的体长和体表面积与H组童虫的均无显著性差异(P>0.05);体宽、长宽比与H组童虫的均有显著性差异(P<0.05);CoE与CoH组童虫的各指标,其差异均无显著性(P>0.05);共培养组与常规培养组比较,除CoE组与CC组童虫的体表面积间无显著性差异外(P>0.05), CoE、CoH组与CC组童虫各项指标间其差异均有显著性(P<0.05)。比较三种宿主细胞,认为ED25是日本血吸虫童虫体外共培养的最佳宿主细胞。
     (二)宿主细胞接种密度筛选:以日本血吸虫童虫的体长、体宽、长宽比、体表面积和体积为指标,将机械断尾法转变的童虫分别与接种密度为1.0×105个/ml (Co1)、2.0×105个/ml (CoE2)与3.0×105个/ml (CoE3)传代24h的ED25共培养72h,以从宿主小鼠体内收集的感染72h的童虫(Host,H)为对照,比较与CoE不同密度共培养的童虫与对照之间的差别,筛选出共培养ED25的最适细胞密度。结果显示,CoE2组童虫的体长最长、体宽最小、长宽比最大,分别为183.21×17.81μm、37.30×3.30μm和4.98±0.91,最接近于对照组H童虫的数值,其中体长与H组童虫差异无显著性(P>0.05),其余指标均与H组童虫差异有显著性(P<0.05);CoEl组、CoE2组各指标与H组童虫差异均有显著性(P<0.05)。比较三种宿主细胞密度,2.0×105个/ml为与日本血吸虫童虫共培养的最佳宿主细胞密度。
     二、共培养肺期童虫的形态学观察
     将机械断尾法转变的日本血吸虫童虫与接种密度为2.0×105个/ml、传代24h的ED25共培养(Coc),分别以"841”培养基常规体外培养(CC)的和宿主体内获取(H)的童虫作对照。
     (一)光镜观察:光镜下,培养72h的各组日本血吸虫童虫虫体透明,可进行伸缩运动及左右摆动。当童虫纵向伸缩时,虫体内部组织前后运动,肠管隐约可见。比较三组童虫体长发现,H组童虫最长,为196.94±27.14μm;其次是Coc组童虫,为185.07±35.81μm;CC组童虫最短,为154.19±22.76μm。可见,Coc组童虫比CC组童虫更相似于H组童虫。
     (二)扫描电镜观察:扫描电镜下,H组童虫体型细长,体表可见皮孔与20~30余个环槽;体棘在前后两端分布较密、中间稀疏,呈尖齿状,排列较整齐;童虫末端未见磨盘状结构,可见排泄孔。Coc组童虫的体型也较细长,与H组童虫较为相似;体表可见较多皮孔与少量环槽,体表覆盖密集的体棘;体棘数量较H组童虫多,且较大,呈长舌状,排列整齐,均指向末端。CC组童虫体型粗短,体表亦可清晰地观察到皮孔与环槽,体棘数量与H组童虫相近,但大小形态不一,分布、指向较凌乱。可见,Coc组童虫的体表结构与H组童虫更相像。
     (三)透射电镜观察:H组童虫组织的电子致密程度较高,Coc组童虫与H组童虫相似,而CC组童虫其电子致密程度较低。H组童虫体壁由体被、基膜及体被下层构成。其中,体被包括外质膜及外质膜与基膜之间的基质层,较厚,约500~700nm。外质膜、基质和基底膜各层界限清晰。外质膜凸起或延伸,形成皱褶,基质层内电子透明区和浅色区相间,基膜连续完整,体棘从基膜崛起。外环肌和内纵肌位于体被下层,外环肌与体被下层中的实质细胞交错在一起,内纵肌肌纤维排列整齐。Coc组童虫体壁结构与H组童虫的类似,体被比H组童虫稍薄,约400~600nm。外质膜由7层组成,并凹陷形成凹窝或孔;基质层内可见电子致密的指环体分布。体被下层外环肌呈电子致密的点状分布,且电子致密度较H组高,内纵肌肌纤维排列整齐。CC组童虫外质膜向外形成棘状凸起,未观察到7层外质膜结构,基质层靠近外质膜一侧分布有较多圆形电子透亮区,与H组和Coc组童虫相比,其基膜不完整,时断时续,导致体被各层分界不明显,并与体被下层交错。体被下层中外环肌和内纵肌不易辨认。总而言之,Coc组童虫的体被结构比CC组童虫更接近于H组童虫。
     三、共培养肺期童虫基因表达差异
     将机械断尾法转变的日本血吸虫童虫与接种密度为2.0×105个/ml、贴壁24h的ED25共培养(Coc),分别以“841”培养基常规体外培养(CC)和宿主体内获取(H)的童虫作对照,应用抑制性差减杂交和斑点杂交技术,建立H组和Coc组童虫以及Coc组和CC组童虫正向和反向差减文库,分析并筛选三组童虫差异表达的基因。结果共获得H组童虫与Coc组童虫正向差减文库1982个克隆,反向差减文库1824个克隆,Coc组童虫与CC组童虫正向差减文库1128个克隆,反向差减文库1680个克隆;PCR检测克隆的阳性率均超过80%。测序后分别获得童虫的差异表达基因序列H组与Coc组91个、Coc组与CC组107个;其中,H组童虫与Coc组之间的上调基因前者55个、后者36个;Coc组童虫与CC组之间的上调基因前者76个、后者31个。
     测序结果显示:共培养3d的日本血吸虫童虫与宿主体内获得的肺期童虫相比,其编码肌动蛋白(Actin-2). NADH脱氢酶1亚基(ND1)、翻译起始因子、视紫红质抑制蛋白(Putative beta-arrestin)等的基因呈上调表达,编码热休克蛋白(HSP90α)、细胞色素C氧化酶(Cox Ⅰ)、赖氨酸羟化酶(LH)、腺苷激酶(AK1)、翻译延长因子、5’-核酸酶等的基因呈下调表达;与体外常规培养3d的童虫相比,编码HSP5. Cox. Actin-5C、ND1、细胞程序性死亡蛋白、虫卵抗原、ATP合酶、类固醇脱氢酶、糖基转移酶等的基因呈上调表达,编码组织蛋白酶L酶(Cathepsin L)、组织蛋白酶L酶原(Cathepsin L precursor)、LH、ND5、GAPDH、泛素结合酶、细胞分裂周期和凋亡调控蛋白等的基因呈下调表达。与CC组相比,Coc组童虫HSP和Cox基因均为上调表达,Cathepsin L、Cathepsin L precursor基因均下调表达,表达水平与H组更接近。与Coc组相比,CC组LH基因上调表达,Acti、ND1基因均下调表达,与H组童虫相似。可见,Coc组童虫的基因表达比CC组更接近H组童虫。
     采用斑点杂交比较同一基因在H组童虫、Coc组童虫和CC组童虫的表达水平,由显色结果可见,无论是在H组童虫呈上调表达的基因,还是在Coc组童虫体内呈上调表达的基因,同一基因在H组童虫与Coc组童虫间表达丰度较为接近,与CC组童虫间则差异较大。
     四、共培养肺期童虫可溶性蛋白的生化与免疫学特性
     将机械断尾法转变的日本血吸虫童虫与接种密度为2.0×105个/ml、传代24h的ED25共培养(Coc),分别以“841”培养基常规体外培养(CC)和宿主体内获取(H)的童虫作对照。分别制备Coc组、CC组、H组童虫以及ED-25宿主细胞的可溶性蛋白,进行SDS-PAGE电泳,用硝酸银染色。结果显示,H、Coc和CC等三组童虫均含4条分子量约为55、40、28和18KDa的主要蛋白条带外,与CC组相比,Coc组与H组童虫还共同含有分子量约为65和26KDa的蛋白条带;CC组童虫的可溶性蛋白的分子量在60-70KDa范围处出现的条带较明显,而H组和Coc组童虫可溶性蛋白在此范围处的蛋白条带均较模糊。ED25细胞可溶性蛋白图谱与三组童虫可溶性蛋白图谱差异较大,上样浓度相同条件下,分子量约为100、50、38和18KDa处可见与Coc组童虫蛋白相同条带。可见,Coc组童虫可溶性蛋白的SDS-PAGE电泳图谱比CC组童虫的更类似于H组童虫的图谱。
     以感染日本血吸虫27d和42d的昆明系小鼠血清为一抗,经Western Blot分析三组童虫可溶性蛋白,结果表明,三组童虫中100和45~55KDa大小的蛋白分子均能与感染日本血吸虫42天的小鼠血清中的抗体结合,形成褐色沉淀条带;其中,100KDa处条带三组童虫显色均较弱;而45~55KDa处条带H组童虫和Coc组童虫显色较强、较一致,CC组童虫显色较弱。此外,Coc组和CC组童虫在分子量约为12.5KDa处有一显色较弱的条带。表明,Coc组童虫可溶性蛋白的免疫学特性介于宿主体内获得童虫与常规体外培养虫体之间,相对CC组童虫更近似于H组童虫。
