用户名: 密码: 验证码:
钾对套作大豆的抗倒伏效应与提高产量的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间套作种植技术作为中华民族的传统瑰宝,为解决世界人口的温饱问题作出了巨大的贡献。在我国南方地区,玉米大豆套作发展迅速,种植面积不断扩大。农业部从2008年起,连续四年将该模式列为农业部的主推技术,在我国的南方大力推广。然而,在该模式中,玉米与大豆存在一定的共生期,低位作物大豆由于受到高秆玉米的遮荫,生育前期光能利用上处于劣势,加之受到玉米对其水分和养分的竞争,导致大豆植株茎秆纤细,瘦弱,抗倒能力差,易发生倒伏,从而严重影响其产量和品质。为此,本研究在2008~2010年,通过盆栽与大田试验相结合的方法,探究了玉米/大豆套作体系中钾对套作大豆的抗倒效应与提高产量的机理。旨在揭示套作大豆倒伏发生的实质,以及钾的抗倒效应和提高产量的原理,为优化套作大豆栽培技术体系,指导合理施肥提供理论依据。主要研究结果如下:
     1.采用盆栽模拟试验对不同钾肥水平下净、套作大豆根系发育及其与倒伏的关系进行了研究。结果表明,钾肥的应用增加了大豆的一级侧根数、一级侧根总长度、根干重和根冠比,但对主根长和根体积没有明显的影响。净作条件下,大豆一级侧根数、一级侧根总长度、根体积和根冠比均极显著高于套作,主根根长间差异不显著。根系生理特性方面的研究表明,在净、套作条件下,大豆根系的伤流量、伤流冠比和根系活力均随着钾肥施用量的增加呈先升高后降低的变化趋势,以中钾处理最高,分别为1.84g·株-1,0.35和38.58μTPF·g-1FW·h-1;套作大豆伤流量和伤流冠比极显著高于净作,分别高出3.95和4.90倍,但根系活力表现相反。通过相关分析还发现,大豆倒伏率与根体积、一级侧根数、一级侧根总长度、根干重和根冠比呈极显著的负相关关系。大豆根体积越大,侧根数越多,根冠比越大,则越不容易发生倒伏。适宜的钾肥能够有效的促进根系生长发育,增加植株固持能力,从而减少倒伏的发生。
     2.采用盆栽和大田试验对不同钾水平下净套作大豆茎秆性状和抗倒性关系的研究结果表明,适宜的钾肥供应可增加套作大豆茎秆基部节间粗度、植株直立度、机械强度、抗倒指数和基部节间干重,降低株高、基部节间长度、重心高度和倒伏率。茎秆抗倒指数与基部节间粗度和机械强度呈极显著的正相关关系,与株高、重心高度、节间长度和倒伏呈极显著的负相关关系。而大豆倒伏率与植株株高、重心高度和节间长度呈极显著的正相关关系,与茎秆节间粗度、机械强度和抗倒指数则呈极显著的负相关关系,大田与盆栽试验表现一致。适宜的钾肥能提高套作大豆茎秆的抗倒指数,降低倒伏率。
     3.通过形态解剖和显微观察发现,钾肥应用对大豆基部茎秆结构的影响主要表现在显著增加了木质部的厚度和占整个横切面的比例,降低了维管束的数量,但单个维管束的面积增大。韧皮纤维厚度和韧皮部厚度随着钾肥施用量的增加呈不规则的变化。钾肥可增加髓部面积,减少髓部所占横切面的比例,使皮层增厚,但表皮厚度无明显变化。净套作模式下,皮层厚度,维管束的面积,木质部、韧皮部的厚度和所占横切面的比例,形成层厚度、髓部的面积和所占横切面比例均表现为套作显著低于净作,而表皮厚度和维管束数量差异不显著。茎秆节间粗度的差异主要体现在木质部厚度、维管束大小上
     4.钾肥的应用显著增加了大豆茎秆可溶性糖含量、钾含量、C/N、苯丙氨酸裂解酶(PAL)和肉桂醇脱氢酶(CAD)活性,并随着钾肥施用量的增加呈先升高后降低的变化趋势,但各处理间氮含量差异不显著。施用钾肥显著提高了木质素和纤维素含量,比不施肥处理分别高5.3~11.2%和8.7-19.9%。净套作模式下,净作大豆茎秆可溶性糖、钾含量显著高于套作,木质素、纤维素含量、PAL和CAD活性苗期净作高于套作,盛花期差异不显著,茎秆氮含量和C/N也不存在显著差异。PAL和CAD与大豆茎秆木质素含量呈显著的正相关关系,PAL和CAD的活性越强,茎秆木质素含量越高。钾肥的应用提高了大豆苗期和花期叶片IAA、 CTK、 ABA含量和CTK/ABA,降低了苗期叶片GA3含量和GA3/CTK、 IAA/CTK比值,利于植株横向生长。花期叶片GA3随着钾肥水平的增加呈先升高后降低的变化趋势,IAA/CTK、 GA3/CTK比值增加,利于大豆植株的纵向生长。
     5.施用钾肥提高了大豆生育前期的叶绿素含量和SPAD值,随施钾量的增加呈先升高后降低的变化趋势,套作遮荫条件下表现更为明显。净套作条件下,净作大豆叶片的光合速率和气孔导度极显著地高于套作遮荫大豆,分别比其高33.9%和17.7%,胞间二氧化碳浓度则表现相反。适宜的钾肥供应可显著增加净、套作大豆叶片净光合速率(Pn)和气孔导度(Gs),降低叶片胞间二氧化碳浓度(Ci)。叶绿素荧光特性上,套作遮荫大豆的初始荧光(Fo)和实际光合能力(ΦPS II)显著高于净作,而最大光化学量子产量(Fv/Fm)和非光化学荧光猝灭州PQ)则表现相反,净套作大豆有效光化学量子产量(Fv'/Fm')和NPQ差异达极显著水平,Fv/Fm差异不显著。钾肥的应用增加了大豆叶片的Fo和Fv'/Fm',降低了大豆的Fv/Fm、 PS Ⅱ光化学荧光猝灭系数(qP)和非光化学荧光猝灭,但各处理间差异不显著。
     6.套作大豆干物质的积累符合“S”生长曲线,可用Logstic方程Y=K/(1+ae-bx)加以拟合(R2>0.99”)。适宜的钾肥供应提高了套作大豆的干物质积累。随着施钾量的增加,套作大豆干物质积累量,最大增长速率呈逐渐增加的趋势,最大增长速率出现时间和干物质快速增加的时间提前。增施钾肥可调节干物质的输出量,增加营养器官对荚果的干物质贡献率,营养器官干物质积累量、输出率和贡献率均随施钾量的增加而显著增加。
     7.钾肥的应用显著增加了大豆的产量和单株荚数,但对每荚粒数没有明显的影响,百粒重在盆栽大田条件下表现不尽一致。净套作条件下,净作大豆产量、单株荚数、每荚粒数和百粒重均显著高于套作遮荫处理。钾肥运筹方式上,中钾水平采用基肥、苗肥和花期追肥(1:1:1)产量最高,为2001.27kg.hm-2,每荚粒数和百粒重则无明显的变化。中钾水平采用基肥和苗肥(1:1)利于增加蛋白质含量,但钾肥不同时期施用配比对脂肪含量无明显的影响。
     8.玉米大豆套作种植农田施用钾肥能明显改善套作大豆植株的根系、茎秆形态,塑造良好的株型,提高其抗倒能力,降低倒伏率,提高套作大豆的产量和品质。
As the Chinese nation's traditional treasures, the planting technology of intercropping made tremendous contributions to solve the problem of feeding the world population. The relay strip intercropping of maize and soybean has been practiced traditionally in a large scale in south of China, and the planting area is rising continuously. It has been listed as main agricultural technology of Ministry of P. R. China since2008, as it is worth to be enhanced and further applied in sourthern China. However, there exsited a symbiotic period in this system, the earlier-planted and taller maize form relatively higher canopy structures than soybean and the roots of maize grow to a greater depth than those of soybean, thus the lower soybean seedling grows in the condition of shading by taller maize, the maize intercepts more sunlight than soybean. So, the soybean yield and quality are suppressed, mainly due to soybean suffered adverse competition in environment resources such as water, nutrients and radiation from maize, which leads to thinner stem, elongated plant and weaker lodging resistance, easier to lodging. In this study, the trials of pot and field were carried out from2008to2010to investigate the effect and mechanism of potassium on lodging-resistance and yield improvement of relay strip intercropped soybean. The main purpose was to open out essential of lodging of relay strip intercropping soybean, the principle of lodging-resistance and yield improvement of potassium, and which can be applied in optimizing the system of cultivation technology of relay strip intercropping soybean, providing the theory basis for reasonable fertilization application. The main results showed as follows:
     1. Applying the technology of pot trial simulated the field trial, the root growth and their relationship with lodging of sole and relay intercropping soybean under different potassium levels were studied. The results indicated that potassium application increased the number of first lateral roots, total length of lateral root, root day matter weight and root/shoot ratio of soybean, but the differences were not significant in main root length and root volume. The study of physiological characteristic in root suggested that the bleeding sap, bleeding sap-top ratio and root vigor increased first and then decreased with the increment of potassium application in sole and relay strip intercropping systems. The treatment in middle potassium level was the highest, which were1.84g-plan-1,0.35and38.58μTPF·g-1FW·h-1, respectively. The bleeding sap and bleeding sap-top ratio of relay strip intercropping soybean were3.95and4.90times higher significantly than monocropping soybean, but it was opposite in the root vigor. According to the correlation analysis, the resulted revealed that lodging rate of soybean was negatively correlated with root volume, the number of first lateral root, total length of lateral root, root dry matter weight and root/shoot ratio. The soybean with bigger root volume, more number of first lateral roots, and higher root/shoot ratio, and then it was not easy to lodging. Appropriate potassium application improved the root growth of soybean, increased the stationary ability of plants, and reduced the actual lodging rate.
