用户名: 密码: 验证码:
鳙鱼中多聚磷酸盐水解机理及无磷保水剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.建立了水产品中多聚磷酸盐测定的离子色谱法。利用Dionex ICS 2000型离子色谱,AS11-HC型阴离子分离柱,以KOH为淋洗液,采取程序梯度洗脱可以定性定量分析单磷酸盐(Pi)、焦磷酸盐(PP)、三聚磷酸盐(TPP)和六偏磷酸盐(HMP)。0.005-0.5mmol/L的范围内均呈现良好的线性相关性,r~2>0.99。在鳙鱼肉中的回收率为99-111%,能够用以测定鳙鱼和其它水产品中多聚磷酸盐。
     2.对不同水产品中多聚磷酸盐的水解规律进行了研究。离子色谱法可以准确地测定焦磷酸四钠(TSPP)和三聚磷酸钠(STPP)在不同水产中的水解过程。STPP水解分为两步,首先被水解成PP和Pi,其次生成的PP被进一步水解成Pi。而TSPP直接被水解成单磷酸盐。
     3.利用Dionex ICS 2000型离子色谱,可以非常准确地测定ATP、ADP和Pi。ATP、ADP和Pi在0.01-0.1mmol/L测量浓度范围内具有很好的线性相关性,相关系数均大于0.997,在此基础上建立了腺苷三磷酸酶(ATPase)活性的离子色谱测定法。
     4.对鳙鱼焦磷酸盐水解酶(PPase)进行了分离纯化和生化特性的研究。肌肉通过0.05 mol/L KCl-20 mmol/L tris-HCl(pH 7.0)缓冲液漂洗得到的粗酶液,经过50%~80%(NH_4)_2SO_4饱和度分段盐析,50℃加热处理,经DE52阴离子交换层析,再经Sephacryl S-300凝胶层析可以得到在native PAGE和SDS-PAGE图谱上呈现单一蛋白条带的纯化酶。纯化倍数为114.5倍,酶活回收率为4.5%。PPase的相对分子量为50kDa,是有两个相同的亚基构成,最适温度和pH分别为50℃和8.0,热稳定性不强,在pH5.0-10.的范围内有着很好的稳定性。Mg~(2+)是必需金属离子,当Mg~(2+)浓度与底物浓度比值≧1时,酶活性较高且保持稳定;但当比值≦1时,底物对酶有抑制作用。低浓度的EDTA可以激活酶,而高浓度却能强烈抑制酶活。NaBr和二硫苏糖醇(DTT)可以增强酶活性,而柠檬酸钠和亚硫酸氢钠却强烈抑制酶活。PMSF能完全抑制酶活性,该酶可能为丝氨酸酶。在5mmol/LMg~(2+)浓度下,PPase水解焦磷酸四钠的Km为1.98mmol/L。
     5.通过逐层剖析法证明了肌球蛋白头部S-1具有三聚磷酸盐水解酶(TPPase)活性,并阐明了鳙鱼肌球蛋白头部S-1 TPPase的生化特性。纯化的鳙鱼TPPase水解TPP的最适温度为30℃。TPPase在30°C下比较稳定,而在70°C下迅速失活。TPPase最适pH值为5.0和8.0,在中性偏酸的环境中较稳定。Mg~(2+)浓度低于17mmol/L时能激活TPPase,但高于17mmol/L却起到了抑制作用。当KCl浓度由0.1 mol/L提高到0.3 mol/L时TPPase活性迅速升高并趋于稳定。EDTA-Na_2能显著抑制TPPase活力。TPPase对于氧化剂和还原剂都比较稳定。在最适条件下测定鳙鱼TPPase的米氏常数为3.2mmol/L。
     6.研究了三种多聚磷酸盐对肌原纤维蛋白结构的影响,探讨了提高保水性的机理。提出了TSPP提高保水性的机理为:一,通过提高静电斥力使肌原纤维横向膨胀,增加肌原纤维内部的空间;二,从A带两端提取蛋白,增加I带空间;三,从H带提取蛋白,增加A带内部空间;四,焦磷酸盐水解过程中化学键释放的能量可能提供了动力,能破坏肌球蛋白和肌动蛋白的连接,使肌原纤维小片化。STPP作用途径:一方面通过静电斥力使肌原纤维横向膨胀;另一方面提高离子强度增加蛋白质的溶解;第三方面是通过TPPase水解成PPi,然后以PPi形式发挥作用。六偏磷酸盐主要作用可能是通过螯合金属离子影响三聚磷酸盐水解酶和焦磷酸盐水解酶活性,进而影响三聚磷酸盐和焦磷酸盐的作用。
     7.对磷酸盐替代物进行了研究。利用过氧化氢裂解法获得的分子量大于6kDa的褐藻酸钠裂解物HDX-A能有效的增加南美白对虾虾仁的浸泡增重效果。HDX-A可以显著保持冷冻虾仁浸泡增重效果,防止了解冻损失,降低了蒸煮损失。在南美白对虾冷冻虾仁应用效果优于B542复合磷酸盐。提出HDX-A提高冷冻虾仁的保水性的可能机理为:一,通过渗透作用进入到虾仁内部,利用自身膨胀增加了肌束之间和肌原纤维之间的空间,并形成空间上的网络结构,增强了结构的稳定性;二,与肌原纤维蛋白结合,增强蛋白质的稳定性,防止肌球蛋白的变性;三,大分子量的裂解物可以吸附并保持大量的水分子;四,在虾仁表面通过Ca~(2+)、Mg~(2+)等离子形成凝胶膜,阻止了内部水分的流失。
1. An ion chromatography method was established for determine orthophosphate (Pi), pyrophosphate (PPi), tripolyphosphate (TPP), and hexametaphosphte (HMP). The method was linear at concentration raging from 0.005-0.5mmol/L. The average recoveries ranged form 99-111%. The method can be applied for determination of phosphates in aquatic products.
     2. The hydrolysis of PPi and TPP in several kinds of aquatic products was determined. TPP was firstly hydrolyzed to PPi and Pi, and PPi was further hydrolyzed to Pi in minced meat. Meantime, PPi was directly to Pi.
     3. An innovative ion chromatography method was established for determine Pi, adenosine diphosphate (ADP), and adenosine triphosphate (ATP). The method can be applied for determination of ATPase activity. 4. Pyrophosphatase (PPase) responsible to the hydrolysis of PPi was purified from bighead carp (Aristichthys nobilis), and characterized in detail herein. PPase was extracted with 0.05mol/L KCl buffer (pH 7.0), followed by heat treatment and ammonium sulfate precipitation. Then it was purified by deithylaminoethyl-cellulose and Sephacryl S-300 chromatography. The purified PPase was obtained. The molecular mass was 50 kDa with two subunits. The optimum pH and temperature was around 8.0 and 50°C, respectively. Mg~(2+) was necessary. An excess of PPi over Mg~(2+) resulted in inhibition of PPase. EDTA activated under low concentrations, but it consumingly did inhibit under high concentrations. NaBr and DTT could enhance PPase activity. PMSF, Na_3C_6H_5O_7 and NaHSO_3 could significantly inhibit PPase. PPase converted PPi to Pi stoichiometrically with a K_m of 1.98 mmol/L.
     5. The myosin subfragment-1 was proved to have the activity of tripolyphosphatase (TPPase). The optimum temperature and pH for the TPPase activity were 30°C and pH 5.0 and 8.0. Mg~(2+) was necessary and the optimum concentration was 17 mmol/L. The optimum concentration of KCl for the TPPase was 0.3 mol/L. The TPPase was significantly inhibited by EDTA-Na_2. The TPPase converted TPP to PPi and Pi stoichiometrically with a K_M of 3.2 mmol/L.
     6. The effects of polyphosphates on the microstructure of myofibrillar were studied. The mechanism of PPi on water holding capacity was described as: (i) enabled the myofibrilar lattices expand laterally; (ii) increased the space of I- band by extracting protein from both ends of A-band; (iii) increased the space of A-band by extracting protein from H-band; (iv) destroyed the juncture of the myosin and actin by the energy liberated from the hydrolysis of chemical bond. The mechanism of TPP was described as: (i) enabled the myofibrilar lattices expand laterally; (ii) increased the soluble protein content by the ion strength; (iii) firstly hydrolyzed to PPi, which effectively destroyed the structure of myofibrillar. HMP could chelate metal ion that affected the hydrolysis of PPi and TPP. As a result, the function of PPi and TPP was modified.
     7. A safe effective phosphate alternative was exploited. The product of molecular weight over 6000 from sodium alginate obtain by H_2O_2 significantly increased the weight of white leg shrimp, and decreased the frozen drip loss. The effect of HDX-A preceded polyphosphate compound. The mechanism of HDX-A was presumed as follows: (i) penetrated into shrimp, swelled, and expanded the space of myofibrils or fascicles; (ii) combined with protein, prevented myosin frozen denaturation; (iii) adsorbed and retained entrapped water; (iv) formed a film and prevented frozen drip loss.
引文
[1]刘钟栋食品添加剂原理及应用技术(第二版).北京:中国轻工业出版社,2000.
    [2]中华人民共和国国标. GB/T 5009.87—2003.
    [3]宁正祥食品成分分析手册.北京:中国轻工业出版社. 1998.
    [4]钱毅,赵国君食品分析法.上海:上海科学普及出版社. 1990.
    [5] Cantoni, C.; Bianchi, M. A.; Beretta, G. Comparative analysis of polyphosphates used in meat processing. Industrie Alimentari. 1980, 19(5): 397-400, 404.
    [6]中华人民共和国国标. GB/T9695.9—1988.
    [7] Meat and meat products. Determination of polyphosphates. Romanian Standard. 1988.
    [8] Vyncke, W. Detection of polyphosphates in fish products by TLC. Revue de l'Agriculture. 1986, 39(1): 177-183.
    [9] Krzynowek, J.; Panunzio, L. J. Practical application of thin-layer chromatography for detection of polyphosphates in seafood. J. AOAC Intern. 1995, 78, (5): 1328-1332.
