用户名: 密码: 验证码:
超高压处理对猕猴桃果汁杀菌钝酶效果和品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选用热敏性果汁——猕猴桃果汁为超高压处理对象,以温度、压力和时间为超高压处理参数,对猕猴桃果汁的超高压处理杀菌钝酶效果和品质变化进行研究。
     以菌落总数、霉菌酵母菌为指标,研究微生物在超高压处理后的变化规律,发现菌落数随着压力的升高呈明显下降趋势,30℃、400 MPa压力下猕猴桃果汁即可达到商业无菌(GB19297-2003),说明超高压对细菌的致死效果显著。当协同处理温度为50℃时,经处理的猕猴桃果汁样品在4℃贮藏30 d后,仍然满足商业无菌要求。
     设计正交实验优化猕猴桃中过氧化物酶的提取工艺条件,最终提取工艺条件为缓冲液pH值7.5、缓冲液浓度0.05 mol/L、NaCl浓度1.0 mol/L、PVPP添加量2%。
     研究不同温度不同保压时间下压力对猕猴桃中过氧化物酶活力影响趋势,发现压力对过氧化物酶活力有显著影响,较明显的失活过程主要发生在400 MPa以上的较高压力处理阶段。钝化酶的效果随温度升高而明显增加。随着时间延长,酶活的降低就越明显。但在15 min以后,下降趋势渐缓。部分条件超高压处理后出现过氧化物酶活力反弹现象。真实的食品体系中复杂的食品成分对于过氧化物酶的酶活具有一定的保护作用。
     采用响应面分析和支持向量回归分析方法建立了猕猴桃过氧化物酶的超高压钝化动力学模型。经由响应面回归分析,采用Box-Behnken设计方法,对压力、温度和时间三个因素分别以X1、X2、X3表示,并以+1、0、-1分别代表自变量的高、中、低水平,得到相对残余酶活At/A0(Y)标准回归方程为:Y=0.90-0.15A-0.17B-0.056C-0.086A2 -0.075B2-0.023C2-0.022AB-0.025AC-0.027BC。采用支持向量回归分析方法,使用matlab 7.0软件,以压力、时间、温度作X轴归一化处理,以相对残留酶活为Y轴,得到X-Y关系图。对响应面法和支持向量回归分析方法进行比较,发现,由于两种方法拟合极限状态方程都存在偏差,故两种方法不可能得到精确解。但是结果误差较小,并且响应面法的计算效率较高。但支持向量回归预测值更符合实际测试值,且其泛化适用能力要远比响应面法好。在对超高压处理钝化过氧化物酶进行预测时,可以将两者结合进行分析。
     猕猴桃过氧化物酶的最适pH范围在6.0-8.5之间,这一范围之外,在偏酸和偏碱的两侧均迅速下降。可能是由于猕猴桃中存在多种同工酶,且各个同工酶的最适pH值不同,从而产生了较宽的最适pH范围。Native-PAGE电泳发现未处理过氧化物酶样品中存在两条同工酶酶带,在较低压力处理后活性上升,并且出现新的同工酶;在较高压力处理后,新酶带消失,活性有所抑制。由SDS-PAGE电泳分析可知,不同压力大小处理后的过氧化物酶的SDS-PAGE电泳谱图没有发生显著的变化,说明超高压对酶蛋白分子的亚基不能产生明显的影响。采用DEAE Sepharose Fast Flow离子交换色谱分离,得到酸性过氧化物酶(记为组分1)和碱性过氧化物酶(记为组分2)。并进一步通过Superdex 75凝胶过滤色谱分离,得到过氧化物酶同工酶POD I和POD II(纯度分别为99.93%和93.37%)。过氧化物酶同工酶I和II的最适pH值分别为6.0和7.5。超高压处理后酶活力随压力变化曲线也不相同,说明两者的高压稳定性不同,从而为两者结合表现出的过氧化物酶活力在高压下的不规律变化提供了新的依据。并且,CD谱也显示了其二级结构构象单元含量在压力处理后发生了不同的变化。
     超高压处理能够较好的保存果汁原有的感官性质,能够保持猕猴桃果汁中的天然营养成分(还原糖、Vc、氨基酸等)。温度和压力协同处理后,果汁的褐变减轻。且随着贮藏时间的延长,各样品色泽ΔE值之间的差距逐渐缩小。鲜榨猕猴桃果汁的主要挥发性风味物质分别是2-己烯醛(69.35%)和己醛(11.23%),鲜榨猕猴桃果汁的挥发性组分中最主要的是醛类化合物(85.139%)。超高压处理后,猕猴桃果汁中醛类化合物含量有所提高,说明高压中温协同处理对猕猴桃风味有加强作用。
     高压和热协同处理不仅改变了果汁中粒子的形态,同时影响了网状结构的形成,使得大分子之间、颗粒之间、大分子和颗粒之间的相互作用发生了变化。猕猴桃果汁体系符合Herschel-Bulkley方程,表现出非牛顿流体特性。未经超高压处理的猕猴桃果汁,属于假塑性流体。在经超高压处理后,逐渐显示出触变性,在高于400 MPa压力处理后产生了触变环。动态流变特性研究表明,压力处理对于猕猴桃果汁体系有明显的增加黏性并降低弹性的作用。同时,处理温度也会影响高压处理对猕猴桃果汁流变特性作用的效果。猕猴桃果汁中的大分子在经过压力温度协同处理后,同时存在聚合和解聚两种现象。升高温度可以加速以上两个过程。
The effects of high pressure and heat treatments on sterilization, enzyme inactivation and quality of kiwifruit juice were investigated. Pressure levels ranging from 200 to 600 MPa and temperatures varying from 10 to 50℃were applied for up to 30 min.
     Results show that total number of bacteria declined with pressure and temperature increased and arrived commercial asepsis under 400 MPa at 30℃. After 30-day storage period at 4℃, kiwifruit juice was still safe while 50℃was used as treated temperature combined high pressure treatment.
     Results revealed that, at each temperature, an increase in pressure level results in a decrease of enzyme activity. Pressures higher than 400 MPa could be combined with mild heat (≤50℃) to accelerate enzyme inactivation. Prolongation of the exposure time had no great effect after the first 15 min. Regarding temperature, results showed that POD activity decreased when the temperature increased.
     Compared with control, POD activity at 10℃showed a slight increase (P>0.05) under treatment at 200 MPa from 10 to 20 min, whereas at 400 and 600 MPa, the activity decreased with regard to that observed at 200 MPa. POD activity at 30℃was higher after treatment at 200 MPa for 15 min and the activity decreased following longer exposure time intervals. The slope of POD in kiwifruit juice at 30℃was slightly decreased compared with that in a model system. Real food systems show a protective effect of food ingredients at pressures applied for POD inactivation. Effect of three main factors (pressure, temperature and time) in high pressure treatment was investigated, and all experiments were designed with RSM and SVM.