     2. The pot and field trials were carried out to investigate the relationships between stem trait and lodging resistance of sole and relay strip intercropping soybean under different potassium levels. The results showed that appropriate potassium application could increase the basal stem diameter, plant erection degree, mechanical strength, lodging resistance index and dry weight of basal internode, but reduce the plant height, basal internode length, height of central of gravity and lodging rate. The stem lodging resistance index was positively correlated with basal internode diameter and mechanical strength, but negatively correlated with plant height, height of central of gravity, basal internode length and lodging rate. The lodging rate was positively correlated with plant height, height of central of gravity and basal internode length, but negatively correlated with basal internode diameter of stem, mechanical strength, and lodging resistance index, the similar relationship was expressed in pot and field trials. The proper potassium application could improve the lodging resistance index of stem in relay strip intercropping soybean, reduce the actual lodging rate.
     3. According to the morphology anatomy and microcosmic observation, the main effect of potassium on basal internode structure of soybean stem was increasing the thickness of xylem and ratio of xylem in stem cross-section, reducing the number of vascular bundle, but increasing the single area of vascular bundle. The irregular changes occurred in thickness of phloem and phloem fiber when increased the potassium application amounts. Potassium could increase the pith area and thickness of cortex, reduce the ratio of pith in stem cross-section, but the change in thikcness of cuticula was not significant. Under the sole and relay strip intercropping systems, the thickness of cortex, area of vascular bundle, thickness of xylem and phloem, area of xylem and phloem in stem cross-section, cambium thickness, area of pith and ratio of pith in stem cross-section in relay strip intercropping soybean were significant lower than that of monocropping soybean, but the differences in thickness of cuticula and number of vascular bundle were not significant. The difference of basal stem diameter in different treatments was responsible for the difference in thickness of xylem and size of vascular bundle.
     4. Potassium application increased significantly the soluble carbohydrate content, K content, C/N ratio, phenylalanine ammonia lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) activity, which increased first and then decreased with the increasing of potassium application amount, but the nitrogen content in different treatments were not significant. Applied potassium significant improved the content of lignin and cellulose, which were5.3%~11.2%and8.7%~19.9%higher than treatment without fertilizer respectively. In monocropping and relay strip intercropping systems, the soluble carbohydrate content of stem and K content in monocropping soybean were higher than relay strip intercropping soybean. The lignin and cellulose content, PAL and CAD activity of monocropping were also higher than relay strip intercropping soybean at seedling stage, but the differences were not significant at full-bloom stage, the nitrogen content and C/N ratio were also not remarkable. The lignin content of stem was positively correlated with PAL and CAD, the higher activity of PAL and CAD, and the more lignin content. Potassium application improved the content of IAA, CTK and ABA, CTK/ABA ratio in soybean leaves at seedling and full-bloom stage, reduced the GA3content and GA3/CTK and IAA/CTK ratio at seedling stage, enhanced the horizontal growth of stem. The GA3 content of leave at full-bloom stage increased first and then decreased with the increment of potassium application, and the IAA/CTK and GA3/CTK ratio increased with the increasing of potassium applied, which resulted in stronger vertical growth of stem.
     5. Applied the potassium increased the chlorophyll content and SPAD value of leaves at earlier growth stage of soybean, which increased first and then decreased with the increasing of potassium application amount, it was more obvious in relay strip intercropping system. The net photosynthetic rate (Pn) and stomatal conductance (Gs) of monocroppping soybean were33.9%and17.7%higher than that of relay strip intercropping soybean respectively, but the intercellular CO2concentration (Ci) showed the opposite trend. Proper potassium application increased the Pn and Gs of monocropping and relay strip intercropping soybean, reduced the Ci of leave. The soybean shading by maize in relay strip intercropping system showed higher initial fluorescent (Fo) and actual photosynthetic ability than monocropping soybean, but the maximal photochemical efficiency of PS Ⅱ in the dark (Fv/Fm) and nonphochemical fluorescence quenching (NPQ) were opposite. The difference of photochemical efficiency of PS Ⅱ in the light (Fv'/Fm') and NPQ between monocropping and relay strip intercropping system were significant, excepted the Fv/Fm. Potassium applied increased the minimal fluorescence (Fo) and Fv'/Fm' of soybean leaves, reduced the Fv/Fm, photosynthetic active fluorescence quenching (qP) and NPQ, but the difference in these treatments were not significant.
     6. The dry matter accumulation of relay strip intercropping soybean followed a S curves, could be described by Logistic regression equations (y=k/(1+ae-bx))(R2>>0.99**). Proper potassium applied improved the dry matter accumulation of relay strip intercropping soybean. With the increasing of potassium applied amount, the dry matter accumulation and maximum growth rate increased, the time of maximum growth rate and dry matter accumulation rate began to rapid increase were advanced. Increased the amount of potassium could adjust the dry matter output, and increase the contribution ratio from vegetative organ to pod. The amount of dry matter accumulation, output and contribution ratio increased remarkable with the increment of potassium application amount.