    [10] Linares, P.; Luque de Castro; M.D.; Valcarcel, M. Determination of polyphosphates in intermediate materials for detergent manufacture by ion high-performance liquid chromatography with post-column derivatization. J.Chromatogr. A. 1991, 585: 267-271.
    [11] Matsunaga, A.; Yamamoto, A.; Mizukami, E.; Kawasaki, K.; Ooizumi, T. Determination of polyphosphates in foods by high performance liquid chromatography. Nippon Shokuhin Gakkaishi.1990, 37(1): 20-25.
    [12] Hailliwell, D.J.; McKelvie, I.D.; Hart, B.T.; Dunhill, R.H. Analyst. 1996, 121: 1089.
    [13] Dafflon, O.; Scheurer, L.; Gobet, H.; Bosset, J. O. Polyphosphate determination in seafood and processed cheese using high-performance anion exchange chromatography after phosphatase inhibition using microwave heat shock. Mitteilungen aus Lebensmitteluntersuchung und Hygiene. 2003, 94 (2): 127-135.
    [14] Shamsi, S.A.; Daniels, N.D. Anal. Chem. 1995, 67: 1845.
    [15] Motooka, I.; Nariai, H.; Nakazaki, K. Determination of average chain length of linear polyphosphates by isotachophoresis. J.Chromatogr. A. 1983, 260: 377-382.
    [16] Stover, F.S. Capillary electrophoresis of longer-chain polyphosphates. J. Chromatogr. A. 1997, 769: 349-35.
    [17] O`Neil, I.K.; Richards, C.P. Specific detection of polyphostate in frozen chicken by conbination of enzyme blocking and 31P-FTNMR spectroscopy. Chem Ind. 1978, 2: 65-67.
    [18]常建华,董绮功编著.波谱原理及解析.北京:科学出版社. 2001.
    [19]武汉大学化学系编著.仪器分析.北京:高等教育出版社. 2001.
    [20] Shamsi, S.A.; Danielson, N.D. Ion chromatography of polyphosphates and polycarboxylates using a naphthalenetrisulfonate eluent with indirect photometric and conductivity detection. J. Chromatogr. A. 1993, 653: 153-160.
    [21] Svoboda, L.; Schmidt, U. Single-column ion chromatography of linear polyphosphates. J. Chromatogr. A. 1997, 767: 107-113.
    [22] Cui, H.;Cai, F.;Xu, Q. Determination of tripolyphosphate in frozen cod and scallop adductor by ion chromatography. J. Chromatogr. A. 2000, 884: 89-92.
    [23] Kaufmann, A.; Maden, K.; Leisser, W.; Matera, M.; Gude, T. Analysis of polyphosphates in fish and shrimps tissues by two different ion chromatography methods: implications on false-negative and -positive findings. Food Additives &Contaminants. 2005, 22(11): 1073-1082.
    [24]周光宏.畜产品加工学.北京:中国农业出版社. 2002.
    [25] Nemethy, G.; Scheraga, H. A. Structure of water and hydrophobic bonding in protein-I. J. Chem. Phys. 1962a. 36: 3382–3399.
    [26] Nemethy, G.; Scheraga, H. A. The structure of water and hydrophobic bonding in protein-II. J. Chem. Phys. 1962b. 36: 3401–3417.
    [27] Hamm, R. Functional properties of the myofibrillar system and their measurements. In P.J. Bechtel (Ed.), Muscle as food. San Diego, CA: Academic Press Inc. 1986. pp 135-199.
    [28] Bertram, H.C.; Purslow, P.P.; Andersen, H.J. Relationship between meat structure, water mobility, and distribution: a low-field nuclear magnetic resonance study. J. Agric. Food Chem. 2002, 50: 824-829.
    [29] Andersen, C. M.; Jogensen, B. M. On the relation between water pools and water holding capacity in cod muscle. J. Aquat. Food Product Technol. 2004, 13(1): 13-23.
    [30] Hanson, J.; Huxley, H.E. The structure basis of contraction in striated muscle. Symp.Soc.Exp.Biol. 1955, 9: 228-264.
    [31] Offer, G..; Trinick, J. On the mechanism of water holding in meat; the swelling and shrinking of myofibrils. Meat Sci. 1983, 8: 245-281.
    [32] Schnepf, M.I. Protein-water interaction. In Biochemistry of Food Proteins,ed.B.J.F.Hudson, London: Elsevier Science.1992, pp1-33.
    [33] Trout, G. R. Techniques for measuring water-binding capacity in muscle foods- A review of methodology. Meat Sci. 1988, 23: 235-252.
    [34] Rosenvold, K.; Andersen, H.J. Factors of significance for pork quality- a review. Meat Sci, 2003, 64: 219-237.
    [35] Rosinski, M.J.; Barmore, C.R.; Bridges, W.C. Jr.; Dick, R.L.; Acton, J.C. Phosphate type and salt concentration effects on shear strength of and packaging film adhesion to processed meat from a cook-in packaging system. J. Food Sci. 1989, 54(6): 1422-1425,1430.
    [36] Moiseev, I. V.; Cornforth, D. P. Sodium hydroxide and sodium tripolyphosphate effects on bind strength and sensory characteristics of restructured beef rolls.Meat Sci. 1997, 45 (1): 53-60.
    [37] Choi, Y.I.; An, K.Y. Effects of phosphate type and addition level on binding ability, microstructure and storage characteristics of restructured pork jerky. Korean J. Animal Sci. 1996, 38(2): 159-170.
    [38] Zawadzka, K.; Klossowska, B. Effect of the addition of phosphate preparations on the binding of model meat product. Zywnosc. 2002, 9(4): 41-51.
    [39] Schober, B.; Duerr, F. Effects of polyphosphates on quality and yield of fish products. Fischerei Forschung. 1989, 27(3): 71-76.
    [40] Batista, I.; Vidal, I.; Lourenco, H. M.; Sousa, I.; Nunes, M. L. Tenderisation of the dog cockle (Glycymeris glycymeris) meat by polyphosphates. European Food Research & Technology. 1999, 210 (1): 31-33.
    [41] Schober, B.; Duerr, F. Effects of polyphosphates on quality and yield of fish products. Fischerei Forschung. 1989, 27 (3): 71-76.
    [42] Gat'ko, N. N. Natural minced fish products quality as influenced by polyphosphates involvement. Izvestiya Vysshikh Uchebnykh Zavedenii, Pishchevaya Tekhnologiya. 1996, 5: 30-31
    [43]沈月新,张旭旻,蒋红梅提高冷冻鱼片质量的研究.上海水产大学学报. 1996, 5(3): 177-181.
    [44] Zheng, M.; Detienne, N.A.; Barnes, B.W.; Wicker, L. Tenderness and yields of poultry breast are influenced by phosphate type and concentration of marinade. J. Sci. Food Agric. 2001, 81 (1): 82-87.
    [45] Xiong, Y. L.; Kupski, D. R. Time-dependent marinade absorption and retention, cooking yield, and palatability of chicken filets marinated in various phosphate solutions. Poultry Sci. 1999, 78 (7): 1053-1059
    [46] Thorarinsdottir, K. A.; Arason, S.; G.Bogason, S.; Kristbergsson, K. Effects of phosphate on yield, quality, and water-holding capacity in the processing of salted cod (Gadus morhua). J. Food Sci. 2001, 66(6): 821-826.
    [47]Shults, G.W.; Russell, D.R.; Wierbichi, E. Effect of condensed phosphates of pH, swelling and water-holding capacity of beef. J.Food Sci. 1972, 37: 860-864.
    [48] Ande, C. F. The influence of polyphosphate on meat pH and its relationship tolipid and myoglobin oxidation. Dissertation Abstracts International, B. 1985, 46 (5): 1400
    [49] Cho, S. H.; Rhee, K. S. Lipid oxidation in mutton: species-related and warmed-over flavors. J.Food Lipids. 1997, 4 (4): 283-293.
    [50] Keeton, J. T. Effects of fat and NaCl/phosphate levels on the chemical and sensory properties of pork patties. J. Food Sci. 1983, 48: 878–881, 885.
    [51] Poyrazoglu, O.; Ertas, A.H. Effect of sodium tripolyphosphate on some physical, chemical and sensorial properties of hamburgers. Turkish J.Agric.Forestry. 1997, 21 (3): 289-293.
    [52] Craig, J.A.; Bowers, J.A.; Wang, X.Y.; Seib, P.A. Inhibition of lipid oxidation in meats by inorganic phosphate and ascorbate salts. J.Food Sci. 1996, 61(5): 1062-1067.
    [53]Young, L,L,; Lyon, C,E. Effects of rigor state and addition of polyphosphate on the color of cooked turkey meat. Poultry Sci. 1994,73(7): 1149-1152.
    [54]李敬民磷酸盐在海产品加工中的应用.中国食品. 2000, 14: 46-47.
    [55] Prabhakara, R. K.; Narahari,D. Effect of polyphosphate treatment of quail carcasses on drip volume and composition. Indian Veterinary J. 1990, 67 (6): 537-541.
    [56] Lu,X.W. The impact of polyphosphates on the water retention of fresh fillets and frozen cod minces. Dissertation Abstracts International, B. 1996, 56 (8): 1995.
    [57] Peter, W.; Nicholas, H.; Peter J. L. Salt-induced swelling of meat: The effect of storage time, pH, ion-type and concentration. Meat Sci. 1986, 18 (1): 55-75.
    [58] Cormier, A.; Leger, L. W. Effect of sodium polyphosphates on frozen cod fillets (Gadus morhua). Canada. Instit. Food Sci. Technol. 1987, 20 (4): 222-228.
    [59] Sutton, A.H.; Ogilvie, J.M. Uptake of sodium and phosphorus, and weight changes in prerigor cod muscle dipperd in sodium tripolyphosphate solutions. J. Fish Res. Bd Canada. 1967, 25 (7): 1475-1484.