     综上所述,与CC组童虫相比,Coc组童虫不仅在形态学(包括超微结构)与基因表达水平上更接近于H组童虫,而且童虫可溶性蛋白的生化与免疫学特性与H组童虫也更为相似。由此可见,本研究建立的日本血吸虫童虫与宿主细胞共培养体系,是更接近于宿主体内环境的体系,有望应用于日本血吸虫的分子生物学与血吸虫病免疫学研究;并可利用其进行血吸虫与宿主的相互关系研究,为揭示血吸虫的生长发育以及保护性免疫机制奠定良好基础。
The specific molecular targets of lung-stage schitosomula Schistosoma japonicum has been intensively investigated for being new vaccine candidates for schistosomiasis, because the antigens of the lung-stage schitosomula can induce Thl cell-mediated immune responses in infected hosts. It was difficult for the lung-stage schistosomula to be collected. Therefore researches generally culture schistosomula of the schistosomiasis in vitro rather than to collect from the lungs of infected hosts. However, there were significantly differences between their gene expression profiles in both of the above mentioned circumstances, though the observation of transmission electron microscope showed few differences in their ultra structures. It has been approved that the host factors affect the growth, development and gene expression of schistosome. So, in order to provide plentiful materials which were more similar or equivalent to those from the lung of the hosts for further researches on vaccine and genomics, the present paper has established a co-culture system between the mechanically transformed schistosomula of S. japonicum and its host cells. Summary of the major results is as follows.
     1. Conditions Screening of co-culture between schistosomula S. japonicum and its host cells
     (1) Specific host cell was screened out suitable for co-culture lung-stage schistosomula S. japonicum. Three types of host cells were used for co-culture with the junior, including the hepatic vein endothelial cells of human (ED25), human lung adenocarcinoma cells (H1299) and mouse fibroblast cells (3T3). Before use the cells were passed24hours in advance with a density of2.0×105/ml. Taking the length (L), width (W), length-width ratio (L/W), surface area and volume of schistosomula as the indexes, three groups co-cultured schistosomula (CoE, CoH, and CoT were named according to the feeder layer cells) were not only compared with those collected from the lungs of the mouse infected by cercariae for72hours (Host group, H), but also the ones cultured by conventional culture method (Conventional Culture group, CC) with "841" culture medium. The results showed that, a) The Host group schistosomula were196.94±27.14μm in length,30.13±5.32μm in width,6.80±1.74in L/W ratio,(1.99±0.30)÷104μm2in surface area and (1.33±0.37)×105μm3in volume, while the indicators mentioned above of CC group were separately154.19±22.76μm,40.88±3.78μm,3.83±0.81,(2.22±0.25)×104μm2and (1.82±0.30)×105μm3. Compared with the CC group, the co-cultured schistosomula were more similar to Host group larvae, especially the length and L/W ratio of CoE group and the width, surface area, volume of CoH group, b) The differences of length and surface area between CoE and H group, as well as CoH and H group, were not significant (P>0.05), though the differences between the widths, L/W ratios and volumes of them were opposite (P<0.05); c) There were not any significant differences between CoE and CoH group larvae, d) The CoE and CoH group schistosomula were significantly different from the CC group(P<0.05), except the surface area of CoE group which didn't show significant difference with the CC group (P>0.05). Comparing the three types of host cells, ED25was the best host cell for the use of the co-culture with schistosomula.