     7. Potassium application significant increased the yield and pod number per plant in soybean, but there was no effect on seed number per pod, and the100-seed weight showed different trends in field and pot trials respectively. In the monocropping and relay stip intercropping systems, the yield, pod number per plant, seed number per pod and100-seed weight of monocropping soybean were significantly higher than that of relay strip intercropping soybean shading by maize. Adopting the different potassium applied ways suggested that the treatment of potassium was applied before planting and at seedling and initial flower stage with the ratio of1:1:1were the highest among the test treatments, being2001.27kg·hm-2, but the seed number per pod and100-seed weight were not significant. In the field trial, the potassium applied significantly increased the protein content of relay strip intercropping soybean, reduced the crude fat content. In the pot trial, the protein content of different treatments was not significant difference. The potassium applied ways indicated that the treatment of potassium was applied before planting and at seedling stage with the ratio of1:1was beneficial for the increasing of protein content, but which had no effect on the crude fat content.
     8. In the relay strip intercropping system of maize and soybean, applying potassium could improve the morphology of root and stem, shape good plant type, increase the lodging resistance, reduce the lodging rate, and then improve the yield and quality of soybean.
引文
[1]刘广才.不同间套作系统种间营养竞争的差异性及其机理研究[D].兰州,甘肃农业大学博士学位论文,2005
    [2]杨文钰,雍太文,任万军,等.发展套作大豆振兴大豆产业[J].大豆科学,2008,27(1):1-4
    [3]雍太文,任万军,杨文钰,等.旱地新三熟“麦/玉/豆”模式的内涵、特点及栽培技术[J].耕作与栽培,2006,(6):48-50
    [4]Sposaro M.M., Berry P.M., Sterling M., et al. Modelling root and stem lodging in sunflower [J]. Field crops research.2010,119:125-134
    [5]李金才,尹钧,魏凤珍.播种密度对冬小麦茎秆形态特征和抗倒指数的影响.作物学报,2005,31(5):662-666
    [6]马赛斐,刘建,裴桂英,等.不同时期、不同级别倒伏对大豆的影响[J].耕作与栽培.2006,1:26-28
    [7]Jim Board. Reduced lodging for soybean in low plant population is related to light quality [J]. Crop Science.2001,41:379-384
    [8]吴其林.苗期遮荫对大豆茎秆形态和物质积累的影响[J].大豆科学,2007,26(6):868-872
    [9]杨世民,谢力,郑顺林,等.氮肥水平和栽插密度对杂交稻茎秆理化特性和抗倒伏性的影响[J].作物学报.2009,35(1):93-103
    [10]周蓉.大豆抗倒伏性评价体系的建立及主要农艺性状QTL定位[D].武汉,华中农业大学博士论文.2009
    [11]孙世贤,戴俊英,顾慰连.氮、磷、钾肥对玉米倒伏及其产量的影响.中国农业科学,1989,22(3):28-33
    [12]William T. Pettigrew. Potassium influences on yield and quality production for maize, wheat, soybean and cotton [J]. Physiologia Plantarum.2008,133:670-681
    [13]黄增奎.小麦施钾的抗倒伏效应[J].土壤通报,1989,20(3):122-123
    [14]田保明,杨光圣,曹光强,等.农作物倒伏及其影响因素分析[J].中国农学通报.2006,22(4):163-167
    [15]蒋德安,翁晓燕.低钾营养条件下水稻源叶同化物输出的障碍[J].植物生理学报,1994,20(2):137
    [16]华元刚,林清米,罗微,等.氮素供应对橡胶树根系生长的影响[J].中国农学通报,2006,22(6):421-424
    [17]Lynch J. Root architecture and plant productivity [J]. Plant Physiology,1995,109:7-13
    [18]王余龙,姚友礼,刘宝玉,等.不同生育时期氮素供应水平对杂交水稻根系生长及其活力的影响[J].作物学报,1997,23(6):699-706
    [19]杨友琼,吴伯志.作物间套作种植方式间作效应研究[J].中国农学通报.2007,23(11): 192-195
    [20]杨文钰,雍太文,杨峰.我国间套作大豆研究方向和发展对策研讨会[J].大豆科技.2011,1:35-36
    [21]Gustave N. M., Jean-Francois Ledent, Xavier Draye. Shoot and root competition in potato/maize intercropping:Effects on growth and yield [J]. Environmental and Experimental Botany,2008,64:180-188
    [22]Zhang L., Wopke van der Werf, Siping Zhang, et al. Growth, yield and quality of wheat and cotton in relay strip intercropping systems [J]. Field Crops Research.2007,103:178-188
    [23]Ghosh P.K., Tripathi A.K., Bandyopadhyay K.K., et al. Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system [J]. European Journal of Agronomy.2009,31:43-50
    [24]朱树秀,杨志忠.紫花苜蓿与老芒麦混播优势的研究[J].中国农业科学,1992,25(6):63-68
    [25]Yanbo Xiao, Long Li, Fusuo Zhang. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques [J]. Plant and Soil,2004,262:45-52
    [26]Carol M. S., Johannes L., Phinio B. de C. et al. Nitrogen transfer between high-and low-quality leaves on a nutrient-poor Oxisol determined by 15N enrichment [J]. Soil Biology and Biochemistry,2005,37:787-794
    [27]Henning H. J., Schjoerring J. K. Below-ground nitrogen transfer between different grassland species:Direct quantification by 15N leaf feeding compared with indirect dilution of soil 15N [J]. Plant and Soil,2000,227:171-183
    [28]Ghosh P. K., Manna M. C., Bandyopadhyay K.K., et al. Interspecific interaction and nutrient use in soybean/sorghum intercropping system[J]. Agronomy Journal,2006,98:1097-1108
    [29]Frey B, Schiiepp H. A role of vesicular-arbuscular (VA) mycorrhizal fungi in facilitating interplant nitrogen transfer [J]. Soil Biology and Biochemistry,1993,25:651-658
    [30]肖焱波,李隆,张福锁.小麦/蚕豆间作体系中的种间相互作用及氮转移研究[J].中国农业科学,2005,38(5):965-973
    [31]孟亚利,王瑛,王立国,等.麦棉套作复合根系群体对棉花根系生长的影响[J].中国农业科学.2006,39(11):2228-2236
    [32]黄高宝,张恩和.禾本科、豆科作物间套种植对根系活力影响的研究[J].草业学报,1998,7(2):18-22