     Polyacrylamide gel electrophoresis (Native PAGE) and activity detection were carried out on the partially purified enzyme before and after treatment. At the beginning, two staining bands were observed on the untreated enzyme. This suggested that there may be two isoenzymes. After 15 min of treatment at 200 MPa at 30℃, a new band was observed. All bonds disappeared as pressure increased at 600 MPa. Purified POD isoenyme I and II changed differently after high pressure. From this observation, there may be several isoenzymes that have different resistance to high pressures.
     There were no significant difference on pH, Brix and conductivity after treatment, while little difference on content of Vc, amino acid and color. And the effect of pressure is less than temperature. The main aromatic compounds of kiwifruit juice was 2-Hexenal(69.35) and Hexanal(11.23%). And the main component was aldehyde compounds(85.139%). The high pressure treatment enhanced the flavors of kiwifruit juice since the aldehyde contents increased after treatment.
     The effect of high pressure treatment on rheological properties of kiwifruit juice was investigated. The results show that kiwifruit juice samples behaved like pesudoplastic non-Newtonian fluids and were coincident with Herschel-Bulkley model under all conditions. Kiwifruit juice displayed thixotropy when pressure up to 400 MPa. The value of G″increased while G′decreased after high pressure treatment, which indicated the enhancement of viscosity and reduce of flexibility. And the difference affected the rheological properties of kiwifruit juice after high pressure treatment. The particle size distribution of kiwifruit juice was changed after high pressure treatment.
引文
1. Moazhaev V. V., Heremans K., Frank J., Masson P., Balny C. Exploiting the effects of high hydrostatic pressure in biotechnological applications [J]. 1994, TIB Techniques, 12: 493-501.
    2.陈复生主编.食品超高压加工技术[M].北京:化学工业出版社, 2005.
    3. Bridgman P W. The coagulation of albumin by pressure[J]. Journal of Biological Chemistry, 1914, (19): 511-512.
    4. Hite B.H. The Effect of Pressure un the preservation of Milk[J]. Bull West Virginia Univ Agricult Experim Station, 1899, 58: 15-35.
    5. Hite, B H, Giddings N J, Weakly C E. The effect of pressure on certain Microorganisms ncountered in the Preservstion of Fruit and Vegetables [J]. Bull West Virginia Univ Agricult Experim Station, 1914, 146: 1-67.
    6. Johnston D E, Murphy R J. Food macromolecules and colloids[M]. ed. by E. Diskinson and Lorient, Spec. Publ-R, Soc.Chem 156, UK, 1995(13):41-40.
    7. Jaenicke R, Jannasch H W, et al.Current Perspectives in High Pressure Biology[M].London:Academic Press, 1987, (2): 252-275
    8. Ogawa H, Fukubiss K, Kubo Y. Pressure inactivation of yeasts,molds and pectinesterase in setsums mander in Juice: effects of juice concentration, .pH.and organic acids, and cooperation with heat sanitation[J]. Agric Bid Chem, 1990, 54(5): 1219-1225.
    9.杨巧绒,陈迎春.高压设备及其在食品加工中的应用[J].江苏理工大学学报.1999, 20(6): 13-17.
    10.林淑英,孔保华.超高压对食品中的酶的影响[J].食品与机械. 1999, 73(5): 30-31.
    11. Cheftel J C. High pressure and biotechnology [M]. Paris, 1992.
    12.赵俊芳,高愿军,吴光辉.超高压技术在水果加工中的应用[J].农业工程技术(农产品加工); 2007, 11: 30-32.
    13. Ogawa H. Effects of hydrostatic pressure on sterilization and preservation of freshly squeezed, nonpasteurized citrus juice [J]. Nippon Nogeikagaku Kaishi, 1989, 63: 1109-1114.
    14. Nienaber U. High-pressure processing of orange juice: combination treatment and a shelf life study [J]. Journal of Food Science, 2001, 66(2): 331-336.
    15. Park S. J., Lee J. I., Park J. Effects of a combined process of high-pressure carbon dioxide and high hydrostatic pressure on the quality of carrot juice [J]. Journal of Food Science, 2002, 67(5): 1827-1834.
    16. Horie Y. Jam preparation by pressurization [J]. Nippon Nageikagaku kaishi, 1991, 65(6): 975-980.
    17. Kimura K. Comparison of keeping quality between pressure-processed jam and heat-processed jam: changes in flavor components, hue, and nutrients during storage [J]. Biosci. Biotech. Biochem, 1994, 58: 1386-1391.
    18. Drake M. A., Harrison S. L., Asplund M., Barbosa-Canovas G., Swanson B G. High pressure treatment of milk and effects on microbiological and sensory quality of cheddar cheese [J]. Journal of Food Science, 1997, 62 (4): 843–860.
    19. Castellari M, Arfelli G, Riponi C, et al. High hydrostatic pressure treatments for beer stabilization [J]. Journal of Food Science, 2000, 65 (6): 974–977.
    20.高福成.现代食品工程高新技术[M].北京:中国轻工业出版社, 1997.
    21. Suzuki A. Mechanism for meat tenderization and acceleration of meat conditioning induced by high pressure treatment [J]. Journal of Japanese Society of Food Scierce and Technology, 1995, 42(5): 388-394.
    22. Chung Y C, Gebrehiwot A, Farkas D F, et al. Gelation of Surimi by high hydrostatic pressure [J]. Journal of Food Science, 1994, 59(3): 523-524.
    23.青山.高压改良陈米炊饭性能研究[J].食品と开发, 1991, 26(12): 15-19.
    24.林立丸.高压技术在食品工业上的应用研究及市场动向[J].食品と开发, 1992, 27(12): 5-7.
    25.神田幸忠.压力移动冻结法-压力速冻法的研究[J].食品と开发, 1991, 26(12): 12-14.
    26. Fuchigami M., Histological changes in high pressure frozen carrots [J]. Journal of Food Science, 62(4):809-812.
    27. Zhao Y Y, Flores R A, Olson D G. High hydrostatic pressure effects on rapid thawing of frozen beef [J]. Journal of Food Science, 63 (2): 272-275.
    28. Hill V M. Influence of high hydrostatic pressure and pH on the rate of Millard browning in a glucose-lysine system[J]. Journal of Agriculture and Food Chemistry, 1996, 44(2): 594-598.
    29. Matsumoto T. Effects of Pressure on the Mechanism of hydrolysis of Maltoheptaose and Amylose [J]. Journal of Agriculture and Food Chemistry, 1997, 45, 31-34.
    30. Karsten O. Effect of high hydrostatic pressure on the steady-state kinetics of tryptic hydrolysis ofβ-lactoglobulin [J]. Food Chemistry, 2003, 80: 255–260.