     (2) This part intended to screen an optimized density of feeder layer cells for co-culture system. Taking the length (L), width (W), length-width ratio (L/W), surface area and volume of schistosomula as the indexes, the schistosomula co-cultured respectively with ED25cells of three different densities24hours passed in advance.1.0×105/ml (Co-culturel,CoEl),2.0×105/ml (Co-culture1,CoE2),3.0×105/ml (Co-culturel,CoE3) were compared with the H group larvae. Statistics analysis of the results showed that compared with the other two groups, the CoE2group schistosomula which were183.21±17.81μm in length,37.30±3.30μm in width and4.98±0.91in L/W ratio, were more similar to the Host group ones. And the lengths between them was not significantly different (P>0.05), while the other indicators were different significantly (P<0.05). Thus2.0×105/ml was the best one for the use of the co-culture with schistosomula among the three different densities.
     2. The observations on the morphology of the co-cultured schistosomula
     Under microscopy, the majority of the schistosomula with lucent body and well refracting surface could stretch and swing freely. The internal organs, cells as well as the indistinct intestine were seen flowing back and forth when the larva stretched. As the results mentioned above, the schistosomula co-cultured with ED25(Coc group) were as slim as those from host (H group), while the conventional cultured ones (CC group) are dumpier.
     Under scanning electron microscope,20~30grooves were seen clearly on the surface of the slim lung-stage schistosomula. The anterior and posterior parts of the larva were bestrewed regularly by some tiny and sharp spines, which were sparse on the middle part, as well as a few of pits. There were also a few lenticels on the surface of schistosomula. The discoid structure which can be seen at the posterior part of the skin-stage schistosomula was disappeared while the excretory pore was present. The Coc group schistosomula were observed to be similar to the Host group ones in the shape. It could be seen that the grooves and pits were lesser while spines were more and larger than what on the surface of Host group schistosomula. Besides this, the spines arrayed densely and pointed regularly to the posterior part. The CC group schistosomula were stubby with clear grooves on the surface, while the spines in different sizes arrayed and pointed disorderly.
     Under transmission electron microscope, the H group and Coc group shistosomula both presented high level electron intensity, while the CC group larvae showed lower intensity. The body wall of H group schistosomula could be identified into three parts, which were tegument, basal lamina and subtegument. Among them, the tegument approximately500-700nm thick, was consisted of outer plasma membrane and the matrix that between the outer plasma membrane and basal lamina. The fluctuant membrane was observed to form some reductus on the surface of the larvae. And the matrix appeared to be mixed by electronic lucent zones and gray parts. The basal lamina, from which the spine generated, showed continuous integrity. In the subtegument, there was the outer circular muscle overlapped with the parenchymal cells, as well as the regularly arrayed inner longitudinal muscle. The structures of the body wall of Coc group schistosomula were quite similar to those of H group larvae, though there were still some differences. The400-600nm thick tegument was thinner than the former one. The hepta-outer plasma membrane formed some pits rather than reductus on the larval surface. In the matrix, there were some ring-like granules with electron intensity. The outer circular muscle appeared to be dense electronic in dark granules, which was different from H group. In CC group schistosomula, no hepta-membrane was observed. But there were some round-shape electronic lucent zones near the membrane in the matrix. Compared to the schistosomula in H and Coc group, the basal lamina of CC group schistosomula was lacking integrity, leading to a confusion of the tegument. As a result, both the outer circular muscle and inner longitudinal muscle were difficult to recognize. In a word, compared to the CC group, Coc group schistosomula shared more similarities on tegument structures with the H group schistosomula.
     3. The differential gene expression of co-cultured schistosomula
     Suppression subtractive hybridization and dot hybridization technology were used to establish forward and reverse subtracted libraries between schistosomula collected from host and co-cultured with ED25feeder layer cells, as well as between schistosomula co-cultured and cultured conventionally. And the differential expressed genes of schistosomula from three groups were further screened and analyzed respectively.
     1982clones for forward subtracted library and1824clones for reverse subtracted library were obtained between schistosomula from H and Coc group, while1128clones for forward and1680clones for reverse subtracted library were obtained between Coc and CC group schistosomula. All of the positive rates of the clone were more than80%according to the PCR results. After sequencing by a corporation and matching with BLAST on NCBI web site,91significantly differential expressed genes between H and Coc group schistosomula were obtained. Among these genes,55were up-regulated in H group and36were up-regulated in Coc group. While among107differently expressed genes obtained between Coc and CC group,76of them highly expressed in Coc group and31highly expressed in CC group.
     BLAST analysis showed that the functions of the differential expressed genes were related to the stress response, metabolism of energy, electron transport, cell division and apoptosis, protein translation and formation of cytoskeleton, etc. a) Compared with CC group, the genes encoding Heat shock protein90(HSP90) and cytochrome c oxidase (Cox) were up-regulated while cathepsin L and cathepsin L precursor were down-regulated in Coc group schsitosomula, which was similar to H group larvae. b) Compared to Coc group, the genes encoding lysyl hydroxylase were up-regulated while actin and NADH dehydrogenase subunit1were down-regulated in CC group schsitosomula, which was similar to H group larvae.
     The comparison of the abundance of the same genes expressed in schistosomula of three groups was done by the dot blot hybridization. The coloring results showed the similarity of the same gene expression between the schistosomula from H and Coc group, but difference from the conventionally cultured group.
     4. The biochemical and immunological characters of soluble proteins of co-cultured schistosomula
     The soluble proteins of schistosomula from H, Coc and CC group were extracted separately and separated by SDS-PAGE. Silver staining results of SDS-PAGE showed that the maps of soluble antigens of schistosomula from host, co-cultured and conventionally cultured system were different from each other. The three groups all had four same clear bands which indicated that the molecular weights of proteins were55,40,28,18KDa, respectively. Additionally, proteins weighted65and26KDa were present in Coc and H group larvae compared to CC group. A band at60-70kDa was seen clearly in conventionally cultured schistosomula, but vaguely in host and co-cultured group. The profile of Coc group schistosomula proteins also possessed another4bands, weighted100,38,32, and12.5KDa, which were not available in H and CC groups. But the4bands could be seen in the map of ED25cells proteins with the same sampled concentration.
     Taking the serum collected from the mouse infected by S. japonicum cercarea for42days as the first antibody, Western blot was used to analyses the immunological characters of soluble proteins of schistosomula. The result of Western Blot showed that the soluble proteins of100and45~55KDa in three groups all could be combined by the antibodies in the serum. The bands appeared at100kDa were expressed analogously in larva from three groups, while the45-55KDa bands were higher expressed in Coc and H groups than in CC group. Moreover, vague12.5kDa bands could also be observed in both Coc and CC groups. All of the above indicated that the immunological properties of soluble proteins extracted from Coc group schistosomula were more similar to that of schistosomula from H group than CC group.