    [33]左元梅,王贺,李晓林,等.石灰性土壤上玉米/花生间作对花生根系形态变化和生理反应的影响[J].作物学报,1998,24:558-563
    [34]Rusinamhodzi L., Murwira H. K., Nyamangara J. Cotton-cowpea intercropping and its N2 fixation capacity improves yield of a subsequent maize crop under Zimbabwean rain-fed conditions [J]. Plant and Soil,2006,287:327-336
    [35]Tobia S, Ito O., Matsunaga R.., Rao T. P., et al. Field evaluation of nitrogen fixation and user of nitrogen fertilizer by sorghum/pigeonpea intercropping on an Alfisol in the Indian semi-arid tropics [J]. Biology and Fertility of Soils,1994,17:241-248
    [36]李少明,赵平,范茂攀,等.玉米大豆间作条件下氮素养分吸收利用研究[J].云南农业大学学报,2004,5:572-574
    [37]Van kessel C., Hartley C.. Agricultural management of grain legumes:has it led to an increase in nitrogen fixation? [J]. Field crop Research,2000,65:165-181
    [38]房增国.豆科/禾本科间作的氮铁营养效应及对结瘤固氮的影响[D].北京,中国农业大学,2004
    [39]Li L, Li S M. Diversity enhances agricultural productivity via-rhizosphere phosphorus facilitation on phosphorus-deficient soils [J]. PNAS,2007,3:104-127
    [40]Anthony R. Szumigalski, Rene C. Van Acker. Nitrogen yield and land use efficiency in annual sole crops and intercrops [J]. Agronomy Journal,2006,98:1030-1040
    [41]李凤超,李增嘉.种植制度的理论与实践[M].北京:中国农业出版社,1995,139-192
    [42]Martin R. C., Astatkie T., Cooper J. M. The effect of Brady rhizobium strains on monocropped and intercropped soybean (Glycine max L. Merr.) biomass and protein [J]. Journal of Agronomy and Crop Science,1998,181(1):1-6
    [43]Carr P. M., Martin G. B., Caton J. S., et al. Forage and nitrogen yield of barley-pea and oat-pea intercrops [J]. Agronomy Journal,1998,90(1):79-84
    [44]Bakhri S., Hardjosowignjo S., Rumawas F., et al. Intercropping between upland rice and stilo (Stylosanthes guyanensis Abul.) to produce forage [J]. Agrikam(Indonesia),1997,9(2):23-32
    [45]Ayisi K. K., Putnam D. H., Vance C. P., et al. Strip intercropping and nitrogen effects on seed, oil and protein yields of canola and soybean [J]. Agronomy Journal,1997,89:23-29
    [46]Njoka Njiru E. N., Njarui M. G., Abdulrazak S. A., et al. Effect of intercropping herbaceous legumes with napier grass on dry matter yield and nutritive value of the feedstuffs in semi-arid region of eastern Kenya [J]. Agricultura tropica et subtropica,2006,39(4):255-266
    [47]Harlapur S. I., Hunshal C. S., Moorty T. D. K.. Effect of maize intercropping on yield and quality of sugarcane [J]. Farming Systems,1996,12(3-4):47-49
    [48]Azim A., Khan A. G., Nadeem M. A., et al. Influence of maize and cowpea intercropping on fodder production and characteristics of silage [J]. Asian-Australasian Journal of Animal Sciences,2000,13(6):781-784
    [49]Daniel T. Baumann, Lammert Bastiaans, Martin J. Kropff. Intercropping system optimization for yield, quality, and weed suppression combining mechanistic and descriptive models [J]. Agronomy Journal,2002,94:734-742
    [50]戴建军,程岩.黑龙江省南部黑土不同施氮水平对大豆产量的影响[J].东北农大学学报, 2000,3 1(3):225-228
    [51]甘银波,涂学文,田任久.大豆的最佳氮肥施用时期研究[J].大豆科学,1998,17(4):287~291
    [52]张琼,龚万金,唐晓红,等.玉米、大豆(马铃薯)立体栽培技术[J].农村科学实验,2009,13
    [53]宋艳霞,杨文钰,李卓玺,等.不同大豆品种幼苗叶片光合及叶绿素荧光特性对套作遮荫的响应[J].中国油料学报,2009,3 1(4):474-479
    [54]陈怀珠,孙祖东,杨守臻,等.荫蔽对大豆主要性状的影响及大豆耐荫性鉴定方法研究初报[J].中国油料作物学报,2003,25(4):78~82
    [55]吴其林.苗期遮荫对大豆茎秆形态和物质积累的影响[J].大豆科学,2007,26(6):868-872
    [56]梁镇林.单作和间作大豆茎叶性状的消长及相关[J].西南农业学报,1999,12(2):47-53
    [57]刘兵,王程,金剑,等.生殖生长期光富集及遮荫对大豆产量及其构成特性的影响[J].大豆科学,2008,27(5):764-772
    [58]Bing Liu, Xiao bing Liu, Cheng Wang, et al. Response of soybean yield and yield components to light enrichment and planting density [J]. International Journal of Plant Production,2010, 4(1):1735-8043
    [59]张秋英,刘晓冰,金剑,等.Rs期遮荫对大豆植株体内源激素和酶活性的影响[J].大豆科学,2000,19(4):362-366
    [60]Kakiuchi J., Kobata T. Shading and thinning effects on seed and shoot dry matter increase in determinate soybean during the seed-filling period [J]. Agronomy Journal,2004,96:398-405
    [61]刘艳辉,侯希明,刘洪涛,等.大豆间作小麦高产高效栽培技术初控[J].杂粮作物,2009,29(3):218~219
    [62]王竹,贺阳冬,杨继芝,等.套作模式下播期对不同熟性大豆茎叶形态及产量的影响[J].湖南农业科学,2009,(8):40-45
    [63]雍太文,杨文钰,向达兵,等.玉/豆套作模式下玉米播期与密度对大豆农艺性状及产量的影响[J].大豆科学,2009,28(3):439-444
    [64]王正功,李林.棉田间作套种制度研究进展[J].湖南农业科学,2009,(8):37-44
    [65]杨向东.木质素合成调控及其与甘蓝型油菜抗菌核病和抗倒伏性关系研究[D].北京,中国农业科学院.2006.5-7
    [66]李瑞,李絮花,杨守祥,等.钾对冬小麦根系生理性状及地上部生长的影响[J].土壤肥料.2003.4:16-19
    [67]唐拴虎,徐培智,张发宝,等.一次性全层施用控释肥对水稻根系形态发育及抗倒伏能力的影响[J].植物营养与肥料学报.2006,12(1):63-69
    [68]刘唐兴,官春云.不同密度的油菜根系特征和产量与倒伏之间的相关性初探[J].西南农业学报,2008,21(1):23-25
    [69]Stamp P., Kiel C.. Seedling traits of maize as indicators of root lodging [J]. Agronomie,1991, 12:157-162
    [70]Mariano M. Sposaro, Claudio A. Chimenti, Antonio J. Hall. Root lodging in sunflower. Variations in anchorage strength across genotypes, soil types, crop population densities and crop developmental stages [J]. Field crops research,2008,106:179-186
    [71]周蓉,王贤智,陈海峰,等.大豆倒伏性及其相关性状的QTL分析[J].作物学报,2009,35(1):57-65
    [72]周蓉,陈海峰,王贤智,等.大豆幼苗根系性状的QTL分析[J].作物学报,2011,37(7):1151-1158.
