用户名: 密码: 验证码:
基于稀疏贝叶斯学习方法的回归与分类在电力系统中的预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预测技术是一门复杂的交叉学科,它已经涉及到社会的各个领域,而在电力系统领域中,预测也起着至关重要的作用。不仅仅是电力负荷需要预测,电价、电压充裕性、功角曲线变化、谐波分析、稳定性、故障分类、系统可靠性、运行风险度等都需要进行预测,而这些内容都是回归预测和分类预测的一部分。如何提高预测精度和缩小预测时间是大家最关心的问题,好的预测方法和模型对电力系统的运行与控制、电力系统稳定与保护、电力网络的无功优化调度、电力系统规划运行、发电机组的优化组合、电力市场的交易定价等一系列实际操作问题有着决定性的作用。由于电力系统是一个大规模非线性动态系统,其中必然存在着许多极为复杂的工程计算和非线性优化问题,而且需要很高的时效性,特别是随着电网的不断发展和电力走向市场化,工程师们面临的问题越来越复杂,而人们对电网的安全性和供电可靠性的要求却越来越高。虽然长期以来电力系统自动化研究者一直在寻找高效可靠的方法来解决这些问题,然而电力系统中仍存在许多问题无法得到快速与精确的结果。
     与传统的计算方法相比较,人工智能(Artificial Intelligence, AI)法对于复杂的非线性系统问题求解有着不可替代的极大优势。它弥补了传统方法的单纯依靠精确数学求解的不足,解决了某些传统计算方法难于求解或不能解决的问题。由于它具有处理各种非线性的能力,以及容许模型不精确性和参数不确定性等特性,近几年来,人工智能技术的应用研究已经几乎渗透到电力系统和电工技术的所有方面,其中不少研究已有实际应用,人工智能技术必然将在较长的时期内和现有传统数学模型计算方法并存,相互协调地形成各种实用的控制和优化策略。
     利用人工智能的核心是内容——机器学习(Machine Learning, ML),将回归分析(Regression Analysis, RA)和模式识别(Pattern Recognition, PR)进行综合分析是本文研究的重点。针对目前机器学习技术在电力系统应用的发展,本文在总结了现有机器学习方法在电力系统应用现状的基础上,引入了全新的以基于概率的稀疏贝叶斯学习理论的机器学习方法在电力系统数据回归和状态分类上的建模研究,改变了过去电力系统中的回归和分类进行各自单独研究的状态,将回归和分类进行了综合预测分析,同时利用数据挖掘(Data Mining,DM)技术、核主成分分析(Kernel Principal Components Analysis, KPCA)、核函数构造、以及粒子群优化(Particle Swarm Optimization, PSO)算法对模型进行改进,经实验和仿真,在电力系统中期负荷预测和暂态稳定评估模型研究上都得到了令人满意的结果,论文的主要研究内容和创新性成果如下:
     (1)利用全新的以基于概率学习的稀疏贝叶斯理论机器学习方法及其实用模型:相关向量机(Relevance Vector Machine, RVM),在电力系统数据回归和状态分类两个方面上分别构建了中期负荷预测模型和暂态稳定评估模型,以这两个模型为例子,从机器学习的回归和分类两方面进行全面验证。在同等条件下,与当前最流行的支持向量机(Support Vector Machine, SVM)模型和径向基人工神经网络(Radial Basis Function Artificial Neural Nets, RBF-ANN)模型相比都得到了更好的结果,由于其算法的高稀疏性和基于概率学习的结构,相关向量机不仅得到了很高的预测精度,而且与支持向量机相比它大大减少了核函数参与预测计算的数量,减少了预测计算时间,并且可以提供概率性预测和任意使用核函数等优点。可以预见,相关向量机在电力系统预测控制中有着非常广阔的应用前景,特别是其概率性预测和超高的稀疏性所带来的快速计算特点,对电力系统在线计算和分级控制策略的形成有着非常大实用价值。
     (2)针对电力系统庞大的日负荷曲线时间序列数据库,提出了基于时间序列形状相似的多重聚类分析方法进行数据挖掘预处理。利用基于欧式距离分析的K-menas聚类方法和基于形状相似度量的凝聚式层次聚类方法对历史负荷数据进行多重聚类分析。该方法能准确对电力系统历史日负荷样本进行符合实际变化规律的分类,并能发现较特殊的日负荷样本。在结合相关向量机回归分析的中期负荷预测模型进行仿真计算后,结果表明使用该方法后在降低了输入向量空间维数的同时也得到了很好的预测精度。
     (3)由于影响电力系统暂态稳定的因素很多,而且SCADA收集到的现场运行数据也是海量的,若直接对如此庞大的数据空间进行分析,不仅造成了“维数灾”而且往往不能取得很好的效果,针对这种情况提出了核主成分分析法对原始输入特征值进行主成分提取,从中剔除大部分不相关的或冗余的特征值。最后利用基于相关向量机分类的暂态稳定评估模型进行仿真比较,结果显示该方法在得到了良好的预测精度的同时,还大大压缩了输入空间。
     (4)在相关向量机的核函数构造上创新利用组合核函数的思想,以典型的高斯核函数为基础,分别与之建立多项式核和张量积多维线性样条核的线性组合,并得到相应的组合核函数。为了提高组合核函数模型的效果,本文使用粒子群优化算法对组合核函数的核参数进行自动寻优,排除人为主观因素的影响,得到最优的核参数。在相关向量机中期负荷预测与相关向量机暂态稳定评估仿真中,即在机器学习的回归和分类两个方面,相关向量机的组合核函数模型都得到了比单一核函数模型更准确的预测结果,充分说明了利用组合核函数构造法来提高相关向量机预测模型的准确率是行之有效的方法。
Forecasting technology is a complex cross-science, it has almost involved in every social fieled, in Electric power systems, and it also plays a very vital role. Not only does the power loaded need forecasting, but the power price, voltage adequacy, power-angle curve, harmonic wave analysis, stability assessment, fault classification, system reliability, working riskprofile, etc. need forecasting. In these forecasting, all belong to regression and classification. The problem and concerns is how to promote the forecasting accurancy and save the computing time. A good forecasting model is definitively for many questions in power systems, such as:system operation and control, system stability and protection, grid optimal reactive power attemper, system operation planning, generators'optimization, dealer pricing of power market etc.. Essentially, power system is a complicated large-scale dynamic nonlinear system. Consequentially, it has many problems about complex engineering calculation and nonlinear optimization; further more it has a sharp time-bound. Especially, along with the grid development and power market, engineers face the problems become complicated more and more, in the other side, customs need the grid safe and electric energy quality increasingly higher and higher. Although researchers of automation in electric power systems have sought many methods to resolve the problems for a long time, the problems can not be attained the faster and more accurate results.