     To sum up, compared to the CC group schistosomula, not only the morphology and gene expression, but also the biochemical and immunological properties of the Coc group larvae were more similar to larvae from the host. It indicated that co-culture system between the schistosomula and its host cells established in present study could provide suitable conditions which imitate the host internal environment for the growth and development of schistosomula. And the biological and immunological characters of the co-cultured larvae were similar to the ones collected from the lung of the host.
引文
1. Basch P.F. Cultivation of Schistosoma mansoni in vitro. I. Establishment of culture from cercariae and development until pairing [J]. J. Parasitol,1981, 67:179.
    2. Basch PF and Basch N. Schistosoma mansoni:scanning electron microscopy of schistosomula, adults and eggs grown in vitro [J]. Parasitology,1982,85: 333-338.
    3. Bergquist R, Al-Sherbiny M, Barakat R, Olds R. Blueprint for schistosomiasis vaccine development. Acta Trop,2002,82(2):183-192.
    4. Bickle QD. Radiation-attenuated schistosome vaccination—a brief historical perspective. Parasitology,2009,136(12):1621-1632.
    5. Bogitsh BJ. Observations on digestion in schistosomes or'Blood and Guts'[J]. Trans. Am. Microsc. Soc.1989,108:1-5.
    6. Bogitsh BJ, Dalton JP, Brady CP, et al. Gut-associated immunolocalization of the Schistosoma mansoni cysteine proteases, SmCL land SmCL 2 [J]. J parasitol, 2001,87(2):237-241.
    7. Bozdech Z, Llinas M, Pulliam BL, et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PloS Biol, 2003,1:E5.
    8. Brindley PJ, Kalinna BH, Dalton JP, et al. Proteolytic degradation of host hemoglobin by schistosomes [J]. Mol. Biochem Parasitol,1997,89(1):1-9.
    9. Brink LH, McLAren DJ and Smithers SR. Schistosoma mansoni:a comparative study of artificially transformed schistosomula and schistosomula recovered after cercarial penetration of isolated skin [J]. Parasitology,1977,74:73-86.
    10. Caffrey CRa, Rheinberg CE, Mone H, et al. Schistosoma japonicum, S. mansoni, S. haematobium, S. intercalatum, and S. rodhaini:cysteine-class cathepsin activities in the vomitus of adult worms [J]. Parasitol Ress,1997,83(1):37-41.
    11. Caffery CRb, Ruffel A. Cathepsin B-like activity predominates over cathepsin L-like activity in adult Schistosoma mansoni and S. japonicum [J]. Parasitol Ress, 1997,83(6):632-635.
    12. Caffery CRc, Rupple A. Affinity isolation and characterization of cathepsin B-like proteinase Sj31 from Schistosoma japonicum [J]. J Parasitol,1997,83(6): 1112-1118.
    13. Carlile GW, Chalmers-Redman RM, Tatton NA, et al. Reduced apoptosis after nerve growth factor and serum withdrawal:conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer [J]. Mol Pharmacol,2000, 57(1):2-12.
    14. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer [J]. Oncology, 2005,69(Suppl3):4-10.
    15. Castillo MG and Yoshino TP. Carbohydrate inhibition of Biomphalaria glabrata embryonic (Bge) cell adhesion to primary sporocysts of Schistosoma mansoni. Parasitol.,2002,125:513-525.
    16. Chai M, McManus DP, McInnes R, et al. Transcriptome profiling of lung schistosomula, in vitro cultured schistosomula and adult Schistosoma japonicum. Cell Mol. Life Sci.,2006,63(7-8):919-929.
    17. Chan SK, Gullick WJ, Hill ME. Mutations of the epidermal growth factor receptor in nonsmall cell lung cancer-search and destroy [J]. Eur J Cancer,2006, 42(1):17-31.
    18. Cohen C, Reinhardt B, Castellani, et al. Schistosome surface spines are'crystals' of actin. J. Cell Biol.1982,95:987-988.
    19. Consoli FL, Tian HS, Vinson SB, et al. Differential gene expression during wing morph differentiation of the ectoparasitoid Melittobia digitata (Hym., Eulophidae). Comp. Biochem. Phys. A,2004,138:229-239
    20. Coppin JF, Lefebvre C, Caby S, et al. Gene expression changes in Schistosoma mansoni sporocysts induced by Biomphalaria glabrata embryonic cells. Parasitol. Res.,2003,89(2):113-119.
    21. Coulson PS. The radiation-attenuated vaccine against schistosomes in animal models:paradigm for a human vaccine? Adv. Parasitol.,1997,39:272-323.
    22. Coulson PS and Mountford AP. Fate of attenuated schistosomula administered to mice by different routes, relative to the immunity induced against Schistosoma mansoni. Parasitol.,1989,99:39-45.
    23. Cousin CE, Stirewalt MA and Dorsey CH. Schistosoma mansoni:ultrastructure of early transformation of skinand shear-pressure-derived schistosomules [J]. Exp. Parasitol.,1981,51:341-365.
    24. Coustau C, Ataev G, Jourdane J, et al. Schistosoma japonicum:In vitro cultivation of miracidium to daughter sporocyst using a Biomphalaria glabrata embryonic cell line. Exp. Parasitol.,1997,87:77-87.
    25. Coustau C and Yoshino TP. Flukes without snails:advances in the in vitro cultivation of intramolluscan stages of trematodes. Exp. Parasitol.,2000,94(1): 60-66.
    26. Coustau C, Mitta G, Dissous C, et al. Schistosoma mansoni and Echinostoma caproni excretory-secretory products differentially affect gene expression in Biomphalaria glabrata embryonic cells. Parasitol.,2003,127(6):533-542.
    27. Dalton JP, Clough KA, Jones MK, et al. The cystein proteinases of Schistosoma mansoni cercariae. [J] Parasitology,1997,114(t2):105-112.
    28. Davis AH, Blanton R, Clich P. Stage and sex specific differences in actin expression in Schistosoma mansoni [J]. Molecular and Biochemical. Parasitology, 1985,17:289-298.
    29. Dillon GP, Feltwell T, Skelton JP, et al. Microarray analysis identifies genes preferentially expressed in the lung schistosomulum of Schistosoma mansoni. Int. J. Parasitol.,2006,36 (1):1-8.