    31. Vardag T. High pressure food processing [J], Food Techn. Europe. 1995, 2(2): 106,108-110.
    32. Shigehisa T. Inactivation of HIV in blood plasma by high hydrostatic pressure [J]. High Pressure Bioscience and Biotechnology, 1996, 273-278.
    33. Zhang S. Novel high pressure extraction technology [J]. International Journal of Pharmaceutics, 2004, 278: 471-474.
    34.郭万峻,徐扬.超高压食品加工容器装置设计分析[J].技术综述. 1994, 12(2): 53-55.
    35.陈寿鹏.超高压在食品方面的应用[J].食品科学, 1994, (3): 3-7.
    36.邱伟芬,江汉湖.食品超高压杀菌技术及其研究进展[J].食品科学, 2001, 21(5): 81-84.
    37. Erkmen O, Dogan C. Kinetic analysis of Escherichia coli inactivation by high hydrostatic pressure in broth and foods [J]. Food Microbiology, 2004, 21: 181-185.
    38. Alpas H, Kalchayanand N, Bozoglu F, et al. Interactions of high hydrostatic pressure, pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensistive strains of foodborne pathogens [J]. J Food Microbiol, 2000, 60: 33-42.
    39. Wuytack E Y, Soons J, Poschet F, et al. Comparative study of pressure- and nutrient- induced germination of Bacillus subtilis spores [J]. Appl Environ Microbiol, 2000, 66: 257-261.
    40. Alemen G D, Ting E Y, Mordre S C, et al. Pulsed ultra high pressure treatments for pasteurization of pineapple juice [J]. Food Science, 1996, 61(2): 388-390.
    41. Hoover D G, Metrick C, Papineau A M, et al. Biological effects of high hydrostatic pressure on food microorganisms [J]. Food Technology, 1989, 43(3): 99-107.
    42. Alemen G D, Farkas D F, Torres J A, et al. Ultra-high pressure pasteurization of fresh cut pineapple[J]. Food Protection, 1994, 57: 931-934.
    43. Styles M F, Hoover D G, Farkas D, et al. Response of Listeria monocytogenes and Vibrio parahaemolyticus to high hydrostatic pressure [J]. Food Science, 1991, 56: 1404-1407.
    44. Metrick C, Hoover D G, Farkas D E. Effect of high hydrostatic pressure on heat-resistant and heat-sensitive strains of Salmonella [J]. Food Science, 1989, 54: 1547-1549.
    45. Kalchayanand N, Sikes A, Dunne C P, et al. Factors influencing death and injury of foodboren pathogens by hydrostatic pressure-pasteurization [J]. Food Microbiology, 1998, 15: 207-214.
    46. Mussa D M, Ramaswamy H S, Smith J P. High pressure (HP) destruction kinetics of Listeria monocytogenes Scott A in raw milk [J]. Food Research International, 1999, 31(5): 343-350.
    47.潘科,孙远明,黄丽.超高压加工对食品品质酶的影响[J].食品科学, 2003, 24(3): 142-146.
    48. Hendrickx M, Ludikhuyze L, Vanden I, et al. Effect of high pressure on enzymes related to food quality[J]. Food Sciene&Technology, 1998, (9): 197-203.
    49. Hendrickx M, Ludikhuyze L, Van den Broeck I, et al. Effect of high pressure on enzymes related to food quality[J]. Trends in Food Science and Technology, 1998, 9: 197-203.
    50. Lemos M A, Oliveria J C, Van Loey, et al. Influence of pH and high pressureon the thermal inactivation kinetics of horseradish peroxides [J]. Food Biotechnology, 1999, 13(1): 13-32.
    51.王璋编.食品酶学[M].北京:中国轻工业出版社, 1991, 60-64.
    52.高雯等著.食品酶学原理与分析方法[M].哈尔滨:黑龙江科学技术出版社. 1991. 287-340.
    53.张树政著.酶学研究技术(上册)[M].北京:科学技术出版社, 1987. 223-230.
    54.郭勇主编.酶工程[M].北京:中国轻工业出版社, 2002. 1-12.
    55.周爱儒主编.生物化学[M].北京:人民卫生出版社, 2000. 10-60.
    56. Butz P, Tauscher B. Recent studies on pressure-induced chemical changes in food constituenta[J]. High Pressure Research, 2000, 19: 11-18.
    57. Miyagawa K, Sannoe K, Suzuki K. Studies of Taka amylase A under high pressure: II. Recovery of enzymic activity of pressure inactivated Taka amylase A and its enhancement by retreatment at moderate pressure[J]. Arch Biochem Biophys, 1964, 106: 467-474.
    58. Gomes M R A, Ledward D A. Effect of high-pressure treatment on the activity of some polyphenoloxidases[J]. Food Chemistry, 1996, 56(1): 1-5.
    59. Basak S, Ramaswamy H S. Ultre high pressure treatment of orange juice: a kinetic study on inactivation of pectin methyl esterase[J]. Food Research International, 1996, 29(7): 601-607.
    60. Rastogi N K, Eshtiaghi M N, Knorr D. Effect of Combined High Pressure and Heat Treatment on theReduction of Peroxidase and Polyphenoloxidase Activity in Red Grapes [J]. Food Biotechnology, 1999, 2(13): 195-208.
    61. Hsin T L, Gow C Y. Effect of high hydrostatic pressure on the inactivation of enzymes and sterilization of guava juice[J]. Journal of the Chinese Agricultural Chemical Society, 1995, 33(1): 18.
    62. Prestamo G., Arroyo G. Protective effect of ascorbic acid against the browning developed in apple fruit treated with high hydrostatic pressure[J]. Journal of Agricultural and Food Chemistry, 1999, 47(9): 3541-3545.
    63. Indrawati I, Van Loey A, Denys S, et al. Enzyme Sensitivity towards high pressure at low temperature[J]. Food Biotechnol, 1998, 12(3): 263-277.
    64. Hernandez A, Cano M P. High-pressure and temperature effects on enzyme inactivation in tomato puree[J]. Journal of Agriculture and Food Chemistry, 1998, 46: 266-270.
    65. Monica A, Mari C N, Gianffanco D, et al. Effect of high pressure treatmentson peroxidase and polyphenioloxidase activies[J]. Journal of Food Biochemistry, 1995, 18: 285-293.
    66. Cano M P, Hernandez A, De Ancos B. High pressure and temperature effects on enzyme inactivation in strawberry and orange products[J]. Journal of Food Science, 1997, 62(1): 85-88.
    67. Isabel S, Stefan B, Gunther M. Pressure induced inactivation of selected food enzymes[J]. Food Sci, 1996, 61(2): 308-310.
    68. Hsin T L, Cow C Y. Effects of operation conditions of high pressurization on inactivation of enzymes and microorganism in guava juice[J]. Journal of the Chinese Agricultural Chemical Society, 1998, 36(1): 1-11.