     Comparing with the traditional calculating method, artificial intelligence (AI) programs have the great irreplaceable advantages in complex nonlinear systems. It makes up the shortcomings of the traditional methods which purely lie upon the exactly mathematical models, and resolve the problems which can not be settled or difficult to be settled by traditional methods. As it has the ability which can deal with the nonlinear problem, and admit the models are uncertainty and inexactness, in recent years, AI technology applications research have infiltrated through the electric power system and electric engineering, and some of these have in practical, so AI and traditional mathematical models must be existing side by side in a long period, and mutually form the practical control and optimization strategy in concerted.
     With the hardcore of AI:machine learning (ML) technology, applying pattern identification and regression analysis in power systems, is the dissertation's emphasis. Aim at the development of machine learning in power systems, the dissertation summarizes the machine learning technology applications for power systems in existence, and introduces a new machine learning technology which based on probability learning and sparse Bayesian theorem, and gives the modeling methods to power systems forecasting. For improving the model, data mining, kernel principal components analysis, kernel function construction, particle swarm optimization also are used, after experiment and emulation we get a satisfactory result both in regression and classification. The main contributions of the dissertation include the following.
     (1) Utilizing the bran-new thought of probabilistic learning practical model: 'relevance vector machine' (RVM), a general Bayesian framework for obtaining sparse solutions to classify or regress predicting, respectively construct the medium term load forecasting model and transient stability assessment(TSA) model, validating the result from two sides of regression and classification. In the same condition, comparing with the popular and state-of-the-art'support vector machine' (SVM) and Radial Basis Function Artificial Neural Nets(RBF-ANN), RVM model achievs better results both in two sides. For its arithmetic's structure is high sparsity and based on probabilistic learning, RVM not only achieves good forecasting accuracy but also cut down the computing time, and it can offer the probabilistic prediction and arbitrary using kernel functions. Predictably, RVM must has a extraordinary board prospect in electric power system. Especially, for its probabilistic prediction and super sparsity, it has a good practical value for online computation and forming the hierarchical control strategy in electric power systems forecasting.
     (2) Aim at the enormous database of day load time series, an electric load data clustering algorithm (CA) using multi-hierarchy analysis based on time series curve contour similarity is proposed, the performance is proved by theory also. The experiment result makes clear that the algorithm can exactly classify the historical load series accord with the practical regulation, and also can find the special movement in the samples. Application in a RVM short-term load forecasting model, decreasing the input vector dimension, at the same time we attain the high level of accuracy.
     (3) As there are a great deal of factors influent the transient stability, further more SCADA collect the operation data are magnanimity, if we analyze the data space directly, not only brought out'Curse of Dimensionality', but could not achieve a good result. The dissertation gives kernel principal component analysis (KPCA) for feature abstract in TSA model, the method eliminate the irrelevance and redundancy from original input eigenvalues, The emulation in TSA model, result shows the method gives good prediction accuracy and the same time reduces the input dimension greatly.