    30. Dinguirard N and Yoshino TP. Potential role of a CD36-like class B scavenger receptor in the binding of modified low-density lipoprotein (acLDL) to the tegumental surface of Schistosoma mansoni sporocysts. Mol. Biochem. Parasitol., 2006,146(2):219-230.
    31. Duclermortier P, Lardans V, Serra E, et al. Biomphalaria glabrata embryonic cells express a protein with a domain homologous to the lectin domain of mammalian selectins. Parasitol. Res.,1999,85:481-486.
    32. Ferguson-Miller S, Babcock GT. Heme/Copper Terminal Oxidases. Chem Rev., 1996,96(7):2889-2908.
    33. Gobert GN, Chai M and McManus DP. Biology of the schistosome lung-stage schistosomulum. Parasitol.,2006,17:1-8.
    34. Goidin D, Mamessier A, Staquet MJ, et al. Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and beta-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive human melanoma cell subpopulations [J]. Anal Biochem,2001,295(1):17-21.
    35. Goudot-Crozel V, Caillol D, Djabali M, et al. The major parasite surface antigen associated with human resistance to schistosomiasis is a 37 kD glyceraldehyde-3-phosphate-dehydrogenase. J Exp Med,1989,170:2065-2080.
    36. Hanns W, Thorsten F, Gotz H, et al. The respiratory-chain NADH dehydrogenase (complex Ⅰ) of mitochondria. Eur. J. Biochem.,1991,197:563-576.
    37. Harrop R and Wilson RA. Protein synthesis and release by cultured schistosomula of Schistosoma mansoni [J]. Parasitology,1993,107:265-274.
    38. Harrop R, Coulson PS and Wilson RA. Characterization, cloning and immunogenicity of antigens released by lung-stage larvae of Schistosoma mansoni[J]. Parasitology,1999,118:583-594.
    39. Hatem T, Rashika E1 R. Praziquantel binds Schistosoma mansoni adult worm actin. International Journal of Antimicrobial Agents,2007,29:570-575.
    40. Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc. Natl Acad. Sci. USA.1992,89:10449-10453.
    41. Humphries JE and Yoshino TP. Schistosoma mansoni excretory-secretory products stimulate a p38 signalling pathway in Biomphalaria glabrata embryonic cells. Int. J. Parasitol.,200636(1):37-46.
    42. Ivanchenko MG, Lerner J P, McCormick RS, et al. Continuous in vitro propagation and differentiation of cultures of the intra-molluscan stages of the human parasite Schistosoma mansoni. Proceedings of the National Academy of Sciences U.S.A.,1999,96:4965-4970.
    43. Kapp K, Coustau C, Wippersteg V, et al. Transplantation of in vitro-generated Schistosoma mansoni mother sporocysts into Biomphalaria glabrata. Parasitol. Res.,2003,91 (6):482-485.
    44. Katsube N, Sunaga K, Aishita H, et al. ONO-1603, a potential antidementia drug, delays age-induced apoptosis and suppresses overexpression of glyceraldehyde-3-phosphate dehydrogenase incultured central nervous system neurons, J. Pharmacol. Exp. Ther.288 (1999):6-13.
    45. Klaas K, Marten W. Proton-translocating cytochrome c oxidase in artificial phospholipid vesicles. Biochim. Biophys. Acta.,1978,504:200-214.
    46. Landais I, Pommet J, Mita K, et al. Characterization of the cDNA encoding the 90 kDa heat-shock protein in the Lepidoptera Bombyx mori and Spodoptera frugiperda. Gene,2001,271:223-231.
    47. Lardans V, Coppin JF, Vicogne J, et al. Characterization of an insulin receptor-related receptor in Biomphalaria glabrata embryonic cells. Biophys. Acta,2001,1510(1-2):321-329.
    48. Matsumoto Y, Perry G, Levine R.J C, et al. Paramyosin and actin in Schistosomal teguments [J]. Nature,1988,333:76-78.
    49. Matti S. Structural features of cytochrome oxidase. Quarterly Review of Biophysics.1990,23:331-366.
    50. Meyer-Siegler K, Mauro DJ, Seal G, et al. A human nuclear uracil DNA glycosylase is the 37kDa subunit of glyceraldehyde-phosphate dehydrogenase, Proc. Natl. Acad. Sci. USA,1991,88:8460-8464.
    51. Michel A, Ghoneim H, Resto M, et al. Sequence, characterization and localization of a cysteine proteinase cathepsin L in schistosoma mansoni [J]. Mol Biochem Parasitol,1995,73(1-2):7-18.
    52. Mille P and Wilson RA. Migration of the schistosomula of Schistosoma mansoni from the lungs to the hepatic portal system [J]. Parasitology,1980,80:267-288.
    53. Mountford AP, Anderson S and Wilson RA. Induction of Thl cell-mediated protective immunity to Schistosoma mansoni by co-administration of larval antigens and IL-12 as an adjuvant. Journal of Immunology,1996,156(12): 4739-4745.
    54. Narberhaus F. Alpha-crystallin-type heat shock proteins:socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev.,2002,66:64-93.
    55. Philimonenko VV, Zhao J, Iben S, et al. Nuclear actin and myosin I are required for RNA polymerase I transcription [J]. Nat Cell Biol,2004,6:1165-1172.
    56. Pitta MG, Silva AC, A1 Neves JK, et al. New imidazolidinic bioisosters:potential candidates for antischistosomal drugs. Mem. Inst. Oswaldo. Cruz.,2006, 101(Suppl 1):313-316.
    57. Rollinson D, Simpson AJ. The Biology of Schistosomes. From Genes to Latrines, Academic Press, San Diego, CA.1987.
    58. Ruppel A, She YE, Wei DX, et al. Sera of Schistosoma japonicum infected patients cross-react with diagnostics 31/32 kDa proteins of S. mansoni [J]. Clin Exp Immunol,1987,69:291-298.
    59. Sheterline P, Sparrow J. Actin. Academic Press, London,1994.
    60. Smithers SR, Terry RJ, Hockley DJ. Host antigens in schistosomiasis [J]. Proc R Soc Lond B Biol Sci,1969,171(25):483-494.
    61. Simth SS, Kelly KH, Jockusch BM, et al. Actin co-purifies with RNA polymerase Ⅱ. Biochem. Biophys. Res. Commun.,1979,86:161-166.