    69. Matser A M, Elaine R K, Paul G M T, et al. Effects of high isostatic pressure on mushrooms[J]. Journal of Food Engineering, 2000, 45(1): 11-16.
    70. Hendrickx M, Ludikhuyze L, Broeck I V D, et al. Effect of high pressure on enzymes related to food quality [J]. Trends in Food Science and Technology, 1998, 9: 197-203.
    71. Broeck I V D, Ludikhuyze L R, Van Loey A M, et al. Inactivation of orange pectinesterase by combined high-pressure and temperature treatment: a kinetic study[J]. J Agric Food Chem, 2000, 48(5): 1960-1970.
    72. Ludikhuyze L, Induawati, Broeck I V D, et al. Effect of .combined pressure and temperature on soybean lipoxygense. I. Innocence of extrinsic and intrinsic factors on isobaric-isothermal inactivation kinetics[J]. J Agric Food Chem, 1998, 46(10): 4074-4080.
    73. Almudella H, Cano M P. High-pressure and temperature effects on enzyme inactivation in tomato puree[J]. J Agric Food Chem, 1998, 46(1):266-270.
    74. Butz P, Garcia A F, Lindauer R, et al. Inflience of ultra high pressure processing on fruit and vegetable products[J]. Journal of Engiveering, 2003, 56: 233-236.
    75.刘士刚.高压处理技术在食品保藏中的应用[J].食品科学, 1996, (7): 20-22.
    76. Boynton B B, Sims C A, Sargent S, et al. Quality and stability of precut mangos and carambolas subjected to high-pressure processing[J]. Journal of Food Science, 2002, 67: 409-415.
    77.林力丸.高压在食品方面应用的研究开发和任务[J].食品开发, 1991, 26(12): 24.
    78.王乐锡.中华猕猴桃食品加工技术[J].食品科学, 1985, 12: 28-33.
    79.张洁.植物资源与开发利用[J].植物学通报, 1994, 11(1): 63-68.
    80.梁畴芬.猕猴桃属.中国植物志[M].北京:科学出版社, 1984. 196-268.
    81.安广义,王桂霞.中国野生猕猴桃的分布和花岗岩的关系[J].经济林研究, 1996, 14(4): 24-26.
    82.翁梅,叶永忠,卓卫华等.伏牛山猕猴桃资源与分布[J].河南科学, 1998, 16(2): 199-201.
    83.徐小彪,张秋明.中国猕猴桃种植资源的研究和利用[J].植物学通报, 2003, 20(6): 648-656.
    84.黄书铭.猕猴桃蜜饯加工工艺[J].食品科学, 1998, 19(16): 60-61.
    85.俞德浚,中国果树分类学[M].北京:农业出版社, 1979. 193.
    86.罗桂环.猕猴桃发展小史[J].中国农史, 2002, 21(3):24-25.
    87. Beever D J, Hopkirk G. In I J Wanington & G C Weston(Eds.).Kiwifruit science and management[M]. New Zealand Society for Hortcultural. 1990, 485-510.
    88.揣冰洁.猕猴桃果实中氨基酸含量分析与利用[J].农业与技术, 1999, (5): 67-68.
    89. Heatherbell D A. Identification and Quantiative Analysis of Sugars and Non-Volatile Organic Acids in Chinese Gooseberry Fruit (Actindia Chinevsis planch) [J]. J Sci Food Agric, 1975, 26(6): 815-826.
    90.陈丽华,张兵等.富硒猕猴桃的降脂作用和对血流变的影响[J].营养学报, 2001, 23 (1): 71-72.
    91.魏玉凝.猕猴桃果实的生理生化特征[J].植物学通报, 1999, 14, (3): 20-33.
    92.何素琴,曹兴亚.猕猴桃汁降血脂作用的动物实验[J].川北医学院学报, 14(3): 20-23.
    93. Motohashi N, Kawase M, Shirataki Y. Cancer prevention and theraphy with Kiwifruit in Chinese folklore medicine:astudy of kiwifruit extracts[J]. Journal of Ethnopharmacology, 2002, 81: 357-364.
    94.江苏新医学院.中药大辞典(下册) [M].上海:上海人民出版社, 1997. 2210-2211.
    95.曹兴亚,张菊明.猕猴桃汁降血脂作用初步观察[J].中西医结合杂志, 1991, 11(8): 493-495.
    96.何素琴,曹兴亚.猕猴桃果汁降血脂作用的动物实验[J].川北医学学报, 1999, 14(3): 20-24.
    97.阎家麒,王九一,赵敏.中华猕猴桃多糖的提取及其对自由基的清除作用[J].中国生化药物杂志, 1995, 16(1): 12.
    98. Préstamo G.. Peroxidase of Kiwifruit[J]. Journal of Food Science, 1989, 54: 760,762.
    99. Beever D J, Hopkirk G. Fruit development and fruit physiology. In I. J. Warrington, & G. C. Weston, Kiwifruit: science and management[M]. New Zealand: Ray Richards Publisher. 1990. 97-126.
    100. Heatherbell D A. Identification and quantitative analysis of sugars and non-volatile organic acids in Chinese gooseberry fruit (Actinidia Chinensis planch)[J]. Journal of the Science of Food and Agriculture, 1975, 26: 815-820.
    101. Lodge N, Perera C O. Processing of kiwifruit. The Horticulture and Food Research Institute of New Zealand. 1995: 18-21.
    102. Riahi E, Ramaswamy H S. High Pressure Inactivation Kinetics of Amylase in Apple Juice [J]. Journal of Food Engineering, 2004, 64: 151-160.
    103. Wakamatsu K, Takahama U. Changes in Peroxidase Activity and in Peroxidase Isozymes in Carrot Callus [J]. Physiologia Plantarum, 1993, 88: 167-171.
    104. Kato M, Shimizu S. Chlorophyll Metabolism in Higher Plants VI. Involvement of Peroxidae in Chlorophyll Degradation [J]. Plant Cell Physiology, 1985, 7(26): 1291-1301.
    105. Hendrickx M, Knorr D. Ultra High Pressure Treatment of Foods [M]. USA: Kluwer Academic/ Plenum Publishers, 2002: 133-135.
    106. Grison R, Pilet P E. Maize Root Peroxidase Relationship with Polyphenol Oxidase [J]. Phytochemistry, 1985, 24: 2519.
    1.曾庆梅,潘见,谢慧明等.西瓜汁的超高压杀菌效果研究[J].高压物理学报, 2004, 18(1): 70-74.
    2.潘见,曾庆梅,谢慧明等.草莓汁的超高压杀菌研究[J].食品科学, 2004, 25(1): 31-3.
    3. Riahi E, Ramaswamy H S. High Pressure Inactivation Kinetics of Amylase in Apple Juice [J]. Journal of Food Engineering, 2004, 64: 151-160.