    [60] Trout, G.. R.; Schmidt, G. R. Effect of phosphate type and concentration, salt level, and method of preparation on binding in restructured beef rolls. J. Food Sci. 1984, 49 (3): 687-694.
    [61] Ho, M. L. Effect of phosphate on the muscle proteins of grass shrimp (Penaeusmonodon). J. Chine. Agric. Chem. Soc. 1989, 27 (3): 385-390.
    [62] Henry, L.K.; Boyd, L. C.; Green, D.P. Cryoprotectants improve physical and chemical properties of frozen blue crab meat (Callinectes sapidus). J.Sci.Food Agric.1995, 69 (1): 15-20.
    [63] Paredi, M. E.; Vido de Mattio; N. A de, Crupkin, M. Biochemical properties of actomyosin and expressible moisture of frozen stored striated adductor muscles of Aulacomya ater ater (Molina): effects of polyphosphates. J. Agric. Food Chem. 1996, 44 (10): 3108-3112.
    [64] Brotsky, E.; Everson, C. W. Polyphosphate use in meat and other muscle foods. [Conference Proceedings] Proceedings of the Meat Industry Research Conference. 1973.
    [65] Ishii, S.; Hirata, A.; Watanabe, T. Effect of polyphosphates on proteins. I. Relationship between character of polyphosphates and precipitation reaction of protein solutions. J. Japan. Soc. Food Sci. Technol. 1979. 26 (7): 279-286.
    [66] Dziezak, J. D. Phosphates improve many foods. Food Technol. 1990, 44 (4): 80-82, 85-86, 89, 92.
    [67] Mu, D.; Huang, Y. W.; Gates, K. W.; Wu, W. H. Effect of trisodium phosphate on Listeria monocytogenes attached to rainbow trout (oncorhynchus myk?ss) and shrimp (penaeus spp.) during refrigerated storage. J.Food Safe.1997, 17: 37-46.
    [68] Sheard, P. R.; Nute, G. R.; Richardson, R. I.; Perry, A.; Taylor, A. A. Injection of water and polyphosphate into pork to improve juiciness and tenderness after cooking. Meat Sci. 1999, 51(4): 371-376.
    [69] Lampila, L. E. Functions and uses of phosphates in the seafood industry. J. Aquat. Food Product Technol. 1992, 1 (3/4): 29–41.
    [70] Hamm, R. Biochemistry of meat hydration. Adv. Food Res. 1960, 10: 355-463
    [71] Hellendorn, E. W. Water-binding capacity of meat as affected by phosphates. I. Infuence of sodium chloride and phosphates on the water retention of comminuted meat at various pH values. Food Technol.1962, 16: 119-124.
    [72] Wilding, P.; Hedges, N.; Lillford, P. Salt-induced swelling of meat: The effect of storage time, pH, ion-type, and concentration. Meat Sci. 1986, 18 (1): 55-75.
    [73] Kitakami, S.; Yasunaga, K.; Murakami, Y.; Abe, Y.; Arai, K. pH-dependency of gel forming ability of walleye pollack frozen surimi and effect of polyphosphate salt. Nippon Suisan Gakkaishi. 2003, 69 (3): 405-413.
    [74] Ishiwata, S. Melting from both ends of an A-band in a myofibril. Observation with a phase-contrast microscope. J. Biochem. 1981, 89: 1647–1650.
    [75] Wang, S.F.; Smith, D.M. Heat-induced denaturation and rheological properties of chicken breast myosin and F-actin in the presence and absence of pyrophosphate. J. Agric. Food. Chem. 1994, 42: 2665-2679.
    [76] Chang, C. C.; Regenstein, J. M. Water uptake, protein solubility, and protein changes of cod mince stored on ice as affected by polyphosphates. J. Food Sci. 1997, 62 (2): 305-309.
    [77] Matsukawa, M.; Sato, R.; Kimura, S.; Arai, K. Interacting mechanism of sodium pyrophosphate with gel forming ability of NaCl-ground meat from walleye pollack. Nippon Suisan Gakkaishi. 1998, 64 (6): 1034-1045.
    [78] Xiong, Y. L.; Lou, X.; Wang, C.; Moody, W. G.; Harmon, R. J. Protein extraction from chicken myofibrils irrigated with various polyphosphate and NaCl solutions. J. Food Sci. 2000, 65: 96–100.
    [79] Parsons, N.; Knight, P. Origin of variable extraction of myosin from myofibrils treated with salt and pyrophosphate. J. Sci. Food Agric. 1990, 51: 71–90.
    [80] Xiong, Y.L.; Lou, X.; Harmon, R. J.; Wang, C.; Moody, W. G. Salt- and pyrophosphate induced structural changes in myofibrils from chicken red and white muscle. J. Sci. Food Agric. 1999, 80: 1176–1182.
    [81] Xiong, Y. L. Role of myofibrillar proteins in water-binding in brine-enchanced meats. Food Research International. 2005, 38: 281-287.
    [82] Patterson, B.C.; Parrish, P.C.; Jr.; Stromer, M.H. Effect of salt and pyrophosphate on the physical and chemical properties of beef muscle. J.Food Sci. 1988, 53:1258-1265.
    [83] Whiting, R.C. Influence of various salts and water soluble compounds on the water and fat extrudation and gel strength of meat batters. J. Food Sci. 1987, 52:1130-1132.
    [84] Lu, X.W. The impact of polyphosphates on the water retention of fresh fillets and frozen cod minces. Dissertation Abstracts International, B. 1996, 56 (8): 4078-4079.
    [85] Neraal, R.; Hamm, R. Enzymic breakdown of tripolyphosphate and diphosphate in minced meat. I. The determination of triphosphatase and diphosphatase activities in tissue. Z Lebensm Untersuch Forsch. 1977a,63 (1):14-17.
    [86] Neraal, R.; Hamm R. On the enzymatic breakdown of tripolyphosphate and diphosphate in minced meat.XII.Influence of the breakdown of tripolyphosphate and diphosphate- on the water-holding capacity of meat. Z Lebensm Untersuch Forsch. 1977b, 164: 243-246.
    [87] Douglass, M.; McDonald, M. P.; O'Neill, I. K.; Osner, R. C.; Richards, C. P. Technical note: A study of the hydrolysis of polyphosphate additives in chicken flesh during frozen storage by 31P-FTNMR spectroscopy. J. Food Technol. 1979, 14 (2): 193-197.
    [88] Offer, G.; Trinick, J. On the mechanism of water holding in meat: the swelling and shrinking of myofibrils.Meat Sci. 1983, 8: 254-281.
    [89] Belton, P.S.; Paker, K.J.; Southon, T.E. ~(31)P NMR studies of the hydrolysis of added phosphates in chicken meat. J. Sci Food Agric. 1987, 40: 283-291.
    [90] Reddy, B. R. Hydrolytic and enzymatic breakdown of food grade condensed phosphates in white shrimp (Penaeus setiferus). Dissertation Abstracts International, B. 1988, 47(12): 4716.。
    [91] Matsunaga, A.; Yamamoto, A.; Mizukami, E.; Kawasaki, K.; Ooizumi, T. Determination of polyphosphates in foods by high performance liquid chromatography. Nippon Shokuhin Gakkaishi.1990, 37(1): 20-25.
    [92] Matsunaga, A.; Ooizumi, T.; Yamamoto, A.; Kawasaki, K.; Mizukami, E. Degradation of polyphosphates during manufacture of surimi-based products. Bulletin of the Japanese Society of Scientific Fisheries. 1990, 56(12): 2077-2082.
    [93] Matsunaga, A.; Ooizumi, T.; Yamamoto, A.; Kawasaki, K.; Mizukami, E. Washing effect of minced fish muscle in water on degradation of polyphosphates durin manufacturing process of surimi-based products. Nippon Suisan Gakkaishi. 1992, 58:79-83.
    [94] Budig, J. Additives increasing the natural water-binding capacity of meat. III. Water-binding capacity and polyphosphates. Maso. 1990, 1 (3): 16-19.
    [95] Bianchi, E.; Bruschi, R. Breakdown of polyphosphates added to frozen beef meat. Industrie Alimentari. 1994, 33 (325): 380-383
    [96] Li, R.R.; Kerr W.L.; Toledo R.T.; Teng Q. ~(31)P NMR analysis of chicken breast meat vacuum tumbled with NaCl various phosphates. J. Sci. Food Agric. 2001, 81:576-582.
    [97]高瑞昌,彭增起,陈德倡,袁丽,王桂华多聚磷酸盐在鸡腿肉中水解的31P核磁共振研究.食品科学. 2004, 25: 71-74.
    [98] Cantoni, C.; Dragoni, I.; Cattaneo, P. Polyphosphates in meat products. Bacterial hydrolysis of hexametaphosphate and tripolyphosphate. Industrie Alimentari. 1976, 15 (6): 79-80, 82.
    [99] de Jager, H. J.;Heyns, A. M. Kinetics of Acid-Catalyzed Hydrolysis of a Polyphosphate in Water. J. Phys. Chem. A. 1998, 102:2838-2841
    [100] Shiro I.; Ken-ichi A. Denaturation of actin in carp myosin B induced by polymerized phosphate in the presence of MgCl_2. Nippon Suisan Gakkaishi. 1988a,54(11): 2009-2017.
    [101]Shiro I.; Ken-ichi A. Denaturation of carp myosin B induced by inorganic pyrophosphate in the presence of netural salt. Nippon Suisan Gakkaishi. 1988b, 54(11): 2019-2027.
    [102] Hamm R.; Neraal R. On the enzymatic breakdown of tripolyphosphate and diphosphate in minced meat. VI. Influence of pH on the tripolyphosphatase and diphosphatase activities in bovine muscle. Z. Lebensm Unters Forsch. 1977c, 163(3): 213-215.
    [103] Hoof, J. Van. Break-down of diphosphate and tripolyphosphate in pork. Proceedings of the European Meeting of Meat Research Workers. 1975, 21: 35-37.