    62. Slagboom PE, de Leeuw WJ, Vijg J. Messenger RNA levels and methylation patterns of GAPDH and beta-actin genes in rat liver, spleen and brain in relation to aging [J]. Mech Ageing Dev,1990,53(3):243-257.
    63. Song ZhQ, Wang JW, Hao F, et al. Identification of differentially expressed genes HSPC016 in dermal papilla cells with aggregative behavior. Arch. Dermatol Res., 2005,297:114-120.
    64. Sotiropoulos A, Gineitis D, Copeland J, et al. Signal-regulated activation of serum yesponse factor is mediated by changes in actin dynamics [J]. Cell,1999, 98:159-169.
    65. Tallima H and El Ridi R. Schistosoma mansoni glyceraldehyde 3-phosphate dehydrogenase is a lung-stage schistosomula surface membrane antigen. Folia Parasitol (Praha),2008,55(3):180-186.
    66. von Stein OD, Thies wg, Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res.,1997,25(13): 2598-2602.
    67. Waine GJ, Becker M, Yang W, et al. Cloning molecular characterization, and functional activity of schistosoma japonicum glyceraldehyde-3-phosphate dehydrogenase, a putative vaccine candidate against schistosomiasis japonicum. Inf Immum,1993,61:4716-4723.
    68. Wasilewski MM, Lim KC, Phillips J, et al. Cysteine protease inhibitors block schistosome hemoglobin degradation in vitro and decrease worm burden and egg production in vitro [J]. Mol Biochem Parasitol,1996,81(2):179-189.
    69. Wilson RA, Barnes PE. The tegument of Schistosoma mansoni:observations on the formation, structure and composition of cytoplasmic inclusions in relation to tegument function [J]. Parasitology,1974a,68(2):239-258.
    70. Wilson RA, Barnes PE. An in vitro investigation of dynamic processes occurring in the schistosome tegument, using compounds known to disrupt secretory processes [J]. Parasitology,1974b,68(2):259-270.
    71. Yoshino TP and Laursen JR. Production of Schistosoma mansoni daughter sporocysts from mother sporocysts maintained in synxenic culture with Biomphalaria glabrata embryonic (Bge) cells. J. Parasitol.,1995,81(5):714-722.
    72. Yoshino TP, Coustau C, Modat S, et al. The Biomphalaria glabrata embryonic (Bge) molluscan cell line:Establishment of an in vitro cellular model for the study of snail host-parasite interactions. Malacologia,1999,41 (2):331-343.
    73. Yoshino TP, Boyle JP and Humphries JE. Receptor-ligand interactions and cellular signalling at the host-parasite interface. Parasitol.,2001,123(Suppl): S143-S157.
    74. Zvibel L, Halay E, Reid LM. Heparin and hormonal of mRNA synthesis and abundance of autocrine growth factors:relevance toclonal growth of tumors[J]. Mol Cell Biol,1991,11(1):108-116.
    75.蔡静莉,李昌本,赵寿元。鉴定差异表达基因的新方法—抑制差减杂交法(SSH)[J]。生物科学,1998,10(3):115-118。
    76.常慧玲,王琴美,王鸣杰。日本血吸虫3-磷酸甘油醛脱氢酶的抗原性和保护性免疫力的研究。中国寄生虫学与寄生虫病杂志,1996,14(3):249。
    77.陈鹏,陈强,袁媛,等。日本血吸虫线粒体细胞色素C氧化酶亚基Ⅰ(COI)基因的克隆与初步分析。中南民族大学学报,2009,28(2):36-40。
    78.高雪。差异表达基因分离技术的研究进展。生物技术通报,2009,6:71-74。
    79.郝阳,郑浩,朱蓉,郭家钢,吴晓华,王立英,陈朝,周晓农。2008年全国血吸虫病疫情通报。中国血吸虫病防治杂志,2009,21(6):451-456。
    80.李爱玲,李宏伟,王程,张静,修瑞娟.肿瘤细胞条件培养液对人脐静脉内皮细胞生长、增殖的影响[J].中国微循环,2002,6(5):301-301。
    81.李超,徐月敏,宋鲁杰等。兔口腔黏膜细胞与灭活的3T3成纤维细胞的体外共培养。上海交通大学学报,2007,27(11):1297-1300。
    82.李华,易新元,曾宪芳,等。日本血吸虫成虫67kDa分子抗原的纯化及其对日本血吸虫病的诊断和疗效考核[J]。中国热带医学,2001,1(2):93-95。
    83.孟玮,吴忠道,余新炳,等。日本血吸虫肺期童虫收集方法的实验研究。中国人兽共患病杂志,2005,21(2):173-175。
    84.苏波,张素贞,朱世辉等。3T3细胞对表皮细胞无血清传代培养的作用。第二军医大学报,1996,17(增刊):15-18。
    85.谭彬,罗忠金,张吉翔。赖氨酸羟化酶的研究进展。医学分子生物学杂志,2005,2(3):220-223。
    86.汪世平,曾宪芳,易新元。日本血吸虫31/32 kDa抗原纯化及诊断应用的研究[J]。中国寄生虫学与寄生虫病杂志,1995,13(1):25-31。
    87.卫生部血吸虫病专家咨询委员会。我国血吸虫病防治研究与今后研究重点方向。卫生部血吸虫病专家咨询委员会2009年工作年会材料汇编。湖南长沙,2009年12月,pp88-94。
    88.夏启中,张明菊,张献龙。抑制差减杂交技术原理及常见操作结果分析。黄 冈师范学院学报,2005,25(3):30-33。
    89.杨桂梅,鲍宝龙,任大明。3-磷酸甘油醛脱氢酶、p-肌动蛋白和18S rRNA作为相对定量的内标在牙鲆发育阶段的稳定性比较。上海水产大学学报,2005,14(1):84-88。
    90.张晓东,蔡娜,王洪辉等。肝癌细胞条件培养液诱导新生儿脐带血贴壁细胞的转化[J]。Chinese Journal of Cancer。2006,25(1):1-6。
    91.张晓艳。肿瘤细胞培养上清液诱导正常细胞癌变及可能机理探讨。重庆医科大学优秀硕士学位论文,2005:2-3。
    92.周述龙,蒋明森,林建银,等。日本血吸虫超微结构。武汉:武汉大学出版社。2005。
    93.周述龙,林建银,蒋明森。血吸虫学。北京:科学出版社。2001。
    94.周晓红,陈晓光,戴琳,等。日本血吸虫可溶性虫卵抗原38kDa分子Dipstick快速诊断模式的初步建立[J]。热带医学杂志,2001,1(1):25-27。
    95.周晓农,汪天平,林丹丹,吴晓华。我国血吸虫病的防治策略及其效果。国际医学寄生虫病杂志,2009,36(5):266-273。
    96.朱龙付。棉花遗传多样性研究及抗黄萎病相关基因的克隆与分析[A]。华中农业大学博士学位论文[C],2004:31-60。
    97.邹艳,黄志辉,张祖萍,等。东方田鼠血清识别日本血吸虫各期虫体蛋白组分的特性分析。实用预防医学,2009,16(1):20-23。
    1. Ali A, Krone PH, Pearson D5, et al. Evalution of stress-inducible hsp90 gene expression as a potential molecular biomarker in Xenopus laevis. Cell Stress Chaperones,1996,1:62-69.