    4. Wakamatsu K, Takahama U. Changes in Peroxidase Activity and in Peroxidase Isozymes in Carrot Callus [J]. Physiologia Plantarum, 1993, 88: 167-171.
    5. Kato M, Shimizu S. Chlorophyll Metabolism in Higher Plants VI. Involvement of Peroxidae in Chlorophyll Degradation [J]. Plant Cell Physiology, 1985, 7(26): 1291-1301.
    6. Hendrickx M, Knorr D. Ultra High Pressure Treatment of Foods [M]. USA: Kluwer Academic/ Plenum Publishers, 2002: 133-135.
    7. Grison R, Pilet P E. Maize Root Peroxidase Relationship with Polyphenol Oxidase [J]. Phytochemistry, 1985, 24: 2519.
    8. Phunchaisri C, Apichartsrangkoon A. Effects of Ultra-High Pressure on Biochemical and Physical Modification of Lychee (Litchi chinensis Sonn.) [J]. Food Chemistry, 2005, 93: 57-64.
    9. Prestamo G. Peroxidase of Kiwifruit [J]. Journal of Food Science, 1989, 3(54): 760,762.
    10. Rastogi N K, Eshtiaghi M N, Knorr D. Effect of Combined High Pressure and Heat Treatment on the Reduction of Peroxidase and Polyphenoloxidase Activity in Red Grapes [J]. Food Biotechnology, 1999, 2(13): 195-208.
    11. Rodrigo D, Loey A, Hendrickx M. Combined Thermal and High Pressure Colour Degradation of Tomato Puree and Strawberry Juice [J]. Journal of Food Engineering, 2007, 79(3): 553-560.
    12. Arroyo G, Sanz P D, P restamo G. Effect of h gh pressure on the reduction of microbial populations in vegetables [J]. J Applied Microbiology, 1997: 82: 735-742.
    13. Chong G, Cossius A R. A differential polarized fluo rometric study of the effects of h igh hydro static p ressure upon the fluidity of cellular membrane[J]. J Biochem istry, 1983, 22: 409.
    14.张璟,麻浩.超高压技术在菜用大豆和番茄汁保鲜贮藏中的应用研究[J].科技情报开发与经济,2007, 17(31): 123-125.
    15. Bomber J C, Dietrich W C, Hudson J S, et al. Yields and solid loss in steam blanching, cooling and freezing vegetables [J]. Journal of Food Science, 1975, 40: 660-664.
    16.潘见,曾庆梅,谢慧明等.草莓汁的超高压杀菌研究[J].食品科学, 2004, 25(1): 31-34.
    17.赵玉生,赵俊芳.猕猴桃汁的超高压杀菌技术[J].食品科技, 2007, 4: 146-148.
    18.李汴生,阮征.非热杀菌技术与应用[M].北京:化学工业出版社, 2003. 136-137.
    19.吴有炜.试验设计与数据处理[M].苏州:苏州大学出版社, 2002.
    20. Seyderhelm I, Boguslawski S, Michaelis G, et al. Pressure induced inactivation of selected food enzymes[J]. Journal of Food Science, 1996, 61: 308-310.
    21. Morild E. The theory of pressure effects on enzymes [J]. Advances in Protein. Chem., 1981, 34: 93-166.
    1. Hendrickx M, Knorr D. Ultra High Pressure Treatment of Foods [M]. USA: Kluwer Academic/ Plenum Publishers, 2002: 133-135.
    2. Grison R, Pilet P E. Maize Root Peroxidase Relationship with Polyphenol Oxidase [J]. Phytochemistry, 1985, 24: 2519.
    3.高瑀珑,王允祥,武宁等.响应面法优化超高压杀灭食品中枯草芽孢杆菌工艺[J].食品科学, 2004, 25(3): 101-106.
    4.高瑀珑,王允祥,江汉湖.食品基质对超高压杀灭食品中枯草芽孢杆菌影响的研究[J].食品科学, 2004, 25(6): 43-49.
    5.高瑀珑,王允祥,江汉湖.外界因子对超高压杀灭枯草芽孢杆菌效果的影响[J].食品科学, 2003, 24(8): 44-46. .
    6.曾庆梅.砀山酥梨汁超高压处理和降压措施的研究[D]:[博士学位论文],合肥:合肥工业大学, 2005.
    7.薄纯智.超高压食品处理效果的实验与模拟研究[D]:[硕士学位论文].大连:大连理工大学, 2007.
    8. Cano M P, Hernandez A, De Ancos B. High pressure and temperature effects on enzyme inactivation in strawberry and orange products[J]. Journal of Food Science, 1997, 62: 85-88.
    9. Cheftel, J. C. Effects of high hydrostatic pressure on food constituents: An overview[M]. In C. Balny, R. Hayashi, K. Heremans, & P. Masson (Eds), High pressure and biotechnology, Colloque INSERM, 1992, Vol, 224, (pp. 195-209). Montrouge: John Libbey Eurotext.
    10. Hendrickx M, Knorr D. Ultra High Pressure Treatment of Foods [M]. USA: Kluwer Academic/ Plenum Publishers, 2002: 133-135.
    11. Hendrickx M, Ludikhuyze L, Broeck I V D, et al. Effect of High Pressure on Enzymes Related toFood Quality [J]. Trends in Food Science and Technology, 1998, 9: 197-203.
    12. Seyderhelm I, Boguslawski S, Michaelis G, et al. Pressure Induced Inactivation of Selected Food Enzymes [J]. Journal of Food Science, 1996, 61(2): 308-310.
    13. Quaglia G B, Gravina R, Paperi R, et al. Effect of High Pressure Treatments on Peroxidase Activity, Ascorbic Acid Contend and Texture in Green Peas [J]. Lebensmittel Wissenschaft und Technologie, 1996, 29: 552-555.
    14.李汴生,阮征.非热杀菌技术与应用[M].北京:化学工业出版社, 2003. 136-137.
    15. Prestamo G, Arabas J, Broczek M, et al. Reaction of B. cereus Bacteria and Peroxidase Enzymes under Pressure >400 MPa [J]. Journal of Agriculture and Food Chemistry, 2001, 49: 2830-2834.
    16. Luna J A, Garrote R L, Bressan J A.. Thermo-kinetic modeling of peroxidase inactivation during blanching, cooling of corn on the cob[J]. Journal of Food Science, 1986, 51: 141-145.
    17.武清玺.结构可靠性分析及随机有限元法[M].北京:机械工业出版社, 2005.
    18. Anderzej S N, Kevin R C. Reliability of structures[M ]. McGraw - Hill Companies Inc, 2000.
    19. Shinozukam.. Basic analysis of structural safety[J]. Journal of Structure Engineering ASCE, 1983, 109(3): 721 - 740.
    20.刘济科,赵卫.基于支持向量回归的响应面可靠度计算[J].中山大学学报(自然科学版), 2008, 47(1): 1-4.