    [104] Neraal, R.; Hamm, R.Enzymic breakdown of tripolyphosphate and diphosphate in minced meat. XI. Influence of heating and freezing. Zeitschrift Fuer Lebensmittel- Untersuchung und - Forschung, 1977c, 164 (2):101-104.
    [105] Steinhauer, J. E. Food phosphates for use in the meat, poultry and seafood industry. Dairy and Food Sanitation. 1983, 3(7): 244–247.
    [106]薛勇,薛长湖,李兆杰,刘艺杰,王进勉海藻糖对冻藏过程中鳙肌原纤维蛋白冷冻变性的影响.中国水产科学.2006, 13: 637-641.
    [107] Yamamoto, T., Nozaki, S., Watabe, S. Frozen surimi. United States Patent Application Publication. US 2004/0191398 A1; 2004.
    [108]张有松变性淀粉生产与应用手册.中国轻工业出版社.1999.
    [109]邓丽,芮汉明变性淀粉对鸡肉糜品只影响的研究.食品工业科技. 2005, 3: 72-73, 75.
    [110]吴立根,王岸娜复合变性淀粉提高鸡胸肉保水率的研究.食品与机械. 2006, 22: 25-26, 30.
    [111] Shahidi, F.; Synowiecki, J.; Balejko, J. Proteolytic hydrolysis of muscle proteins of harp seal(Phoca groelandica). J. Agric. Food Chem. 1994, 42: 2634-2638.
    [112] Shahidi, F.; Synowiecki, J. Protein hydrolyzates from seal meat as phosphate alternatives in food processing applications. Food Chem. 1997, 60(1): 29-32.
    [113] Synowiecki, J.; Jagielka, R.; Shahidi, F. Preparation of hydrolyzates from bovine red blood cells and their debittering following plastein reaction. Food Chem. 1996, 57: 435-439.
    [114] Zhang, N.; Yamashita, Y.; Nozaki, Y. Effects of protein hydrolysate from the Antarctic Krill on the state of water and denature of lizardfish myofibrils during frozen storage. Food See and Technol Res. 2002, 8(3): 200-206.
    [115] Nozaki,Y.; Hara, K.; Hossain, M. et a1.Effect of enzymatic fish-scrap protein hydrolysate on gel-forming ability and denaturation of lizard fish (Saurida zoanieso) surimi during frozen storage.Fish. Sci. 2003, 69:1271-1 280.
    [116]Hossian, M.A.; Alikhan, M.A.; Ishihara, T. Effect of proteolytic squid protein hydrolysate on the state on the stage of water and denaturation of lizardfish myofibrillar protein during freezing. Innovative food science and emerging technologies. 2004, 5: 73-79.
    [117] Uresti, R.M.; Lopez-Arias, N.; Gonzalez-Czbriales, J.J.; Ramirez, J.A.; Vazquez, M. Use of amidated methoxyl pectin to produce fishrestructured products. Food Hydrocolloids. 2003, 17: 171-176.
    [118] Uresti, R.M.; Lopez-Arias, N.; Ramirez, J.A.; Vazquez, M. Effect of Amidated Low Methoxyl Pectin on the Mechanical Properties and Colour attributes of Fish Mince. Food Technol, Biotechnol. 2003, 41(2): 131-136.
    [119] Feng, J.; Xiong, Y. L. Interaction of myofibrillar and preheated soy proteins. J. Food Sci. 2002, 67 (8): 2851-2856.
    [120] Feng, J.; Xiong, Y. L.; Mikel, W.B. Textural properties of pork frankfurters containing thermally/enzymatically modified soy protein. J. Food Sci. 2003a, 68(3): 1220-1224.
    [121] Feng, J.; Xiong, Y. L. Interaction and functionality of mixed myofibrillar and enzyme-hydrolyzed soy proteins. J. Food Sci. 2003b, 68(3): 803-809.
    [122]纪明侯.海藻化学.北京:科学出版社.1997
    [123]刘斌,王长云,张洪荣,耿关玉,管华诗海藻多糖褐藻胶生物活性及其应用研究新进展.中国海洋药物杂志.2004,23: 36-41.
    [124] Thomas, A.; Harding, K.G.; Moore, K.Alginate from wound dressings activate human macrophages to secrete tumour necrosis factor-a.Biomaterials. 2000, 21 (1 ): 1797
    [125]王长云,管华诗多糖抗病毒作用研究进展I.多糖抗病毒作用.生物工程进展. 2000,20(1):l7
    [126]金骏,林美娇海藻利用与加工.北京:科学出版社.1993.
    [1]宁正祥食品成分分析手册.北京:中国轻工业出版社. 1998.
    [2]钱毅,赵国君食品分析法.上海:上海科学普及出版社. 1990.
    [3]中华人民共和国国标. GB/T9695.9—1988.
    [4] Matsunaga, A.; Yamamoto, A.; Mizukami, E.; Kawasaki, K.; Ooizumi, T. Determination of polyphosphates in foods by high performance liquid chromatography. Nippon Shokuhin Gakkaishi. 1990, 37 (1): 20-25.
    [5] Linares, P.; Luque de Castro, M.D.; Valcarcel, M. Determination of polyphosphates in intermediate materials for detergent manufacture by ion high-performance liquid chromatography with post-column derivatization. J.Chromatogr. A. 1991, 585: 267-271.
    [6] Hailliwell, D.J.; McKelvie, I.D.; Hart, B.T.; Dunhill, R.H. Analyst. 1996, 121: 1089.
    [7] Shamsi, S.A.; Danielson, N.D. Ion chromatography of polyphosphates and polycarboxylates using a naphthalenetrisulfonate eluent with indirect photometric and conductivity detection. J. Chromatogr. A. 1993, 653: 153-160.
    [8] Svoboda, L.; Schmidt, U.; Single-column ion chromatography of linear polyphosphates. J. Chromatogr. A. 1997, 767: 107-113.
    [9] Shamsi, S.A.; Danielson, N.D. Anal. Chem. 1995, 67: 1845.
    [10] Stover, F.S. Capillary eletrophoresis of longer-chain polyphosphates. J. Chromatogr. A. 1997, 769: 349-351.
    [11] Wang, T.; Li, S.F.Y. Separation of polyphosphates and polycarboxylates by capillary electrophoresis in a carrier electrolyte containing adenosine 5′-triphosphate and cetyltrimethylammonium bromide with indirect UV detection. J. Chromatogr.A. 1996, 723: 197-205.
    [12] Cui, H.; Cai, F.; Xu, Q. Determination of tripolyphosphate in frozen cod and scallop adductor by ion chromatography. J. Chromatogr. A. 2000, 884: 89–92.
    [13] Sekiguchi, Y.; Matsunaga, A.; Yamamoto, A.; Inoue, Y. Analysis of condensed phosphates in food products by ion chromatography with an on-line hydroxide eluent generator. J. Chromatogr. A. 2000, 881: 639–644.
    [14] Frederick, S. S.; Robert, V. B. Statistical quality control applied to ion chromatography calibrations. J. Chromatogr. A. 1998, 804: 37–43.
    [15] Kaufmann, A.; Maden, K.; Leisser, W.; Matera, M.; Gude, T. Analysis of polyphosphates in fish and shrimps tissues by two different ion chromatography methods: implications on false-negative and-positive findings. Food Additives & Contaminants. 2005, 22 (11): 1073-1082.
    [1] Park, J.W.; Lanier T.C. Combined effects of phosphates and sugar or polyol on protein stabilization of fish myofibrils. J. Food Sci. 1987, 52(6): 1509-1513.
    [2] Chang, C.C.; Regenstein, J.M. Water uptake, protein solubility, and protein changes of cod mince stored on ice as affect by polyphosphates. J. Food Sci. 1997, 62(2): 305-309.
    [3] Thorarinsdottir, K.A.; Arason, S.; Bogason, S.G.; Kristbergsson, K.. Effects of phosphate on yield,quality, and water-holding capacity in the processing of salted cod (Gadus morhua). J. Food Sci. 2001, 66(6): 821-826.
    [4] Offer,G.;Trinick,J. On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat Sci. 1983, 8: 245-281.
    [5] Yasui, T.; Fukazawa, T.; Takahashi, K.; Sakaishi, M.; Hashimoto, Y. Phosphate effects on meat: specific interaction of inorganic polyphosphates with myosin B. J. Agric. Food Chem. 1964, 12: 399-404.
    [6] Hamm, R.; Neraal, R. On the enzymatic breakdown of tripolyphosphate and diphosphate in comminuted meat. XII. Influence of the breakdown of tripolyphosphateand diphosphate on the water-holding capacity of meat. Z. Lebensm. Unters.-Forsch. 1977, 164: 243-246.
    [7] Neraal, R.; Hamm, R. On the enzymatic breakdown of tripolyphosphate and diphosphate in minced meat. XII. Influence of the breakdown of tripolyphosphate and diphosphate- on the water-holding capacity of meat. Z. Lebensm Untersuch Forsch. 1977,164: 243-246.
    [8] O`Neil, I.K.; Richards, C.P. Specific detection of polyphostate in frozen chicken by conbination of enzyme blocking and 31P-FTNMR spectroscopy. Chem Ind. 1978, 2: 65-67.
    [9] Douglas, M.; McDonld, M.P.; O’Neill, I.K.; Osner, R.C.; Richards, C.P. Tecnnical note: a study of the hydrolysis of polyphosphate additives in chicken flesh during frozen storage by 31P-FTNMR phosphorus isotope-Fourier transform nuclear magnetic resonance spectroscopy. J Food Technol. 1979, 14: 193-197.
    [10] Offer,G.; Trinick,J. On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat Sci.1983,8: 254-281.
    [11] Belton, P.S.; Paker, K.J.; Southon, T.E. ~(31)P NMR studies of the hydrolysis of added phosphates in chicken meat. J. Sci Food Agric. 1987, 40: 283-291.