    2. Barnes JA, Smoak IW. Glucose-regulated protein 78 (GRP78) is elevated in embryonic mouse heart and induced following hypoglycemic stress. Anat. Embryol.2000,202:67-74.
    3. Byrd CA, Bornman W, Erdjument-Bromage H, et al. Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc. Natl Acad. Sci. USA.,1999,96:5645-5650.
    4. Cara JB, Aluru N, Moyano FJ, et al. Food-deprivation induces HSP70 and HSP90 protein expression in larval gilthead sea bream and rainbow trout. Comp Biochem Physiol B,2005,142:426-431.
    5. Craig EA. The heat shock response. CRC Crit Rev Biochem,1985,18:239-280.
    6. Csermely P, Schnaider T, Soti C, et al. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther,1998,79:129-168.
    7. Dundjerski J, Kovac T, Pavkovic N, et al. Glucocorticoid receptor-Hsp90 interaction in the liver cytosol of cadmium-intoxicated rats. Cell Biol Toxicol, 2000,16:375-383.
    8. Easton DP, Kaneko Y, Subjeck JR. The hsp110 and Grp170 stress proteins:newly recognized relatives of the Hsp70. Cell Stress Chaperone,2000,5:276-290.
    9. Freeman BC, Morimoto RI. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J,1996,15:2969-2979.
    10. Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology. Annu Rev Physiol,1999, 61:243-282.
    11. Feige U, Morimoto RI, Yahara I, et al. Stress-inducible cellular responses. Birkhauser Verlag,1996, Basel, Switzerland.
    12. Hartl FU. Molecular chaperones in cellular protein folding. Nature,1996,381: 571-579.
    13. Hedstrom R, Culpepper J, Harrison RA, et al. A major immunogen in Schistosoma mansoni infections is homologous to the heat-shock protein HSP70. J Exp Med,1987,165(5):1430-1435.
    14. Hermesz E, Abraham M, Nemcsok J. Identification of two hsp90 genes in carp. Comp Biochem Physiol C,2001,129:397-407.
    15. Hightower LE, Sadis SE, and Takenaka IM. In The Biology of Heat shock Proteins and Molecular Chaperones, Morimoto R, Tissieres A, Georgopoulos C, eds. (Cold Spring Harbor, New York:Cold Spring Harbor Laboratory Press), 1994, pp:179-207.
    16. Hsieh KP, Wilke N, Harris A, et al. Interaction of ethanol with inducers of glucose-regulated stress proteins. Ethanol potentiates inducers of grp78 transcription. J Biol Chem.1996,271:2709-2716.
    17. Jamora C, Dennert G, Lee AS, et al. Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C 10ME. Proc. Natl. Acad. Sci. U. S. A.1996,93:7690-7694.
    18. Jolly C, Morimoto RI. Stess and the the cell nucleus:dynamics of gene expression and structural reorganization. Gene Expr,1999,7:261-270.
    19. Kanamura HY, Hancock K, Rodrigues V, et al. Schistosoma mansoni heat shock protein 70 elicits an early humoral immune response in S. mansoni infected baboons. Memorias do Institute Oswaldo Cruz,2002,97(5):1114-1125.
    20. Koong AC, Chen EY, Lee AS, et al. Increased cytotoxicity of chronic hypoxic cells by molecular inhibition of GRP78 induction. Int. J. Radiat. Oncol. Biol. Phys.1994,28:661-666.
    21. Koyeli M, Martin S, Karin W, et al. Single molecule investigations of HSP70 proteins. Biophysical Journal (Supplement 1),2009,96(3):556a.
    22. Kregel KC. Heat shock proteins:modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol,2002,92:2177-2186.
    23. Lai BT, Chin NW, Stanek AE, et al. Quantitation and intracellular localization of the 85K heat shock protein by using monoclonal and polyclonal antibodies. Mol Cell Biol.,1984,4:2802-2810.
    24. Levy Yeyati P, Bonnefoy S, Mirkin G, et al. The 70-kDa heat-shock protein is a major antigenic determinant in human Trypanosoma cruzi/Leishmania braziliensis braziliensis mixed infection. Immunology Letters,1992,31(1):27-33.
    25. Li WW, Alexandre S, Cao X, et al. Transactivation of the grp78 promoter by Ca2+ deletion. A comparative analysis with A23187 and the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. J. Biol. Chem.1993,268:12003-12009.
    26. Lindquist S, Craig EA. The heat shock proteins. Annu Rev Genet,1988,22: 631-677.
    27. Little E, Ramakrishnan M, Roy B, et al. The glucose-regulated proteins (GRP78 and GRP94):functions, gene regulation, and applications. Crit. Rev. Eukaryotic. Gene Expr,1994,4:1-18.
    28. Little E, Lee AS. Generation of a mammalian cell line deficient in glucose-regulated protein stress induction through targeted ribozyme driven by a stress-inducible promoter. J. Biol. Chem.1995,270:9526-9534.
    29. Little E, Tocco G, Baudry M, et al. Induction of glucose-regulated protein (glucose-regulated protein 78 and glucose-regulated protein 94) and heat shock protein 70 transcripts in the immature rat brain following status epilepticus. Neuroscience,1996,75:209-219.
    30. Liu H, Bowes RC 3rd, van de Water B, et al. Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J. Biol. Chem.1997,272:21751-21759.
    31. Mckay DB, Wilbanks SM, Flaherty KM, et al. In The Biology of Heat shock Proteins and Molecular Chaperones, Morimoto R, Tissieres A, Georgopoulos C, eds. (Cold Spring Harbor, New York:Cold Spring Harbor Laboratory Press), 1994, pp:153-177.