    [73]梁德印,徐美德,李舒凡,等.钾肥对大豆生长发育和形态的影响[J].中国农业科学,1986.2:62-65
    [74]郭玉华,朱四光,张龙步,等.不同栽培条件对水稻茎秆材料学特性的影响[J].沈阳农业大学学报.2003,34(1):4-7
    [75]马均,马文波,田彦华,等.重穗型水稻植株抗倒伏能力的研究[J].作物学报,2004,30(2):143-148
    [76]Yoshida S.. Physiological aspect of grain yield [J]. Annual review of plant physiology,1972, (23):437-464
    [77]杨惠杰,杨仁崔,李义珍,等.水稻茎秆性状与抗倒的关系[J].福建农业学报,2000,15(2):1-7
    [78]肖应辉,罗丽华,闫晓燕,等.水稻品种倒伏指数QTL分析[J].作物学报,2005,31(3):348-354
    [79]华泽田,郝宪彬,沈枫,等.东北地区超级杂交粳稻倒伏性状的研究[J].沈阳农业大学学报,2003,34(3):161-164
    [80]李荣田,姜廷波,秋太权,等.水稻倒伏对产量影响及倒伏和株高关系的研究[J].黑龙江农业科学,1996,(1):13-17
    [81]张忠旭,陈温福,杨振玉,等.水稻抗倒伏能力与茎秆物质性状的关系及其对产量的影响[J].沈阳农业大学学报,1999,30(2):81-85
    [82]贺春林,李卫东,薛应离.夏大豆品种抗倒伏性的遗传研究[J].河南农业大学学报,1993,27(2):196-200
    [83]Kashiwagi T., Tshimaru K.. Identification and functional analysis of a locus for improvement of lodging resistance in rice [J]. Plant physiology,2004,134(2):676-683
    [84]张秋英,欧阳由男,戴伟民,等.水稻基部伸长节间性状与倒伏相关性分析及QTL定位[J].作物学报,2005,31(6):712-717
    [85]段传人,王伯初,王凭青.水稻茎秆的结构及其性能的相关性[J].重庆大学学报,2003,26(11):38-40
    [86]钟代斌.水稻抗白叶枯病和抗倒伏性的分子剖析[D].北京,中国农业科学院博士论文.2000
    [87]穆平,李自超,李春平,等.水、旱条件下水稻茎秆主要抗倒伏性状的QTL分析[J].遗传学报,2004,31(7):717-723
    [88]关玉萍,沈枫.小稻抗倒伏能力与茎秆物理性状的关系及对产量的影响[J].吉林农业科学,2004,29(4):6-11
    [89]艾治勇,马国辉.水稻倒伏研究现状[J].作物研究,2004,5:334-338
    [90]Bhiah K. M., Guppy C., Lockwood P., et al. Effect of potassium on rice lodging under high nitrogen nutrition.19th World congress of soil science, Australia,2010,136-139
    [91]Zhang Feng-zhuan, Jin Zheng-xun, Ma Guo-hui, et al. Dynamics between lodging resistance and chemical contents in japonica rice during grain filling [J]. Rice science,2010,17(4):1-5
    [92]王健,朱锦懋,林青青,等.小麦茎秆结构和细胞壁化学成分对抗压强度的影响[J].科学通报,2006,51(5):1-7
    [93]王群瑛,胡昌浩.玉米茎秆抗倒特性的解剖研究.作物学报,1991,17(1):70-74
    [94]Inoue M., Gao Z S, Cai H W. QTL analysis of lodging resistance and related traits in Italian ryegrass (Lolium multiflorum Lam.) [J]. Theoretical and Applied Genetics,2004,109(8): 1576-1585
    [95]徐正进,陈温福,张龙步,等.水稻直立穗性状评价与利用研究进展[J].沈阳农业大学学报,1995,26(4):335-341
    [96]都华.水稻茎秆抗倒伏能力构成因素及其品种间差异的研究[D].沈阳,沈阳农业大学硕士论文.2002
    [97]董明辉,张洪程,戴其根,等.不同粳稻品种倒伏指数及其相关农艺性状的分析[J].吉林农业大学学报,2003,25(2):120-123
    [98]董丹,陈书强,刘柏林,等.直立穗型基因对水稻抗倒伏能力的影响[J].江西农业大学学报,2009,31(2):202-207
    [99]邹德堂,秋太权,赵宏伟,等.水稻倒伏指数与其它性状的相关和通径分析[J].东北农业大学学报,1997,28(2):112-118
    [100]华泽田,郝宪彬,沈枫,等.东北地区超级杂交粳稻倒伏性状的研究[J].沈阳农业大学学报,2003,(3):161-164
    [101]Takahia A, Qingsen Z, Yulong W, et al. Case studies on high yield rice in Jiangsu Province, China [J]. Japanese journal of crop science,1993,62(2):275-281
    [102]Ookawa T, Ishihara K. Varietal difference of physical characteristic of the culm related to lodging resistance in paddy rice [J]. Japanese journal of crop science,1992,61(3):419-425
    [103]吴耀民,卓亚男.水稻倒伏及栽培技术对策[J].垦殖与稻作,1999,(3):12-14
    [104]梁瑞凤.水稻倒伏对产量及品质的影响及对策[J].中国农村小康科技,2007,8:24
    [105]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1995,32
    [106]范平,张娟,李新平,等.不同小麦品种(系)茎秆组织结构与产量潜力关系研究[J].河南农业大学学报,2000,34(3):216-219
    [107]唐拴虎,陈建生,徐培智,等.一次性全层施肥增强水稻抗倒伏效应研究初报[J].广东农业科学,2004,(1):32-34
    [108]Casserly L. M.. The effect of nitrogen, phosphorus and potassium on lodging in oats [J]. Canadian journal of plant science,1956,37:245-251
    [109]赵清政,何安奎,张华信.水稻倒伏原因及对策[J].垦殖与稻作,2002,(4):40
    [110]Kaur G, Kler D S, Singh S J, et al. Relationship of height, lodging score and silica content with grain yield of wheat (Triticum aestivum L.) under different planting techniques at higher nitrogen nutrition [J]. Environment ecology,2001,19(2):412-417
    [111]张学斌,汪立钢,王继印,等.河南省不同稻区施用钾肥的效果研究[J].耕作与栽培,2002,(1):56-57
    [112]杨长明,杨林章,颜廷梅,等.不同养分和水分管理模式对水稻抗倒伏能力的影响[J].农业环境科学学报,2005,24(3):446-449
    [113]王晓光,曹敏建,王伟,等.钾对大豆根系形态与生理特性的影响[J].大豆科学,2005,5(2):126-134
    [114]宁海龙,胡国华,李文滨,等.氮磷钾底肥对大豆蛋白质含量的效应[J].大豆科学,2006,25(3):288-293
    [115]Jones G. D., Lutz J. A., Yield of wheat and soybean sand oil and protein content of soybean as affected by fertility treatments and deep placement of limestone [J]. Agronomy Journal,1971, 63:931-934
    [116]Eduardo Caierao. Effect of induced lodging on grain yield and quality of brewing barley [J]. Crop breeding and applied biotechnology.2006,6:215-221
    [117]Tripathi S.C., Sayre K.D., and Kaul J.N.. Planting systems on lodging behavior, yield components, and yield of irrigated spring bread wheat [J]. Crop science.2005,45:1-8
    [118]程富丽,杜雄,刘梦星,等.玉米倒伏及其对产量的影响[J].玉米科学.2011,19(1):105-108
    [119]郭翠花,高志强,苗果园.不同产量水平下小麦倒伏与茎秆力学特性的关系[J].农业工程学报,2010,26(3):151-155
    [120]孙世贤,戴俊英,顾慰连.国外玉米倒伏研究.世界农业,1991,5:23-24
    [121]张志才.作物倒伏成因分析及抗倒对策研究进展[J].耕作与栽培,2006,4:1-2
    [122]Thomas H., Smart C. M.. Crops that stays green [J]. Annals of applied biology,1993,123, 193-219