    [12] Matsunaga, A.; Ooizumi, T.; Yamamoto, A.; Kawasaki, K; Mizukami, E. Degradation of polyphosphates during manufacturing process of surimi-based products. Nippon Suisan Gakkaishi. 1990, 56: 2077-2083.
    [13] Matsunaga, A.; Ooizumi, T.; Yamamoto, A.; Kawasaki, K.; Mizukami, E. Washing effect of minced fish muscle in water on degradation of polyphosphates durin manufacturing process of surimi-based products. Nippon Suisan Gakkaishi. 1992, 58: 79-83.
    [14] Li, R.R.; Kerr, W.L.; Toledo, R.T.; Teng, Q. ~(31)P NMR analysis of chicken breast meat vacuum tumbled with NaCl various phosphates. J. Sci. Food Agric. 2001, 81:576-582.
    [15] Sutton, A.H. The hydrolysis of triphosphate in cod and beef muscle. J. Food Tech. 1973, 8: 85-195.
    [16]钱毅,赵国君食品分析法.上海:上海科学普及出版社. 1990.
    [17] Matsunaga, A.; Yamamoto, A.; Mizukami, E.;Kawasaki, K. Ooizumi, T. Determination of polyphosphates in foods by high performance liquid chromatography. Nippon Shokuhin Gakkaishi.1990, 37(1): 20-25.
    [18] Linares, P.; Luque de Castro, M.D.; Valcarcel, M. Determination of polyphosphates in intermediate materials for detergent manufacture by ion high-performance liquid chromatography with post-column derivatization. J. Chromatogr. A. 1991, 585: 267-271.
    [19] Hailliwell, D.J.; McKelvie, I.D.; Hart, B.T.;. Dunhill, R.H Analyst. 1996, 121: 1089.
    [20] Sekiguchi, Y.; Matsunaga, A.; Yamamoto, A.; Inoue; Y. Analysis of condensed phosphates in food products by ion chromatography with an on-line hydroxide eluent generator. J. Chromatogr. A. 2000, 881: 639-644
    [21] Frederick, S. S.; Robert V. B. Statistical quality control applied to ion chromatography calibrations. J. Chromatogr. A. 1998, 804: 37-43
    [22] Sekiguchi, Y.; Matsunaga, A.; Yamamoto, A.; Inoue; Y. Analysis of condensed phosphates in food products by ion chromatography with an on-line hydroxide eluent generator. J. Chromatogr. A. 2000, 881: 639-644
    [23] Cui, H.; Cai, F.; Xu, Q. Determination of tripolyphosphate in frozen cod and scallop adductor by ion chromatography. J. Chromatogr. A. 2000, 884: 89-92.
    [24] Dafflon, O.; Scheurer, L.; Gobet, H.; Bosset, J. O. Polyphosphate determination in seafood and processed cheese using high-performance anion exchange chromatography after phosphatase inhibition using microwave heat shock. Mitteilungen aus Lebensmitteluntersuchung und Hygiene. 2003, 94 (2): 127-135.
    [25] Shiro, I.; Ken-ichi, A. Denaturation of actin in carp myosin B induced by polymerized phosphate in the presence of MgCl2. Nippon Suisan Gakkaishi. 1988a,54 (11): 2009-2017.
    [26] Shiro, I.; Ken-ichi, A. Denaturation of carp myosin B induced by inorganic pyrophosphate in the presence of netural salt. Nippon Suisan Gakkaishi. 1988b, 54(11): 2019-2027.
    [27] Katoh, N.; Nozaki, H.; Komatsu, K.; Arai, K. A new method for evaluation ofthe quality of frozen surimi from Alaska Pollack: Relationship between myofibrillar ATPase activity and Kamaboko forming ability of frozen surimi. Nippon Suisan Gakkaishi. 1979, 45: 1027-1032.
    [28] Noboru, K.; Hitoshi, U.; Shiro, T.; Keni-chi, A. A biochemisty study on fish myofibrillar ATPase. Bulletin of the Japanese Society of Scientific Fesheries. 1977, 43(7): 857-867.
    [29] Toshinori, I.; Ikou, K.; Ken-ichi, A. Preparation and biochemistry propertie of subfragment-1 from dorsal muscle of carp cyprinus carpio. Bulletin of the Japanese Society of Scientific Fesheries. 1981, 47(7): 947-955.
    [30] C.H. Fiske, Y. Subbarow, J. Biol. Chem. 1925,66: 375.
    [31] Arai, K.; Sakana no hinshitsu (Quality of fish), Koseisha, Tokyo, Japan, 1974.
    [32] Satomi, K.; Kaori, N.; Kunihiko, K. Development of myofibrillar ATPase assay system on pH stat. Fish Sci. 2005, 71: 380-387.
    [33]新井健一.魚類筋肉クソペク質の特性の測定,水産生物化學?食品學試驗書.恒星社厚生版, 1974. 189-202.
    [34]万建荣,洪玉菁,奚印慈,等.水产食品化学分析手册.上海:上海科技出版社,1993.154-157.
    [35] Gornall, A. G.; Bardawill, C. J.; David, M. M. Determination of serum protein by means of the biuret reaction. J. Biol. Chem. 1949, 177: 751-766.
    [1] Yasui, T.; Fukazawa, T.; Takahashi, K.; Sakaishi, M.; Hashimoto, Y. Phosphate effects on meat: specific interaction of inorganic polyphosphates with myosin B. J. Agric. Food Chem. 1964, 12: 399-404.
    [2] Trout, G. R.;Schimdt, G. R. Effect of phosphates on the functional properties of restructured beef rolls: the role of pH, ionic strength, and phosphate type. J. Food Sci. 1986, 51: 1416-1423.
    [3] Lee, S.; Stevenson-Barry, J.M.; Kauffman, R.G.; Kim-B.C. Effect of ion fluid injection on beef tenderness in association with calpain activity. Meat Sci. 2000, 56 (3): 301-310.
    [4] Shiro, I.; Ken-ichi, A. Denaturation of actin in carp myosin B induced by polymerized phosphate in the presence of MgCl_2. Nippon Suisan Gakkaishi. 1988, 54(11): 2009-2017.
    [5] Shiro, I.; Ken-ichi, A. Denaturation of carp myosin B induced by inorganic pyrophosphate in the presence of netural salt. Nippon Suisan Gakkaishi. 1988, 54(11): 2019-2027.
    [6] Matsukawa, M.; Sato, R.; Kimura, S.; Arai, K. Interacting mechanism of sodium pyrophosphate with gel forming ability of NaCl-ground meat from walleye pollack. Nippon-Suisan-Gakkaishi. 1998, 64(6): 1034-1045.
    [7] Xiong, Y.L.; Lou, X.Q.; Harmon, R.J.; Wang, C.H.; Moody, W.G. Salt- and pyrophosphate-induced structural changes in myofibrils from chicken red and white muscles. J. Sci. Food. Agric. 2000, 80(8): 1176-1182.
    [8] Offer, G.; Trinick, J. On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat Sci. 1983, 8: 245-281.
    [9] Salahuddin, M; Kondaiah, N. ; Anjaneyulu, ASR.; Panda, B.; Bisht, G.S. Effect of phosphate on the quality of chicken kebabs. Indian J.Poultry Sci. 1991, 26(1): 39-43.
    [10] Hoof, J. V. Break-down of diphosphate and tripolyphosphate in pork. Proceedings of the European Meeting of Meat Research Workers. 1975, 21: 35-37.
    [11] Hamm, R.; Neraal, R. On the enzymatic breakdown of tripolyphosphate and diphosphate in comminuted meat XII. Influence of the breakdown of tripolyphosphate and diphosphate on the water-holding capacity of meat. Z. Lebensm. Unters.-Forsch.1977a, 164: 243-246.
    [12] Matsunaga, A.; Ooizumi, T.; Yamamoto, A.; Kawasaki, K.; Mizukami, E. Degradation of polyphosphates during manufacture of surimi-based products. Bulletin of the Japanese Society of Scientific Fisheries. 1990, 56(12): 2077-2082.
    [13] Kornberg, A. On the metabolic significance of phosphorolytic and pyrophosphorolytic reactions in“Horizons inBiochemistry”(Kasha, H., and Pullman, B., Eds.), New York: Academic Press, 1962. 342–395
    [14] Chen, J.; Brevet, A.; Formant, M.; Leveque, F.; Schmitter, J.M.; Blanquet, S.; Plateau, P. Pyrophophatase is essential to the growth of Escherichia coli. J.Bacteriol. 1990, 172: 5686-5689.
    [15] Lundin, M.; Baltscheffshy, H.; Ronne, H. Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function. J. Biol. Chem. 1991, 266: 12168-12172.
    [16] Sivula, T.; Salminen, A.; Parfenyev, A. N.; Pohjanjoki, P.; Goldman,A.; Cooperman, B. S.; Baykov, A. A.; Lahti, R. Evolutionary aspects of inorganic pyrophosphatase. FEBS Lett. 1999, 454: 75–80.
    [17] Morita J.; Yasui T. Purification and some properties of a neutral muscle pyrophosphatase. J.Biochem. 1978, 83: 719-726.
    [18] Smirova, I.N.; Baykov, A.A. Inorganic pyrophosphatase of rat liver cytosol: isolation and properties. Biokhmiya. 1989, 54: 228-234.
    [19] Richter, O. M.H.; Schafer, G. Purification and enzyme characterization of the cytoplasmic pyrophophatase from the thermophilic archaebacterium Thermoplasma acidophihum. Eur.J.Biochem. 1992, 209: 343-349
    [20] Verhoeven, J.A.; Schenek, K.M.; Meyer, R.R.; Trela, J.M. Purification and characterization of an inorganic pyrophosphatase from the extreme thermophile Thermus aquaticus. J.Bacteriol. 1986, 168: 318-321.
    [21] Shimizu, T.; Imai, M.; Araki, S.; Kishida, K.; Terasawa, Y.; Hachimori, A. Some properties of inorganic pyrophosphatase form Bacillus subtilis. Int. J. Biochem. Cell Biol. 1997, 29(2): 303-310.