    32. Minowada G, Welch WJ. Clinical implications of the stress response. J Clin Invest,1995,95(1):3-12.
    33. Mori M, Terada K. Mitochondrial protein import in animals. Biochimica et Biophysica Acta,1998,1403(1):12-17.
    34. Morimoto RI. Regulation of the heat shock transcriptional response:cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev,1998,12:3788-3796.
    35. Morris JA, Dorner AJ, Edwards CA, et al. Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. J. Biol. Chem.1997,272: 4327-4334.
    36. Miyake H, Hara I, Arakawa S, et al Stress protein GRP78 prevents apoptosis induced by calcium ionophore, ionomycin, but not by glycosylation inhibitor, tunicamycin, in human prostate cancer cells. J. Cell. Biochem.2000,77:396-408.
    37. Miyata Y, Yahara, Ⅰ. The 90-kDa heat shock protein, HSP90, binds and protects casein kinase Ⅱ from self-aggregation and enhances its kinase activity. J Biol Chem,1992,267:7042-7047.
    38. Miyata Y, Yahara, I. Interaction between casein kinase Ⅱ and the 90-kDa stress protein, HSP90. Biochemistry,1995,34:8123-8129.
    39. Nathan DF, Vos MH, Lindquist S. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc. Natl Acad. Sci. USA.,1997,94:12949-12956.
    40. Neumann S, Ziv E, Lantner F, et al. Regulation of HSP70 gene expression during the life cycle of the parasite helminth Schistosoma mansoni. Eur J Biochem,1993, 212(2):589-596.
    41. Palmisano AN, Winton JR, Dickhoff WW. Sequence features and phylogenetic analysis of the stress protein hsp90alpha in chinook salmon (Oncorhynchus tshawytscha), a poikilothermic vertebrate. Biochem Biophys Res Commun,1999, 258:784-791.
    42. Palmisano AN, Winton JR, Dickhoff WW. Tissue-specific induction of Hsp90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge. Mar Biotechnol (NY),2000,2: 329-338.
    43. Pan F, Zarate JM, Tremblay GC, et al. Cloning and characterization of salmon hsp90 cDNA:upregulation by thermal and hyperosmotic stress. J Exp Zool,2000, 287:199-212.
    44. Pavithra SR, Banumathy G, Joy O, et al. Recurrent fever promotes Plasmodium falciparum development in human erythrocytes. The Journal of Biological Chemistry,2004,279(45):46692-46699.
    45. Picard D. Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci,2002,59:1640-1648.
    46. Ram D, Ziv E, Lantner F, et al. Stage-specific alternative splicing of the heat-shock transcription factor during the life-cycle of Schistosoma mansoni. Parasitology,2004,129(5):587-596.
    47. Ramaglia V, Harapa GM, White N, et al. Bacterial infection and tissue-specific Hsp72,-73 and -90 expression in western painted turtles. Comp Biochem Physiol C,2004,138:139-148.
    48. Rassow J, Maarse AC, Krainer E, et al. Mitochondrial protein import: biochemical and genetic evidence for interaction of matrix hsp70 and the inner membrane protein MIM44. The Journal of Cell Biology,1994,127(6): 1547-1556.
    49. Rico AI, Angel SO, Alonso C, et al. Immunostimulatory properties of the Leishmania infantum heat shock proteins HSP70 and HSP83. Molecular Immunology,1999,36(17):1131-1139.
    50. Ritossa F. A new puffing pattern induced by temperature shock and DNP in drosophila. Cellular and Molecular Life Sciences,1962,18(12):571-573.
    51. Reddy RK, Lu J, Lee AS, et al. The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca2+-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. J. Biol. Chem. 1999,274:28476-28483.
    52. Schumacher RJ, Hurst R, Sullivan WP, et al. ATP-dependent chaperoning activity of reticulocyte lysate. J Biol Chem,1994,269:9493-9499.
    53. Shiu RP, Pouyssegur J, Pastan I, et al. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous Sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl. Acad. Sci. U.S.A.,1977, 74:3840-3844.
    54. Tissieres A, Mitchell HK, Tracy UM. Protein synthesis in salivary glands of Drosophila melanogaster:Relation to chromosome puffs. Journal of Molecular Biology,1974,85(3):389-398.
    55. Triantafilou M, Miyake K, Golenbock DT, et al. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci,2002,115:2603-2611.
    56. Wang B, Li F, Dong B, et al. Discovery of the genes in response to white spot syndrome virus (WSSV) infection in Fenneropenaeus chinensis through cDNA microarray. Mar Biotechnol (NY),2006,8:491-500.
    57. Wang JF, Bown C, Young LT, et al. Differential display PCR reveals novel targets for the mood-stabilizing drug valproate including the molecular chaperone GRP78. Mol Pharmacol.1999,55:521-527.
    58. Wiech H, Buchner J, Zimmermann R, et al. Hsp90 chaperones protein folding in vitro. Nature,1992,358:169-170.
    59. Young RA. Stress proteins and immunology. Annual Review of Immunology, 1990,8:401-420.
    60. Zhang M, Hisaeda H, Kano S, et al. Antibodies specific for heat shock proteins in human and murine malaria. Microbes Infect,2001,3(5):363-367.
    61. Zhang SHL, Wei SO, Li ST, et al. Immunohistochemical study of heat shock protein 70 in mouse endometrium during carly pregnancy. Journal Anatomy,2002, 25(1):21-24.
    62. Zoltan Prohaszka, George F. Immunological aspects of heat-shock proteins—the optimum stress of life. Molecular Immunology,2004,41:29-44.
    63.姜先荣,杨杰。分子伴侣与蛋白质折叠[J]。安徽教育学院学报,2001,19(3):55-56。
    64.金惠明,王建枝。病理生理学,第6版。北京:人民卫生出版社,2003:149-151。
    65.李传明。寄生虫热休克蛋白及其在血吸虫方面的研究进展。国外医学寄生虫病分册,1996,9(23):193-197。
    66.陈德权。HSP70在细胞应激反应中的调节作用[J]。国外医学-卫生学分册,1995,3:136-140。
    67.阎玉涛,刘述先,宋光承,等。东方田鼠天然抗体相关的日本血吸虫抗原基因筛选和克隆。中国寄生虫学和寄生虫病杂志,2001,19(3):153-156。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700