    [123]童学军,严小龙,李惠珍,等.大豆磷效率与形态生理性状的关系[J].福建师范大学学报(自然科学版),2000,16(1):84-88
    [124]陈新军,威存扣,浦惠明,等.甘蓝型油菜抗倒性评价及倒伏性与株型结构的关系[J].中国油料作物学报,2007,29(1):54-57
    [125]王莹,杜建林.大麦根倒伏抗性评价方法及其倒伏系数的通径分析[J].作物学报,2001, 27(6):941-945
    [126]蒲宝福,李帮发,周俊儒,等.小麦抗倒伏评价方法研究初报[J].绵阳经济技术高等专科学校学报,1999,16(2):1-5
    [127]周蓉,王贤智,张晓娟,等.大豆种质倒伏抗倒性评价方法研究[J].大豆科学,2007,26(4):484-489
    [128]谢甫绨,胡凤新,赵庆祥,等.不同倒伏程度对大豆生育性状和产量性状的影响[J].辽宁农业科学,1994,5:43-45
    [129]Berry P. M., Spink J., Sterling M., et al. Methods for rapidly measuring the lodging resistance of wheat cultivars [J]. Journal of Agronomy and Crop Science,2003,189(6):390-401
    [130]马霓,李玲,徐军,等.甘蓝型油菜抗倒伏性及农艺性状研究[J].作物杂志,2010,6:36-41
    [131]谢甫绨,董钻,王晓光,等.大豆倒伏对植株性状和产量的影响[J].大豆科学,1993,12(1):81-85
    [132]Kabelka E. A, Diers B. W., Fehr W. R., et al. Putative alleles for increased yield from soybean plant introductions [J]. Crop Science,2004,44:781-791
    [133]Zhang W. K., Wang Y. J., Luo G. Z., et al. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers [J]. Theoretical Applied Genetics,2004,108:1131-1139
    [134]Crook M. J., Ennos A. R.. The effect of nitrogen and growth regulators on stem and root characteristics associated with lodging in two cultivars of winter wheat [J]. Journal of Experimental Botany,1995,46(8):931-938
    [135]魏凤珍,李金才,王成雨,等.氮肥运筹模式对小麦茎秆抗倒性能的影响[J].作物学报,2008,34(6):1080-1085
    [136]王忠.植物生理学[M].北京:中国农业出版社,2003.85-86
    [137]Randall G. W., Evans S. D., Iragavarapu T. K.. Long-term P and K applications. Ⅱ. Effect on corn and soybean yields and plant P and K concentrations [J]. Journal of Production Agriculture,1997,10(4):572-580
    [138]郑炳松,蒋德安,翁晓燕,等.钾营养对水稻剑叶光合作用关键酶活性的影响[J].浙江大学学报(农业与生命科学版),2001,27(5):489-491
    [139]江力,张荣铣.不同氮钾水平对烤烟光合作用的影响[J].安徽农业大学学报,2000,27(4):328-331
    [140]郑淑琴.钾对大豆生理效应及产量和品质的影响[J].黑龙江农业科学,2001(4):25-27
    [141]毕远林.大豆干物质积累与氮、磷、钾吸收与分配的研究[J].大豆科学,1999,18(4):11-25
    [142]王海泉,朱继强,汪建学.钾对高油大豆产量和品质的影响[J].黑龙江农业科学,2005,(6):19-21
    [143]宁海龙,宋秀吉,王雪依,等.氮磷钾肥对大豆脂肪含量的效应[J].中国油料作物学报,2007, 29(3):302-307
    [144]宁海龙,胡国华,李文滨,等.氮磷钾底肥对大豆蛋白质含量的效应[J].大豆科学,2006,25(3):288-293
    [145]王勇,李朝恒.小麦品种抗倒性的研究进展[J].山东农业大学学报,1996,27:503-507
    [146]黄玉鸾,陈秀瑾,张继林,等.小麦倒伏的形态生理因素及抗倒技术[J].江苏农业科学,1988.10:5-8
    [147]Zuber M. S., Grogan C. O. A new technique for measuring stalk strength in corn [J]. Crop science,1961,1:378-380
    [148]魏建华,宋艳茹.木质素生物合成途径及调控的研究进展[J].植物学报,2001,43(8):771-779
    [149]Pedersen J. F., Vogel K. P., D. L. Funnell. Impact of reduced lignin on plant fitness [J]. Crop Science,2005,45:812-818
    [150]Vignols F., Rigau J., Torres M. A., et al. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase [J]. The plant cell,1995,4:407-416
    [151]Mueller L. D., Barnes R. F., Bauman L. F., et al. Variations of lignin and other structural components of brown midrib mutants of maize [J]. Crop Science,1971,11:413-415
    [152]Qing-Hu Ma, Yang Xu, Zhang-bing Lin, et al. Cloning of cDNA encoding COMT from wheat which is differentially expressed in lodging-sensitive and -resistant cultivars [J]. Journal of experimental botany,2002,53:2281-2282
    [153]Baucher M., Monties B., Van Montagu M., et al. Biosyntensis and genetic engineering of lignin [J]. Critical reviews in plant sciences,1998,12(2):125-187
    [154]Rosler J., Krekel F., Amrhein N., et al. Maize phenylalanine ammonialyase has tyrosine ammonialyase activity [J]. Plant physiology,1997,113:175-179
    [155]Cui Y. C., Marie B., Jcprgen H. C., et al. Biotechnology in trees:Towards improved paper pulping by lignin engineering [J]. Euphytica,2001,118:185-195
    [156]Ipelcl Z., Ogras T., Altinkut A., Reduced leaf peroxidase activity is associated with reduced lignin content in transgenic poplar [J]. Plant Biotechnology Reports,1999,16:381-387
    [157]Boudet A., M., Lapierre C., Grima P. J., Biochemistry and molecular biology of lignification [J]. Newsletter of Phytology,1995,129:203-236
    [158]刘晓燕,金继运,何萍,等.氯化钾对玉米木质素代谢的影响及其与茎腐病抗性的关系[J].中国农业科学,2007,40(12):2780-2787
    [159]Campbell M M, Ksederoff R R. Variation in lignin content and composition [J]. Plant Physiology,1996,110:3-13
    [160]李卫国.钾肥对水稻生长发育的影响机理[J].山西农业科学,2001,29(4):37-39
    [161]鲁剑巍,陈防,刘冬碧,等.施钾水平对油菜生长发育的影响[J].湖北农业科学,2000,4:39-42
    [162]李春红,孙海鹰,孙晶,等.低钾胁迫下不同耐钾性大豆品系生育特性比较[J].沈阳农业大学学报,2010,41(6):654-657
    [163]周晓舟,唐创业.氮磷钾对秋玉米农艺性状和植株养分的影响[J].河南农业科学.2008,9:27-33
    [164]赵继献,王华.密度、施氮量、施钾量对甘蓝型杂交油菜一次分枝数、总茎枝数形成的影响[J].贵州农业科学.1997,25(6):8-11
    [165]Poole W. D., Randal G. W., Ham G. E.. Foliar fertilization of soybean:Effect of fertilizer sources, rates, and frequency of application [J]. Agronomy Journal,1983,75:195-200