    [22] Hamm, R.; Neraal, R. Enzymic breakdown of tripolyphosphate and diphosphate inminced meat. I. The determination of triphosphatase and diphosphatase activities in tissue. Z. Lebensm. Unters.-Forsch. 1977b, 163(1): 14-17.
    [23] O`Neil, I.K; Richards, C.P. Specific detection of polyphostate in frozen chicken by conbination of enzyme blocking and 31P-FTNMR spectroscopy. Chem Ind. 1978, 2: 65-67.
    [24] Douglass, M.; McDonld, M.P.; O’Neill, I.K.; Osner, R.C.; Richards, C.P. Tecnnical note: a study of the hydrolysis of polyphosphate additives in chicken flesh during frozen storage by 31P-FTNMR phosphorus isotope-Fourier transform nuclear magnetic resonance spectroscopy. J Food Technol. 1979, 14: 193-197.
    [25] Belton P.S.; Paker K.J.; Southon T.E. ~(31)P NMR studies of the hydrolysis of added phosphates in chicken meat. J. Sci. Food Agric. 1987, 40: 283-291.
    [26] Li, R.R.; Kerr, W.L.; Toledo, R.T.; Teng, Q. ~(31)P NMR analysis of chicken breast meat vacuum tumbled with NaCl various phosphates. J. Sci. Food Agri. 2001, 81:576-582.
    [27] Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum protein by means of the biuret reaction. J Biol. Chem. 1949, 177: 751-766.
    [28] Matsunaga, A.; Ooizumi, T.; Yamamoto, A.; Kawasaki, K.; Mizukami, E. Washing effect of minced fish muscle in water on degradation of polyphosphates durin manufacturing process of surimi-based products. Nippon Suisan Gakkaishi. 1992, 58: 79-83.
    [29] Drozdowicz, Y.M.; Lu, Y.P.; Patel, V.; Fritz-Gibbon, S.; Miller,J.H.; Rea, P.A. A thermostable vacuolar-type membranepyrophosphatase from the archaeon Pyrobaculum aerophilum:Implications for the origins of pyrophosphate-energized pumps. FEBS Lett. 1999, 460: 505–512.
    [30] Nyre′n, P.; Nore, B.F.; Strid, ?. Proton-pumping N,N’- dicyclohexylcarbodiimide sensitive inorganic pyrophosphate synthase from Rhodospirillum rubrum: Purification, characterization, and reconstitution. Biochem. 1991, 30: 2883–2887.
    [31] Nakamura, S.; Yamaguchi, M.; Morita, J.; Yasui, T. Muscle pyrophosphatase. J. Agric. Food Chem.1969, 17(3): 633-638.
    [32] Fiske, C.H.; Subbarow, Y. J. Biol. Chem. 1925, 66: 375.
    [33] Arai, K. Sakana no hinshitsu (Quality of fish), Koseisha, Tokyo, Japan, 1974.
    [34] Stoscheck, C. M. Quantitation of Protein. Methods in Enzimology. 1990, 182: 50-69.
    [35] Alastair, A.; Michale, L. Protein Determination by UV Absorption - Protein Protocols in CD Rom - Humana Press. 1998.
    [36]汪家政范明蛋白质技术手册.北京:科学出版社. 111-120.
    [37] Laemmli, U. K. Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature. 1970, 227: 680-685.
    [38] Kornberg, A. On the metabolic significance of phosphorolytic and pyrophosphorolytic reactions in“Horizons inBiochemistry”(Kasha, H., and Pullman, B., Eds.), New York: Academic Press, 1962. 251-264.
    [39] Ackers, G.K. Analytical gel chromatography of proteins. Adv. Protein Chem. 1970, 24: 343-446.
    [40] Hyper.exe, version 1.1, Copyright J.S. Easterby, 1996.
    [41] Hiraishi, H.; Ohmagari, T.; Otsuka, Y.; Yokoi, F.; Kumon, A. Purification and Characterization of Hepatic Inorganic Pyrophosphatase Hydrolyzing Imidodiphosphate. Arch.Biochem.Biophy. 1997, 341(1): 153–159.
    [42] Hamm R, Neraal R. On the enzymatic breakdown of tripolyphosphate and diphosphate in comminuted meat. XI. Influence of heating and freezing. Z Lebensm Unters Forsch. 1977, 164(2): 101-104.
    [43]罗贵民.酶工程.北京:化学工业出版社. 2002
    [44] Reddy, B. R. Hydrolytic and enzymatic breakdown of food grade condensed phosphates in white shrimp (Penaeus setiferus). Dissertation Abstracts International B. 1987, 47: 4716.
    [45] Vyncke, W. Detection of polyphosphates in fish products by TLC. Revue de l'Agriculture. 1986, 39 : 177-183.
    [46] Hamm, R.; Neraal, R. On the enzymatic breakdown of tripolyphosphate and diphosphate in minced meat. VI. Influence of pH on the tripolyphosphatase and diphosphatase activities in bovine muscle (author's transl). Z Lebensm Unters Forsch.1977a, 163: 213-215.
    [47] Shimizu, T.; Imai, M.; Araki, S.; Kishida, K.; Terasawa, Y.; Hachimori, A. Some properties of inorganic pyrophosphatase from Bacillus subtilis. Int.J.Biochem. Cell Biol.1997, 29(2): 303-310.
    [48] Kuhn, N. J.;Ward, S. Purification, properties, and multiple forms of a manganese-activated inorganic pyrophospha tase from Bacillus subtilis. Arch. Biochem. Biophys. 1998, 354: 47–56.
    [49] Wheeler, K. P.; Whittam, R. Some properties of a kidney adenosine triphosphatase relevant to active action transport. Biochemical J. 1962, 85: 495-507.
    [50] Ciancaglini, P.; Pizauro, J.M.; Curti, C.; Tedesco, A.C.; Leone, F.A. Effect of membrane moiety and magnesium ions on the inhibition of matrix-induced alkaline phosphatase by zinc ions. Int. J.Biochem. 1990, 22: 747-751.
    [51] Francisco, A.L.; Luciana, A.R.; Pietro, C.; Joao, M.P. Allosteric modulation of pyrophosphatase activity of rat osseous plate alkaline phosphatase by magnesium ions. Int.J.Biochem. Cell Biol. 1998, 30: 89-97.
    [52] Neraal,R.;Hamm, R. On the enzymatic breakdown of tripolyphosphate and diphosphate in comminuted meat. IX. Influence of bivalent cations on the diphosphatase activity of muscle tissue. Z Lebensm Unters Forsch. 1977b, 164(3): 180-182.
    [1] Chang, C.C.; Regenstein, J.M.. Water uptake, protein solubility, and protein changes of cod mince stored on ice as affect by polyphosphates. J. Food Sci. 1997, 62(2): 305-309.
    [2] Park, J.W.; Lanier, T.C. Combined effects of phosphates and sugar or polyol on protein stabilization of fish myofibrils. J. Food Sci. 1987, 52(6): 1509-1513.
    [3] Kim, S. K.; Kim, I.H. Effect of tetrasodium polyphosphate peroxidate on quality of kalguksoo. Korean J. Food Sci. Technol. 1998, 30(5): 1064-1069.
    [4] Thorarinsdottir K.A.; Arason S.; Bogason S.G.; Kristbergsson K.. Effects of phosphate on yield,quality, and water-holding capacity in the processing of salted cod (Gadus morhua). J. Food Sci. 2001, 66(6): 821-826.
    [5] Weilmeier, D. M.; Regenstein, J. M. Cooking enhances the antioxidant properties of polyphosphates. J. Food Sci. 2004, 69(1): 16-23.
    [6] Offer,G.; Trinick,J. On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat Science. 1983, 8: 245-281.
    [7] Yasui, T.; Fukazawa, T.; Takahashi, K.; Sakaishi, M.; Hashimoto, Y. Phosphate effects on meat: specific interaction of inorganic polyphosphates with myosin B. J. Agric. Food Chem. 1964, 12: 399-404.
    [8] Hamm, R.; Neraal, R. On the enzymatic breakdown of tripolyphosphate anddiphosphate in comminuted meat XII. Influence of the breakdown of tripolyphosphate and diphosphate on the water-holding capacity of meat. Z. Lebensm. Unters.-Forsch. 1977,164: 243-246.
    [9] Hamm, R.; Neraal, R. Enzymic breakdown of tripolyphosphate and diphosphate in minced meat. I. The determination of triphosphatase and diphosphatase activities in tissue. Z. Lebensm. Unters.-Forsch. 1977a, 163(1): 14-17.
    [10] O`Neil, I.K; Richards, C.P. Specific detection of polyphostate in frozen chicken by conbination of enzyme blocking and 31P-FTNMR spectroscopy. Chem Ind. 1978, 2: 65-67.
    [11] Douglass, M.; McDonld, M.P.; O’Neill, I.K.; Osner, R.C.; Richards, C.P. Tecnnical note: a study of the hydrolysis of polyphosphate additives in chicken flesh during frozen storage by 31P-FTNMR phosphorus isotope-Fourier transform nuclear magnetic resonance spectroscopy. J Food Technol. 1979, 14: 193-197.
    [12] Offer, G.; Trinick, J. On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat Sci. 1983, 8: 254-281.
    [13] Belton, P.S.; Paker, K.J.; Southon, T.E. ~(31)P NMR studies of the hydrolysis of added phosphates in chicken meat. J. Sci. Food Agric. 1987, 40: 283-291.
    [14] Li, R.R.; Kerr, W.L.; Toledo, R.T.; Teng, Q. ~(31)P NMR analysis of chicken breast meat vacuum tumbled with NaCl various phosphates. J. Sci. Food Agri. 2001, 81:576-582.
    [15] Reddy, B. R. Hydrolytic and enzymatic breakdown of food grade condensed phosphates in white shrimp (Penaeus setiferus). Dissertation Abstracts International, B. 1988, 47(12): 4716.