    21. Vapnik V. The Nature of Statisfical Learning Theory [M] .New York : Springer ,1995.
    22.谢宏,魏江平,刘鹤立.基于线性规划的回归支持向量机[J].上海海事大学学报, 2006, 27(1): 49-52.
    23.阎平凡,张长水.人工神经网络与模拟进化计算[M] .北京:清华大学出版社, 2003.
    24.吴志寒.基于SVM的人口预测[J].广东培正学院学报, 2006, 6(4): 83-85.
    25.胡涛.基于SVR技术的混凝土强度预测[J].土工基础, 2008, 22(1): 71-73.
    26.马超,吕震宙.基于支持向量机回归的结构系统可靠性及灵敏度分析方法[J].固体力学学报, 2007, 28(4): 425-429.
    1. Van Huystee R B. Some molecular aspects of plant peroxidase biosynthetic studies [J]. Annu. Rev. Plant Physiol, 1987, 38: 205-219.
    2. Wakamatsu K, Takahama U. Changes in Peroxidase Activity and in Peroxidase Isozymes in Carrot Callus [J]. Physiologia Plantarum, 1993, 88: 167-171.
    3. Kato M, Shimizu S. Chlorophyll Metabolism in Higher Plants VI. Involvement of Peroxidae in Chlorophyll Degradation [J]. Plant Cell Physiology, 1985, 26(7): 1291-1301.
    4. Gaspar T, Penel C, Castillo F J, et al. A two-step control of basis and acidic peroxidase and its significance for growth and development [J]. Plant Physiol, 1985, 64: 418-423..
    5. Hendrickx M, Knorr D. Ultra High Pressure Treatment of Foods [M]. USA: Kluwer Academic/ Plenum Publishers, 2002: 133-135
    6.黄艳芳,杨曼倩,梁红等.猕猴桃酯酶同工酶和过氧化物同工酶分析[J].农业与技术, 2003, 23(5): 56-61,72.
    7.丁士林,朱秀珍,洪泽.猕猴桃过氧化物同工酶研究[J].安徽农业大学学报, 1997, 24(4): 395-397.
    8.陈晓玲,梁红,朱东华.猕猴桃不同性别过氧化物酶及酯酶同工酶分析[J]. 2004, 24(1): 40-43.
    9. Bayindirli M, Alpas H, Bozo?lu F, et al. Efficiency of high pressure treatment on inactivation of pathogenic microorganisms and enzymes in apple, orange, apricot and sour cherry juices[J]. Food Control, 2006, 17: 52-58.
    10. Laemmli U K. Cleavage of the structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970,.227: 680–685.
    11.郭尧军.蛋白质电泳实验技术[M].北京:科学出版社. 1998. 54-115.
    12.胡能书,万贤国.同工酶技术及其应用[M].长沙:湖南科学技术出版社, 1985. 74, 104.
    13.袁晓华,杨中汉主编.植物生理生化实验[M].北京:高等教育出版社, 2000, 233.
    14. Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels[J]. Analysis Biochemistry, 1971, 44: 276–287.
    15. Fúster C., Préstamo G, Cano M P. Drip loss, peroxidase and sensory changes in kiwi fruit slices during frozen storage[J]. Journal of the Science of Food and Agriculture, 1994, 64: 23-29.
    16. Phunchaisri C, Apichartsrangkoon A. Effects of Ultra-High pressure on biochemical and physical modification of lychee (Litchi chinensis Sonn.)[J]. Food Chemistry, 2005, 93: 57-64.
    17. Nagle N E, Haard N F. Fractionation and characterization of peroxidase from ripe banana fruit[J]. Journal of Food Science, 1975, 40: 576-579.
    18. Baardseth P, Slinde E. Heat inactivation and pH optima of peroxidase and catalase in carrot, swede and Brussels sprouts[J]. Food Chemistry, 1980, 5: 169-174.
    19. Phunchaisri C, Apichartsrangkoon A. Effects of Ultra-High Pressure on Biochemical and Physical Modification of Lychee (Litchi chinensis Sonn.) [J]. Food Chemistry, 2005, 93: 57-64.
    20. Quaglia G B, Gravina R, Paperi R, et al. Effect of High Pressure Treatments on Peroxidase Activity, Ascorbic Acid Contend and Texture in Green Peas [J]. Lebensmittel Wissenschaft und Technologie, 1996, 29: 552-555.
    21.黄丽,孙远明,潘科等.超高压处理对荔枝果肉中两种酶和可溶性蛋白的影响[J].高压物理学报, 2005, 6: 179-183.
    22. Bayindirh M, Alpas H., Bozoglu F., et al. Efficiency of high pressure treatment on inactivation of pathogenic microorganisms and enzymes in apple, orange, apricot and sour cherry juices[J]. Food Control, 2006.,17: 52-58.
    23.周涛.热处理和MAP在水蜜桃和茭白贮藏保鲜中的应用[D]: [博士学位论文].无锡:江南大学食品学院, 2002.
    24. Irvine G B. High-performance size-exclusion chromatography of peptides [J]. J Biochem Biophys Methods, 2003, 56: 233-242
    25.赵永芳.生物化学技术原理及应用[M].武汉:武汉大学出版社, 1994.
    26.韩冬,叶美玲,施良和.水溶性凝胶色谱中的非体积排阻效应[J].色谱, 1995, 13(6): 432-436.
    27.聂刘旺,张定成.安徽产石蒜属植物三种同工酶的分析[J].生物学杂志, 2003, (2): 27-29.
    28.王璋编.食品酶学[M].北京:中国轻工业出版社, 1991, 249-250.
    29.陈晓玲,梁红,朱东华.猕猴桃不同性别过氧化物酶及酯酶同工酶分析[J]. 2004, 24(1): 40-43.
    30.吴卫,郑有良.川产鱼腥草种质资源的同工酶分析[J].中药材, 2002, 10(25): 695-698.
    31.陈万生,乔传卓.中药知母过氧化物同工酶谱分析[J].时珍国医国药,2000,11(6):3-4.
    32.曾庆梅,潘见,谢慧明等.超高压处理对辣根过氧化物酶二级结构及其活力的影响.食品科学, 2005, 5(26): 29-33.
    33.张宏康.超高压对生物大分子的影响研究[D]: [博士学位论文].北京:中国农业大学, 2001.
    1. Prestamo G. Peroxidase of Kiwifruit [J]. Journal of Food Science, 1989, 3(54): 760,762.
    2. Beever, D. J., & Hopkirk, G. Fruit development and fruit physiology. In I. J. Warrington, & G. C. Weston, Kiwifruit: science and management, (pp. 97-126). New Zealand: Ray Richards Publisher,1990.