    [166]蔡柏岩,葛背萍,金惠玉,等.磷素水平对不同大豆品种钾素吸收效率的影响[J].大豆科学,2006,25(1):42-47
    [167]王晓光曹敏建,王伟,等.钾对大豆根系形态与生理特性的影响[J].大豆科学,2005,5(2):126-134
    [168]魏自民,王世平,席北斗.富磷垃圾肥对大豆营养及产量、品质的影响[J].植物营养与肥料学报,2006,12(2):282-284
    [169]Ball R. A., Hanlan T. G., Vandenberg A.. Stem and canopy attributes that affect lodging resistance in lentil [J]. Canadian Journal of Plant Science,2006,86(1):71-81
    [170]Jim Board. Reduced lodging for soybean in low plant population is related to light quality [J]. Crop Science,2001,41:379-384
    [171]韩晓增,王守宇,刘小洁.黑土钾素分布状态与大豆钾肥效应的研究[J].大豆科学,2002,21(1):37-41
    [172]邱德运,胡立勇.氮素水平对油菜功能叶内源激素含量的影响[J].华中农业大学学报,2002,21(3):213-216
    [173]何萍,金继运.氮钾营养对春玉米叶片衰老过程中激素变化与活性氧代谢的影响[J].植物营养与肥料学报,1999,5(4):289-296
    [174]Peuke A, D., Jeschke W. D., Hartung W.. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. Ⅲ. Long-distance transport of abscisic acid depending on nitrogen nutrition and salt stress [J]. Journal of experiment botany,1994,45(6):741-747
    [175]王清泉,陈云,谢虹,等.干旱和氮素交互作用对玉米叶片水势、气孔导度及根部ABA与CTK合成的影响[J].中国农学通报,2004,20(3):20-23
    [176]赵平,林克惠,郑毅.氮钾营养对烟叶衰老过程中内源激素与叶绿素含量的影响[J].植物营养与肥料学报,2005,11(3):379-384
    [177]张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993
    [178]胡珀,韩天富.植物茎秆性状形成与发育的分子基础[J].植物学通报,2008,25(1):1-13
    [179]张远海,汤日圣,高宁,等.多效唑调节水稻植株生长的作用机理[J].植物生理学报,1988,14(4):338-343
    [180]刁家连,何钟佩.冬小麦茎秆生长过程中内源激素动态的系统研究[J].中国农业大学学报,1998,3(增刊):16-20
    [181]鲍士旦.土壤农化分析[M].北京:中国农业山版社.2000:25-109
    [182]刘莹,盖钧镒,吕慧能.大豆根区逆境耐性的种质鉴定及其与根系性状的关系[J].作物学报,2005,31(9):1132-1137
    [183]杨秀红,吴宗璞,张国栋.大豆品种根系性状与地上部性状的相关性研究[J].作物学报,2002,28(1):72-75
    [184]熊庆娥.植物生理实验教程[M].成都:四川科学技术出版社,2003,30-31
    [185]李和平.植物显微技术[M].北京:科学出版社.2009,9-37
    [186]王忠.植物生理学[M].北京:中国农业出版社.2003,85-86
    [187]薛惠琴,杭怡琼,陈谊.稻草秸秆中木质素、纤维素测定方法的研讨[儿上海畜牧兽医通讯,2001.2:15
    [188]陈远平,杨文钰.卵叶韭休眠芽中GA3、 IAA、 ABA和ZT的高效液相色谱法测定[J].四川农业大学学报,2005.23(4):498-500
    [189]熊庆娥.植物生理实验教程[M].成都:四川科学技术出版社.2003,91-93
    [190]Goffner D., Joffroy I., Grima-Pettenati J., et al. Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem [J]. Planta.1992,188(1):48-53
    [191]熊庆娥.植物生理实验教程[M].成都:四川科学技术出版社.2003,55-56
    [192]熊庆娥.植物生理实验教程[M].成都:四川科学技术出版社.2003,86-87
    [193]何照范.粮油籽粒品质及其分析技术[M].北京:农业山版社.1985,55
    [194]唐拴虎,徐培乔,张发宝,等.一次性全层施用控释肥对水稻根系形态发育及抗倒伏能力的影响[J].植物营养与肥料学报,2006,12(1):63-69
    [195]李瑞,李絮花,杨守祥,等.钾对冬小麦根系生理性状及地上部生长的影响[J].土壤肥料,2003,(4):16-19
    [196]张志勇,王清连,李召虎,等.缺钾对棉花幼苗根系生长的影响及其生理机制[J].作物学报,2009,35(4):718-723
    [197]王晓光,曹敏建,王伟,等.钾对大豆根系形态与生理特性的影响[J].大豆科学,2005,24(2):126-129
    [198]Shin R., Schachtman D. P.. Hydrogen peroxide mediates plant root cell response to nutrient deprivation [J]. PANS,2004,101(23):8827-8832
    [199]李木英,古庆华,徐益群,等.水稻苗期根系营养吸收特性及其与植株生长关系的初步研究[J].江西农业大学学报,1995,17(2):116-121
    [200]石岩,于振文,位东斌,等.施肥深度对旱地小麦花后根系干重及产量的影响[J].干旱地区农业研究,2000,18(1):38-42
    [201]林文,李义珍,郑景生,等.施氮量及施肥法对水稻根系形态发育和地上部生长的影响[J].福建稻麦科技,1999,17(3):21-24
    [202]刘殿英,石立岩.冬小麦根系与地上部性状相关性的研究[J].山东农业大学学报(自然科学版),1993,24(4):359-364
    [203]刘再亮,马承伟,杨其长.设施环境中红光与远红光比值调控的研究进展[J].农业工程学报,2004(1):270-273
    [204]李文娟,何萍,金继运.钾素营养对玉米生育后期干物质和养分积累与转运的影响[J].植物营养与肥料学报,2009(4):799-807
    [205]孙凡.作物茎秆抗倒伏的力学研究[J].西南农业大学学报,1994.16(2):183-186
    [206]陈小峰,王庆亚,陈开宁.不同光照条件对菹草外部形态与内部结构的影响[J].武汉植物学研究,2008.26(2):163-169
    [207]李尧臣,顾慧,戚存扣.抗倒伏甘蓝型油菜(Brassica napus L.)根和茎解剖学结构分析[J].江苏农业学报,2011(1):36-44
    [208]Sato Y., Sentoku N., Miura Y.. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants [J]. The EMBO journal.1999, 18(4):992-1002
    [209]王勇,李晴祺,李朝恒,等.小麦品种茎秆的质量及解剖学研究[J].作物学报,1998.24(4):452-458
    [210]李荣春,李佛琳,徐琼华.钾对烤烟叶片解剖结构的效应及其品种差异[J].中国烟草科学,2001.22(2):39-41
    [211]袁志华,李英骏,鞠阳.小麦茎秆力学特性与氮磷钾含量的关系[J].应用基础与工程科学学报,2010.18(6):967-973
    [212]Liebhardt, W. C., Stengel P. J., Murdock J. T.. A mechanism for premature parenchyma breakdown in corn (Zea mays L.) [J]. Agronomy Journal.1968,60:496-499
    [213]Esechie, H.A., V. Rodriguez, H. Al-Asmi. Comparison of local and exotic maize varieties for stalk lodging components in a desert climate [J]. European Journal of Agronomy.2004,21(1): 21-30
    [214]Hondroyianni E., Papakosta D. K., Gagianas A. A., et al. Corn stalk traits related to lodging resistance in two soils of differing quality [J]. Maydica.2000,45:125-133
    [215]Turner S. R., Somerville C. R.. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall [J]. Plant cell.1997,9:689-701
    [216]Lewis N.G., Yamamoto E.. Lignin:occurrence, biogenesis and biodegradation [J]. Annual review of plant physiology and plant molecular biology.1990,41:455-496
    [217]陈晓光,史春余,尹燕枰,等.小麦茎秆木质素代谢及其与抗倒性的关系[J].作物学报,2011.37(9):1616-1622