    [16]新井健一.魚類筋肉クソペク質の特性の測定,水産生物化學?食品學試驗書.恒星社厚生版, 1974.pp,189-202.
    [17]Toshinori, I.; Ikou, K.; Ken-ichi, A. Preparation and biochemistry propertie of subfragment-1 from dorsal muscle of carp cyprinus carpio. Bulletin of the Japanese Society of Scientific Fesheries. 1981, 47(7): 947-955.
    [18] Kunihibo K.; Sanae K.; Masayasu E. Rapid method for isolation of myosin subfragment-1 from carp myofibrils. Nippon Suisan Gakkaishi. 1990, 56: 1885-1890.
    [19] Noboru, K.; Hitoshi, U.; Shiro, T.; Keni-chi, A. A biochemisty study on fish myofibrillar ATPase. Bulletin of the Japanese Society of Scientific Fesheries. 1977, 43(7): 857-867.
    [20] Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum protein by means of the biuret reaction. J Biol. Chem. 1949, 177: 751-766.
    [21] Alastair, A.; Michale, L. Protein Determination by UV Absorption - Protein Protocols in CD Rom - Humana Press. 1998.
    [22] Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. American Chem. Soc. 1934, 56: 665–666.
    [23] Laemmli, U. K. Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature. 1970, 227: 680-685.
    [24] Matsunaga, A.; Ooizumi, T.; Yamamoto, A.; Kawasaki, K.; Mizukami, E. Washing effect of minced fish muscle in water on degradation of polyphosphates durin manufacturing process of surimi-based products. Nippon Suisan Gakkaishi. 1992, 58: 79-83.
    [25]桥本昭彦.各種魚類の筋原纖維 Ca-ATPaseの变性速度に及ほすpHと温度影響[J].水産學會誌, 1985,51(1):99-105.
    [26] Matsunaga, A.; Ooizumi, T.; Yamamoto, A.; Kawasaki, K.; Mizukami, E. Degradation of polyphosphates during manufacture of surimi-based products. Bulletin of the Japanese Society of Scientific Fisheries. 1990, 56(12): 2077-2082.
    [27] Hamm R.; Neraal R. On the enzymatic breakdown of tripolyphosphate and diphosphate in minced meat. VI. Influence of pH on the tripolyphosphatase and diphosphatase activities in bovine muscle. Z. Lebensm Unters Forsch. 1977b, 163(3): 213-215.
    [28] Shiro, I.; Ken-ichi, A. Denaturation of actin in carp myosin B induced by polymerized phosphate in the presence of MgCl_2. Nippon Suisan Gakkaishi. 1988, 54(11): 2009-2017.
    [29] Hoof, J. Van. Break-down of diphosphate and tripolyphosphate in pork. Proceedings of the European Meeting of Meat Research Workers. 1975, 21: 35-37.
    [30] Neraal R.; Hamm R. On the enzymatic breakdown of tripolyphosphate anddiphosphate in comminuted meat. XI. Influence of heating and freezing. Z Lebensm Unters Forsch. 1977a, 164(2): 101-104.
    [31] Neraal R.; Hamm R. Enzymatic breakdown of added tripolyphosphate and diphosphate in meat. Proc.19th Europ Meat Res Workers Meeting, Pairs, 1973, IV, 1419-1427.
    [32] Shiro I.; Ken-ichi, A. Denaturation of carp myosin B induced by inorganic pyrophosphate in the presence of netural salt. Nippon Suisan Gakkaishi. 1988, 54(11): 2019-2027.
    [33] Neraal R.; Hamm R. On the enzymatic breakdown of tripolyphosphate and diphosphate in comminuted meat. VIII. Influence of divalent cations on the tripolyphosphatase activity of muscle tissue. Z Lebensm Unters Forsch. 1977b, 164(1): 38-40.
    [1] Nemethy, G.; Scheraga, H. A. Structure of water and hydrophobic bonding in protein-I. J. Chem. Physics. 1962a, 36: 3382–3399.
    [2] Nemethy, G.; Scheraga, H. A. The structure of water and hydrophobic bonding in protein-II. J. Chem Physics. 1962b, 36: 3401–3417.
    [3] Offer, G.; Trinick, J. On the mechanism of water holding in meat; the swelling and shrinking of myofibrils. Meat Sci.1983, 8: 245-281.
    [4] Hamm, R. Functional properties of the myofibrillar system and their measurements. In P.J. Bechtel (Ed.), Muscle as food. San Diego, CA: Academic Press Inc. 1986, pp 135-199.
    [5] Bertram, H.C.; Purslow, P.P.; Andersen, H.J. Relationship between meat structure, water mobility, and distribution: a low-field nuclear magnetic resonance study. J. Agric. Food Chem. 2002, 50: 824-829.
    [6] Andersen, C. M.; Jogensen, B. M. On the relation between water pools and water holding capacity in cod muscle. J. Aquat Food Product Technol. 2004,13(1):13–23.
    [7] Noguchi, S. Binding water and free water. Food and science of water, Tokyo: Saiwai Shyobo. 1992, pp 227-263.
    [8] Schnepf, M.I. Protein-water interaction In Biochemistry of Food Proteins, ed. Hudson, B.J.F. London: Elsevier Science.1992, pp 1-33.
    [9] Ofstad, R. Microstructure and liquid-holding capacity in Cod (Gadus morhua) and Salmon (Salmo salar) muscle; effects of heating. Dr. Scient University of Troms, Institute of Medical Biology. 1995.
    [10] Ofstad, R.; Kidman, S.; Myklebust, R.; Hermansson, A. M. Liquid holding capacity and structural-changes during heating of fish muscle– Cod (Gadus morhua) and Salmon (Salmo salar). Food Structure. 1993, 12(2): 163–174.
    [11] Schubring, R. Changes in texture, water holding capacity, colour and thermal stability of frozen cod (Gadus morhua) fillets: Effect of frozen storage temperature. Deutsche Lebensmittel-Rundschau. 2005, 101(11): 484–493.
    [12] Parsons, N.; Knight, P. Origin of variable extraction of myosin from myofibrils treated with salt and pyrophosphate. J. Sci. Food Agric. 1990, 51: 71–90.
    [13] Xiong, Y.L.; Lou, X.; Harmon, R. J.; Wang, C.; Moody, W. G. Salt- and pyrophosphate induced structural changes in myofibrils from chicken red and white muscle. J. Sci. Food Agric. 1999, 80: 1176–1182.
    [14] Xiong, Y. L. Role of myofibrillar proteins in water-binding in brine-enchanced meats. Food Research International. 2005, 38: 281-287.
    [15] Hanson, J.; Huxley, H.E. The structure basis of contraction in striated muscle. Symp. Soc. Exp. Biol. 1955, 9: 228-264.
    [16] Ishiwata, S. Melting from both ends of an A-band in a myofibril. Observation with a phase-contrast microscope. J. Biochem. 1981, 89: 1647–1650.
    [17] Wilding,P.; Hedges, N.; Lillford, P. Salt-induced swelling of meat: The effectof storage time, pH, ion-type, and concentration. Meat Sci. 1986, 18(1): 55-75.
    [18] Patterson, B.C.; Parrish, P.C.; Jr.; Stromer, M.H. Effect of salt and pyrophosphate on the pysical and chemical properties of beef muscle. J.Food Sci. 1988, 53: 1258-1265.
    [19] Hellendorn, E. W. Water-binding capacity of meat as affected by phosphates. I. Infuence of sodium chloride and phosphates on the water retention of comminuted meat at various pH values. Food Technol. 1962, 16: 119–124.
    [20] Brotsky, E.; Everson, C. W. Polyphosphate use in meat and other muscle foods. [Conference Proceedings]. Proceedings of the Meat Industry Research Conference. 1973.
    [21] Keeton, J. T. Effects of fat and NaCl/phosphate levels on the chemical and sensory properties of pork patties. J.Food Sci. 1983, 48: 878–881, 885.
    [22] Lu, X.W. The impact of polyphosphates on the water retention of fresh fillets and frozen cod minces. Dissertation Abstracts International, B. 1996, 56 (8): 4078-4079.
    [23] Xiong, Y. L.; Lou, X., Wang, C.; Moody, W. G.; Harmon, R. J. Protein extraction from chicken myofibrils irrigated with various polyphosphate and NaCl solutions. J. Food Sci. 2000, 65: 96-100.
    [24] Peter, W.; Nicholas, H.; Peter J. L. Salt-induced swelling of meat: The effect of storage time, pH, ion-type and concentration. Meat Sci. 1986, 18(1): 55-75.
    [25] Wang, S.F., Smith, D.M. Heat-induced denaturation and rheological properties of chicken breast myosin and F-actin in the presence and absence of pyrophosphate. J. Agric. Food. Chem. 1994, 42: 2665-2679.
    [26] Hermansson, A.M.; Harbitz, O.;Langton, M. Formation of two types of gels from bovine myosine. J.Sci.Food Agric. 1986, 37: 69-84.
    [27] Nauss, K.M.; Kitagawa, S.; Gergely, J. Pyrophosphate binding to and adenosine triphosphatase activity of myosin and its proteolytic fragments. J. Biol. Chem. 1969, 244(3): 755-765.
    [28] Granicher, D.; Portzehl, H. The influence of magnesium and calcium pyrophosphate chelates, of free magnesium ions, free calcium ions, and freepyrophosphate ions on the dissociation of actomyosin in solution. Bioch. Biophy. Acta. 1964, 86: 567–578.
    [29] Rhee, M.S.; Lee,J.S.; Koh, K.C.; Kim, Y.K.; Kim, B.C. Functionality of extracted proteins by additives and ionic strength. Korean J.Food Sci.Technol. 1998, 30 (1): 69-76.
    [30] Torley, P. J.; Young, O. A. Rheological changes during isothermal holding of salted beef homogenates. Meat Sci. 1995, 39: 23–34.