    3. Heatherbell, D. A. Identification and quantitative analysis of sugars and non-volatile organic acids in Chinese gooseberry fruit (Actinidia Chinensis planch). Journal of the Science of Food and Agriculture, 1975,26, 815-820.
    4.胡建红.猕猴桃加工技术综述[J].热带农业工程, 2000, 4: 5-8.
    5.李维新,王华.猕猴桃汁的制取及澄清[J].食品工业, 2000, 5: 34-35.
    6. Riahi E, Ramaswamy H S. High Pressure Inactivation Kinetics of Amylase in Apple Juice [J]. Journal of Food Engineering, 2004, 64: 151-160.
    7.黄丽,孙远明,潘科等.超高压处理对荔枝果汁品质的影响[J].农业工程学报, 2007, 23(2): 259-262.
    8.罗平.饮料分析与检验[M].北京:化学工业出版社, 1992.
    9.秦蓝.蔬菜汁——南瓜混汁和胡萝卜混汁的研究[D]: [博士学位论文].无锡:江南大学食品学院, 2005.
    10. Kintner P K, Van Buren J P. Carbohydrate interference and its correction in pectin analysis using the m-hydroxydiphenyl method [J]. Journal of Food Science, 1982, 47(3): 756-759,764.
    11. Dobois M, Gilles K A. Colorimetric method for determination of sugars and related substance [J]. Analytical Chemistry, 1956, 28: 138-142.
    12. Ough C S, Amerine M A. Methods analysis of must and wines[M], 2nd Ed, Awiley-Interscience Publication, John Wiley & Sons, 1988.
    13.赵光远,李娜,张培旗等.热协同超高压处理对含防褐变剂鲜榨苹果汁贮藏品质的影响[J].食品与发酵工业, 2007, 33(4): 154-158.
    14.钟葵,廖小军,梁楚霖等.脉冲电场和热处理对鲜榨苹果汁贮藏期品质的影响.食品与发酵工业, 2004, 30(8): 49-54.
    15.赵光远,纵伟,姚二民.混浊苹果汁储藏过程中色泽稳定性的研究[J].食品科学, 2006, 27(8): 93-98.
    16.赵光远,李娜,白艳红等.热协同高压处理对鲜榨桃汁品质影响的研究[J].广西轻工业, 2006, 97(6): 1-2,14.
    17.邓继尧,陈继坤,何文品.对影响猕猴桃中Vc各种因素的研究[J].食品工业科技; :1994, (5): 6-9.
    18. Sancho F, Lambert Y, Demazeau G, et al. Effect of ultra high hydrostatic pressure on hydrosoluble vitamins[J]. Journal of Food Engineering, 1999, 39: 247-253.
    19. Polydera A C, Stoforos N G, Taoukis P S. Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice [J]. Journal of Food Engineering, 2003, 60: 21-29.
    20. Knorr, D. Effects of high-hydrostatic pressure processes on food safety and quality [J]. Food Technology, 1993, 47: 156-161.
    21. Handwerk R L, Coleman R L. Approaches to the citrus browning problem. A review[J]. Journal of Agriculture and Food Chemistry, 1988, 36: 231-236.
    22.孙美琴,彭超英,郝惠英.冷杀菌技术及其在果汁生产中的应用[J].饮料工业, 2003, 6(1): 6-9.
    23.赵玉生,姚二民,赵俊芳.超高压处理对猕猴桃汁品质的影响[J].食品科学, 2008, 29(1): 60-63.
    24.林华娟,秦小明.番茄果实打浆温度对番茄酱中果胶物质的影响[J].食品工业科技, 2007, 28(6): 125-127.
    25.赵光远,邹青松,孙娟等.超高压加工鲜榨苹果汁过程中的主要理化变化[J].食品与发酵工业, 2007, 33(11): 143-146.
    26.王璋编.食品酶学[M].北京:中国轻工业出版社, 1991, 20-25.
    27.李迎秋. PEF对大豆蛋白理化性质和脂肪氧化酶的影响[D]: [博士学位论文].无锡:江南大学食品学院, 2007.
    28. Cheftel J. C. Effects of high hydrostatic pressure on food constituents: an overview. High pressure and biotechnology [M], 1992: 195-209.
    29. Li T. M., Hook J. W., Drickamer H. G., Weber G. Plurality of pressure-denatured forms in chymotrypsinogen and lysozyme [J]. Biochenistry, 1976, 15: 5571-5580.
    30. Hawley S.A., Reversible pressure-temperature denaturation of chymotrypsinogen [J]. Biochem., 1971, 10: 2436-2442.
    31. Hayakawa I. Mechanism of high pressure denaturation of proteins [J]. LWT., 1996, 29: 756-762.
    32. Fernandez-Garcia A, Butz P, Bognar A, et al. Antioxidative capacity, nutrient content and sensory quality of orange juice and an orange-lemon-carrot juice product after high p ressure treatment and storage in different packaging [J]. European Food Research and Technology, 2001, 213 (4,5): 290- 296.
    33.汪家琦,侯立宏.超高压杀菌对乳品质的影响[J].中国乳品工业, 1999, 27 (5): 20- 21.
    1. Bartley J P, Schwede A M. Production of volatile compounds in ripening kiwi fruit (Actinidia chinensis)[J]. Journal of Agriculture and Food Chemistry, 1989, 37: 1023-1025.
    2. Paterson V J, Macrae E A, Young H. Relationships between sensory properties and chemical composition of kiwifruit (Actinidia deliciosa) [J]. Journal of Science of Food and Agriculture, 1991, 57: 235-251.
    3. Young H, Paterson V J. The effects of harvest maturity, ripeness and storage on kiwifruit aroma [J]. Journal of Science of Food and Agriculture, 1985, 36: 352-358.
    4. Young H, Paterson V J. Characterization of bound flavour components in kiwifruit[J]. Journal of Science of Food and Agriculture, 1995, 68: 257-260.
    5. Young H, Paterson V J, Burns D J W. Volatile aroma constituents of kiwifruit [J]. Journal of Science of Food and Agriculture, 1983, 34: 81-85.
    6. Young H, Perera C O, Paterson V J. Identification of E-hex-3-enal as an important contributor to the off- flavour aroma in kiwifruit juice[J]. Journal of Science of Food and Agriculture, 1992, 58: 519-522.
    7. Butz P, Fernandez G A, Lindauer R, et al. Influence of high pressure processing on fruit and vegetableproducts [J]. Journal of Food Engineering, 2003, 56: 233-236.
    8. Lambert Y, Demazeau G, Largeteau A. Changes in aromatic volatile composition of strawberry after high pressure treatment [J]. Food Chemistry, 1999, 67(1): 7-16.