    [218]Mohammadi M., Kazemi H.. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance [J]. Plant Science.2002,162:491-498
    [219]库文珍,彭克勤,萧浪涛,等.低钾胁迫对不同基因型水稻苗期根系生长和内源激素含量的影响[J].亚热带植物科学,2008.37(1):21-24
    [220]Tan Z. G., Qian Y. L.. Light intensity affects gibberellic acid content in'Kentucky Bluegrass [J]. Hortscience.2003,38(1):113-116
    [221]袁晶,汪俏梅,张海峰.植物激素信号之间的相互作用[J].细胞生物学杂志,2005.27(3):325-328
    [222]郭英,宋宪亮,于庆材,等.施钾对棉花苗期叶片内源激素与氧自由基代谢的影响[J].华北农学报,2006.21(1):59-62
    [223]习金根,陆新华,孙光明,等.不同营养元素对剑麻生长发育和内源激素的影响[J].中国麻业科学,2007.29(6):326-329
    [224]郑殿峰,赵黎明,冯乃杰.植物生长调节剂对大豆叶片内源激素含量及保护酶活性的影响[J].作物学报,2008.34(7):1233-1239
    [225]Landi, P., M. C. Sanguineti, C. Liu, et al. Root-ABA1QTL affects root lodging, grain yield, and other agronomic traits in maize grown under well-watered and water-stressed conditions [J]. Journal of Experimental Botany.2007,58(2):319-326
    [226]董钻.大豆产量生理[M].北京:中国农业出版社.2000
    [227]鄂玉江,戴俊英,顾慰连.玉米根系的生长规律及其与产量关系的研究[J].作物学报,1988.14:149-154
    [228]Tasma I. M., R. C. Shoemaker. Mapping flowering time gene homologs in soybean and their association with maturity (E) loci [J]. Crop Science.2003,43:319-328
    [229]Mobasser H. R., R. Yadi, M. Azizi, et al. Effect of density on morphological characteristics related-lodging on yield and yield components in varieties Rice (Oryza sativa L.) In Iran [J]. American-Eurasian Journal of Agricultural and Environment Science.2009,5(6):745-754
    [230]Zhang F., Jin Z., Ma G., et al. Relationship between Lodging Resistance and Chemical Contents in Culms and Sheaths of Japonica Rice during Grain Filling [J]. Rice Science.2010, 17(4):311-318
    [231]Pedersen P., Lauer J. G.. Soybean agronomic response to management systems in the Upper Midwest [J]. Agronomy Journal.2003,95:1146-1151
    [232]Futakuchi K., Fofana M., Sie M.. Varietal differences in lodging resistance of African Rice (Oryza glaberrima Steud.) [J]. Asian Journal of Plant Sciences.2008,7(6):569-573
    [233]Zaghloul, S. M., Fatma E. M., EL-Quesni, et al. influence of potassium humate on growth and chemical constituents of thuja orientalis 1 seedlings [J]. Ozean Journal of Applied Sciences. 2009,2(1):73-78
    [234]Kanai S., Moghaieb R. E., El-Shemy H. A., et al. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity [J]. Plant Science.2011,180(2):368-374
    [235]Jordan-Meille L., Pellerin S.. Shoot and root growth of hydroponic maize(Zea mays L.) as influenced by K deficiency [J]. Plant and Soil.2008,304(1):157-168-168
    [236]向达兵,郭凯,雷婷,等.’磷钾营养对套作大豆茎秆形态和抗倒性的影响[J].中国油料作物学报,2010(3):395-402
    [237]Akatar M., Randhawa S. A., Mahmood M. T., et al. Interactive effects of nitrogen and phosphorus on agronomic traits of maize (Zea mays L.) [J]. Interantional Journal of Agriculture and Biology.1999,1(4):334-336
    [238]Maqbool A., A.M. Ehsan. Effect of different levels of potassium on agronomic traits, productivity and quality of Sugarcane (Saccharum officinarum L.) [J]. Asian Journal of Plant Sciences.2002,1(4):349-351
    [239]El-Branmawy M. A. A. S., W.I. Shaban. Effects of potassium fertilization on agronomic characters and resistance to chocolate spot and rust diseases in faba bean [J]. Tunisian Journal of Plant protection.2010,5(2):131-150
    [240]戴勋,王毅,刘彦中,等.不同钾肥追施量对烤烟K326生长及产量的影响[J].中国烟草科学,2009.30(1):19-22
    [241]艾克拜尔,伊垃洪,周抑强,等.士壤水分对不同品种棉花叶绿素含量及光合速率的影响[J].中国棉花,2007.27(2):21-22
    [242]匡廷云.叶绿体膜的结构与功能I组成与PS II功能的关系[J].作物生理学报,1979.2:99-107
    [243]时向东,文志强,刘艳芳,等.不同光强对作物生长影响的研究综述[J].安徽农业科学,2006.34(17):4216-4218
    [244]夏乐,于海秋,郭焕茹,等.低钾胁迫对玉米光合特性及叶绿素荧光特性的影响[J].玉米科学,2008.16(6):71-74
    [245]Peasles, D.E., D.N. Moss. Photosynthesis in K- and Mg-deficient maize leaves [J]. Soil Science.1996,30:220-223
    [246]王惠哲,庞金安,李淑菊,等.弱光对春季温室黄瓜生长发育的影响[J].华北农学报,2005.20(1):55-58
    [247]眭晓蕾,张宝玺,张振贤,等.不同品种辣椒幼苗光合特性及弱光耐受性的差异[J].园艺学报,2005.32(2):222-227
    [248]刘克林,高聚林,王立刚.大豆对氮、磷、钾的平衡吸收的动态研究[J].中国油料作物学报,2004.26(]):51-54
    [249]闫春娟,韩晓增,王树起.钾对大豆干物质积累、产量及品质的影响[J].大豆科学,2008.27(1):113-117
    [250]Mobasser H. R., Fard E. R.. A Study on the effect of nitrogen and potassium elements on the grain yield of canola cultivars in Zehak [J]. Annals of Biological Research.2012,2(3): 1080-1084
    [251]管瑶,张忠学,贺兴宏.施肥和耕作措施对大豆产量及其构成因素的影响[J].安徽农业科学,2009.29(15):6935-6937
    [252]Sale P., Campbell L.. Yield and composition of soybean seed as a function of potassium supply [J]. Plant and Soil.1986,96(3):317-325
    [253]闫春娟,韩晓增,王树起,等.水钾耦合对大豆干物质积累和产量的影响[J].大豆科学,2008.26(6):862-867
    [254]孟凡乔,吴文良,辛德惠.高产农田土壤有机质、养分的变化规律与作物产量的关系[J].植物营养与肥料学报,2000.6(4):370-374
    [255]雍太文,杨文钰,王小春,等.两种三熟套作体系中的氮素吸收利用及种间相互作用[J].四川农业大学学报,2009.27(2):167-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700