    [31] Muhlrad, A.; Peyser, Y. M.; Ringel, I. Effect of actin, ATP, phosphates, and pH on vanadate-induced photocleavage of myosin subfragment 1. Biochemistry. 1991, 30: 958–965.
    [32] Xiong, Y.L.; Kupski, D.R. Monitoring phosphate marinade penetration in tumbled chicken filets using a thin-slicing, dye-tracing method. Poult. Sci. 1999, 78: 1048-1052.
    [1] Sutton, A.H.; Ogilvie, J.M. Uptake of sodium and phosphorus, and weight changes in prerigor cos muscle dipped in sodium tripolyphosphate solutions. J. Fish Res. Bd. Canada. 1967, 25(7): 1475-1484.
    [2] Park, J.W.; Lanier T.C. Combined effects of phosphates and sugar or polyol on protein stabilization of fish myofibrils. J. Food Sci. 1987, 52(6): 1509-1513.
    [3] C.C.Chang; J.M. Regenstein. Water uptake, protein solubility, and protein changes of cod mince stored on ice as affect by polyphosphates. J. Food Sci. 1997, 62(2): 305-309.
    [4] Thorarinsdottir; K.A.; Arason, S.; G.Bogason, S.; Kristbergsson, K. Effects of phosphate on yield,quality, and water-holding capacity in the processing of salted cod (Gadus morhua). J. Food Sci. 2001, 66(6): 821-826.
    [5] Seman, D. L.; Olson, D. G.; Mandigo, R. W. Effect of reduction and partial replacement of sodium on bologna characteristics and acceptability. J.Food Sci. 1980, 45: 1116-1121.
    [6] Phillips, R. D.; Beuchat, L. R. Enzyme modification of proteins. In Protein Functionality in Foods, ed. J. P. Cherry. American Chemical Society Symposium Series 147. ACS. Washington, DC. 1981: 275-298.
    [7] Shahidi, F.; Synowiecki, J.; Balejko, J. Proteolytic hydrolysis of muscle proteins of harp seal (Phoca groelandica). J. Agric. Food Chem. 1994, 42: 2634-2638.
    [8] Shahidi, F.; Synowiechi, J. Protein hydrolyzates from seal meat as phosphate alternatives in food processing applications. Food Chem. 1997, 60(1): 29-32
    [9] McCord, A.; Smyth, A.B.; O’Niell EE. Heat-induced gelation properties of salt-soluble muscle proteins as affected by non-meat protein. J. Food Sci. 1998, 63: 580-580.
    [10] Feng, J.; Xiong, Y. L. Interaction of myofibrillar and preheated soy proteins. J. Food Sci. 2002, 67(8): 2851-2856.
    [11] Feng, J.; Xiong, Y. L. Interaction and functionality of mixed myofibrillar and enzyme-hydrolyzed soy proteins. J. Food Sci. 2003a, 68(3): 803-809.
    [12] Feng, J.; Xiong, Y. L.; Mikel, W.B. Textural properties of pork frankfurters containing thermally/enzymatically modified soy protein. J. Food Sci. 2003b, 68(3): 1220-1224.
    [13]刘艺杰,薛长湖,薛勇,李兆杰,高昕,许家超鱼排酶解物对鳙鱼鱼糜冻藏过程中蛋白质变性的影响.中国水产科学.2005,12(5):632-636
    [14]吴立根;王岸娜.复合变性淀粉提高鸡胸肉保水率的研究.食品与机械. 2006, 22: 25-26, 30.
    [15]张有松.变性淀粉生产与应用手册.中国轻工业出版社.1999.
    [16] Uresti, R.M.; Lopez-Arias, N.; Gonzalez-Czbriales, J.J.; Ramirez, J.A.; Vazquez, M. Use of amidated methoxyl pectin to produce fish restructured products. Food Hydrocolloids. 2003, 17: 171-176.
    [17] Yamamoto, T.; Nozaki, S.; Watabe, S. Frozen surimi. United States Patent Application Publication. US 2004/0191398 A1; 2004.
    [18]薛勇,薛长湖,李兆杰,刘艺杰,王进勉海藻糖对冻藏过程中鳙肌原纤维蛋白冷冻变性的影响.中国水产科学.2006, 13: 637-641.
    [19] Egbert, W.R.; Huffman, D.L.; Chen, C.M.; Dylewski, D.P. Development of low-fat ground beef. Food Technol. 1991, 45(6): 64-73.
    [20] Ustunol, Z.; Xiong,Y.L.; Means, W.J.; Decker, E.A. Forces involved in mixed pork myofibrillar protein and calcium alginate gels. J. Agric. FoodChem. 1992,40:577-580.
    [21] Xiong, Y.L.; Blanchard, S.P. Viscoelastic properties of myofibrillar protein-polysaccharide composite gels. J.Food Sci.1993, 58 (1): 164-167.
    [22]纪明侯.海藻化学.北京:科学出版社.1997 [23欧昌荣.褐藻胶寡糖的制备、分析及其生理活性研究.博士论文.中国海洋大学.2003
    [24]葛长荣,马美湖.肉与肉制品工艺学.北京:轻工业出版社. 1997
    [25] Schnepf,M.L.(1992) Protein water interactions. In Biochemistry of Food Proteins, ed. Hudson, B.J.F. London: Elsevier Science, pp1-33
    [26] Shahidi, F.; Synowiechi, J. Protein hydrolyzates from seal meat as phosphate alternatives in food processing applications.Food Chem. 1997, 60(1): 29-32. [27 Santos, E.E.M.; Regenstein, J.M. Effect of vacuum packaging, glazing and erythorbic acid on the shelf-life of frozen white hake and mackerel. J.Food Sci. 1990, 55(1): 64-70.
    [28] Turan, H.; Kaya, Y.; Erkoyuncu, I. Effects of glazing, packaging and Mu, D. M., Huang, Y. W., Gates, K. W. Use of edible film and phosphate to improve the quality of frozen breaded shrimp. IFT annual meeting: book of abstracts, 1996.
    [29] Knipe, C.L.; Rust. R.E.; Olson, D.G. Some physical parameters involved in the addition of inorganic phosphates to reduced-sodium meat emulsions. J. Food Sci. 1990, 55(1): 23-25.
    [30] Thorarinsdottir, K.A.; Arason, S.; S.G.Bogason; Kristbergsson, K. Effects of phosphate on yield,quality, and water-holding capacity in the processing of salted cod (Gadus morhua). J. Food Sci. 2001, 66(6), 821-826.
    [31] Hoda, I.; Ahmad, S.; Srivastava, P. K. Effect of microwave oven processing, hot air oven cooking, curing and polyphosphate treatment on physico-chemical, sensory and textural characteristics of buffalo meat products. J. Food Sci. Tech. 2002,39 (3): 240-245.
    [32]李里特.食品物性学.北京,中国农业出版社,1998
    [33] Soottawat, B.;Wonnop, V.; Chutima, T. Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage. FoodResearch International. 2003, 36:787-795
    [34] Foegeding, E.A.; Ramsey, S.R. Rheological and water-holding properties of gelled meat batters containing iota carrageenan, kappa carrageenan or xanhan gum. J. Food Sci. 1987, 52: 549-553.
    [35] Kageyama, K.; Watanabe, Y. Manual of Histologic Techniques. Igaku syion Lte., Toky,1988: 92-95.
    [36] Zheng, M.; Detienne, N.A.; Barnes, B.W.; Wicker,L. Tenderness and yields of poultry breast are influenced by phosphate type and concentration of marinade. J. Sci. Food Agric. 2001, 81(1): 82-87.
    [37] Xiong, Y.L.; Kupski, D.R. Time-dependent marinade absorption and retention, cooking yield, and palatability of chicken filets marinated in various phosphate solutions. Poultry Sci. 1999, 78 (7): 1053-1059.
    [38] Zheng, M.; Toledo, R.; Wicker, L. Effect of phosphate and pectin on quality and shelf-life of marinated chicken breast. J. Food Quality. 1999, 22 (5): 553-564
    [39] Matulis, R.J.; Mckeith, F.K.; Sutherland, J.W.; Brewer, M.S. Sensory characteristics of frankfurters as affected by salt, fat, soy protein, and carrageenan. J. Food Sci. 1995, 60: 48-54.
    [40] McCord, A.; Smyth, A.B.; O’Neil, E.E. Heat-induced gelation properties of salt-soluble muscle proteins as affected by non-meat protein. J. Food Sci. 1998, 63: 580-583.
    [41] Kato, A.; Sasaki, Y.; Furuta, R.; Kobayashi, K. Functional protein-polysaccharide conjugate prepared by controlled dry-heating of ovalbumin-dextran mixtures. Agric.Biol.Chem. 1990, 54: 107-112.
    [42] Kato, A.; Shimokawa, K.; Kobayashi, K. Improvement on the functional properties of insoluble gluten by Pronase digestion followed by dextran conjugation. J. Agric. Food Chem. 1991, 39: 1053-1056.
    [43] Sato, R.; Sawabe, T.; Kishimura, H.; Hayashi, K.; Saeki, H. Preparation of neoglycoprotein from carp myofibrillar protein and alginate oligosaccharide: improve solubility in low ionic strength medium. J. Agric. Food Chem. 2000, 48: 17-21.
    [44] Yamashitaa, Y.; Zhang a, N.; Nozakib, Y. Effect of chitin hydrolysate on the denaturation of lizardfish myofibrillar protein and the state of water during frozen storage. Food Hydrocolloids. 2003, 17: 569-576.
    [45] Nauss, K.M.; Kitagawa, S.; Gergely, J. Pyrophosphate binding to and adenosine triphosphatase activity of myosin and its proteolytic fragments. J. Biol. Chem. 1969, 244(3): 755-765.
    [46] Granicher, D.; Portzehl, H. The influence of magnesium and calcium pyrophosphate chelates, of free magnesium ions, free calcium ions, and free pyrophosphate ions on the dissociation of actomyosin in solution. Biochimica. Biophysica Acta. 1964, 86: 567–578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700