    9. Yen G C, Lin H T. Changes in volatile flavor components of guava juice with high - pressure treatment and heat processing and during storage[J]. Journal of Agricultural and Food Chemistry, 1999, 47(5): 2082-2087.
    10.梁茂雨,纵伟,赵光远等.超高压处理对猕猴桃香气成分的影响[J].食品工业科技, 2007, 28(3): 72-75.
    11.郭凯,芮汉明.食品中挥发性风味成分的分离、分析技术和评价方法研究进展[J].食品与发酵工业, 2007, 33(4): 110-115.
    12.秦蓝.蔬菜汁——南瓜混汁和胡萝卜混汁的研究[D]: [博士学位论文].无锡:江南大学食品学院, 2005.
    13.牛丽影,吴继红,廖小军等.果胶酶处理对5个品种橙汁主要理化指标的影响[J].农产品加工学刊, 2006, 73(8): 8-12.
    14.赵光远,李娜,张培旗等.热协同超高压处理对含防褐变剂鲜榨苹果汁贮藏品质的影响[J].食品与发酵工业, 2007, 33(4): 154-158.
    15.钟葵,廖小军,梁楚霖等.脉冲电场和热处理对鲜榨苹果汁贮藏期品质的影响[J].食品与发酵工业, 2004, 30(8): 49-54.
    16.赵光远,纵伟,姚二民.混浊苹果汁储藏过程中色泽稳定性的研究[J].食品科学, 2006, 27(8): 93-98.
    17.张峻松,张文叶,谭宏祥等.超高压处理对桃汁挥发性化学成分的影响[J].精细化工, 2007, 24(3): 265-268.
    18. Franco A. Kiwifruit: Producing and marketing[J]. Acta. Horticulturae, 1990, 288: 21-28.
    19. Lerici C R, Dalla R M. Kiwifruit processing: Some considerations[J]. Acta. Horticulturae, 1990, 282: 399-408.
    20.李忠宏,陈香维,史亚歌.猕猴桃加工中变色机理及护色方法探讨[J].西北农业学报, 2004, 13(1): 124-127.
    21.丰利.软枣猕猴桃果汁保绿技术研究[J].特产研究, 2004, (4): 14-17.
    22.林向东,张琪,马丽等.猕猴桃加工过程中绿色保持方法的探讨[J].湖北工业学院学报, 2002, 17(1): 70-72.
    23.罗自生.果蔬原料加工时的变色和护色措施[J].四川食品与发酵, 1998, (3): 18-20.
    24.张素华,杨文,鲁茂林.绿芦笋罐头护绿的工艺研究[J].江苏农学院学报, 1997, 19: 93-95.
    25.骆仲义,杜世民,陈杰等.袋装蔬菜护绿方法的研究[J].食品科学, 1994, (8): 12-14.
    26. Perera C O, Venning J A. Stabilizeing color in kiwifruit and production[P]. United-States-Patent, 1993.
    27. Handwerk R L, Coleman R L. Approaches to the citrus browning problem a review[J]. Journal of Agriculture and Food Chemistry, 1988, 36, 231-236.
    28. Sumitani H, Suekane S, Nakatani A, et al. Changes in composition of volatile compounds in high pressure treated peach [J]. Journal of Agricultural and Food Chemistry, 1994, 42: 785- 792.
    29. Butz P, Koller W D, Tauscher B, et al. Ultra high pressure processing of onions: chemical and sensory changes [J]. Lebensmittel Wissenschaft und Technologie, 1994, 27: 463- 467.
    30. Knorr, D. Effects of high-hydrostatic pressure processes on food safety and quality [J]. Food Technology, 1993, 47: 156-161.
    31.纵伟,李春艳,张文叶等.超高压处理前后菠萝香气成分的变化[J].食品科技, 2003, (3): 67-71
    1.李雁群,佘世望.猕猴桃果浆的流变特性[J].食品与发酵工业, 1997, 23(3): 33-35.
    2.王岸娜.壳聚糖澄清猕猴桃果汁及其澄清机理的探讨[D]: [博士学位论文].无锡:江南大学食品学院, 2004.
    3.周宇英,唐伟强.食品流变学特性研究的进展[J].粮油加工与机械, 2001, (8): 7-9.
    4.张红霞,李大勇,陶桂香.果蔬的力学——流变学特性的研究进展[J].黑龙江八一农垦大学学报, 2005, 17(3): 51-54.
    5.赵红霞,张守勤,吴华等.高压处理蛋黄酱动态黏弹特性的研究[J].农业机械学报, 2002, 33(2): 61~63.
    6.赵红霞,张守勤,周丰昆.高压加工对鲜蛋液流变特性的影响[J].农业机械学报, 2004, 35(6): 138-141.
    7.李汴生,曾庆孝,彭志英.高压处理后大豆分离蛋白溶解性和流变特性的变化及其机理[J].高压物理学报, 1999, 13(1): 22-29.
    8.李正理编著.植物制片技术[M].北京:科学出版社, 1987.
    9.华东师范大学编.植物学[M].北京:人民教育出版社, 1985.
    10. Eric D. Structure and rheology of simulated gels formed from aggregated colloidal particles [J]. Journal of Colloid and Interface Science, 2000, 225: 2-15.
    11.李汴生,阮征,曾庆孝等.超高压处理对豆浆凝胶特性的影响[J].食品与发酵工业, 1999, 25(1): 10-15.
    12.谭俊峰,林智,郭丽等.超高压对茶鲜叶的细胞结构、多酚氧化酶活性及主要化学成分的影响[J].食品科学, 2007, 28(9): 78-82.
    13.陈克复,卢晓江等.食品流变学及其测量[M].北京:轻工业出版社, 1989.
    14.赵杰文,张进芳,柴春祥等.鱼糜在挤压过程中流变特性的初探[J].农业工程学报, 1997, 13 (1): 194-197.
    15.宋洪波,杜吉涛,安凤平,陈丽娇.柚子浓缩汁及清汁的流变学特性[J].福建农林大学学报(自然科学版), 2007,36(4):422-426.
    16.谭洪卓,谷文英,刘敦华等.甘薯淀粉糊与绿豆淀粉糊流变行为的共性与区别[J].农业工程学报, 2006, 22(7): 32-37.
    17. Desobry-Banon S, Rechard F, Hardy J. Study of Acid and Rennet Coagulation of High Pressurized Milk[J]. Journal of Dairy Science, 1994, 77: 3267-3274.
    18.王昭,李云康,潘思轶.浓缩柑橘汁流变特性研究[J].食品科学, 2006, 27(12): 99-102.
    19.路福绥,黄雪松,王汉忠.浓缩梨汁的流变特性研究[J].山东农业大学学报, 1996, 27(1): 4-8.
    20.莫蓓红,钱钊,王燕等.粒径分析法研究含乳果汁的稳定性[J].乳业科学与技术, 2003, 104(3):106-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700