     (4) Utilizing the compound kernel function ideology, first-use for the RVM constructing kernel functions. Multi-linearity-compound kernels based on Gaussian kernel, polynomial kernel and tensor product spline kernel were built, and the compound kernel functions'parameters are automatic optimized by algorithm of particle swarm optimization (PSO), then attain the optimal kernel parameters to enhance the model's efficiency. Emulation of TSA models and short term load forecasting based on multi-kernel RVMs. The result shows the compound kernels RVM models give the better generalization capability than the single kernel ones. It indicates that using compound kernel construction method is a viable way to enhance RVM model's forecasting accuracy.
引文
[1]Tom M. Mitchell. Machine Learning[M]. U.S:McGraw-Hill Companies. 1997:2-15.
    [2]Hopfield, John. Networks, Computations, Logic, and Noise[C]. San Diego, CA, US. IEEE First International Conference on Neural Networks. 1987:109-141
    [3]肖建华.智能模式识别方法[M].广州:华南理工大学出版社,2006.:2-3.
    [4]John Fox. Applied Regression Analysis Linear Models and related[M]. California:Sage Publications.1997:15-32
    [5]Andrew Gelman, Jennifer Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models[M]. New York:Cambridge University Press. 2006:
    [6]Simon Haykin. Neural Networks and Learning Machines(3rd Edition)[M]. Canada:McMaster University press.2009:2-16.
    [7]史忠植.神经网络[M].北京:高等教育出版社.2009:3-20.
    [8]Hopfield, John J. Artificial neural networks[J]. IEEE Circuits and Devices Magazine.1988,4(5):3-10.
    [9]王小华,何怡刚.基于神经网络的电力系统高精度频率谐波分析[J].中国电机工程学报.2007,27(34):102-106.
    [10]顾民,葛良全.基于自组织神经网络的变压器故障诊断[J].继电器.2007,35(23):28-30.
    [11]何雨傧,闫桂荣,徐健学.基于神经网络的电机状态监测与早期故障诊断[J].电工技术学报.1997,12(5):41-44.
    [12]乐波.基于模糊输出BP神经网络的电机主绝缘老化状态评估方法[J].中国电机工程学报.2005,25(2):76-81.
    [13]毛鹏,张兆宁,林湘宁.基于小波神经网络的电力系统振荡和故障识别[J].电力系统自动化.2002,26(11):9-13.
    [14]Aygen Z E, Seker S, Bagriyanik M. Fault section estimation in electrical power systems using artificial neural network approach[J]. New Orleans, LA, USA. IEEE Transmission and Distribution Conference,1999,2:466-469.
    [15]任琪.基于神经网络PID控制的交流伺服系统[J].微计算机信息.2008.24(5):117-119
    [16]张明,张保会,宋元峰等.基于神经网络的电力系统切负荷稳定控制研究[J].中国电力.1996.29(4):7-11.
    [17]范澍,毛承雄,陆继明.基于BP神经网络的最优励磁控制器[J].电力系统自动化.2000.24(8):29-32.
    [18]Segal R, Kothari M L, Madnani S. Radial Basis Function (RBF) network adaptive power system stabilizer[J]. IEEE Trans Power Systems.2000.15(2): 722-727.
    [19]贺超英.基于模糊神经网络的可控串补控制策略[J].中南林业科技大学学报.2007.27(5):132-135.
    [20]吴秀华,朴在林,刘美菊.神经网络在电力系统无功优化中的应用[J].电气应用.2007.26(9):25-28.
    [21]陈允平,龚庆武,马宁.基于人工神经网络的智能型自适应保护[J].武汉水利电力大学学报.1998.31(3):40-43.
    [22]陈维荣,钱清泉.一种基于神经网络的馈线自适应继电保护技术[J].西南交通大学学报.1999.34(4):419-424.
    [23]Vishwakarma. D.N., Moravej. Zahra. Ann Based Directional Overcurrent Relay[C]. Atlanta, GA, United states. Proc IEEE Power Eng Soc Trans Distrib Conf.2001:59-64.
    [24]Aggarwal R.K., Lorenzo J. Iglesias, Orille A. Implementation and laboratory test of a fully integrated neural network based protection relay for high voltage transmission lines[C]. Amsterdam, Netherlands. Eighth IEE International Conference on Developments in Power System Protection.2004: 72-75.
    [25]P. Kundur. Power System Stability and Control[M]. New York:McGraw-Hill, 1994:3-5.
    [26]顾雪平,曹绍杰.神经网络在暂态稳定评估中应用的研究述评[J].华北电
    力大学学报.2003.30(4):11-16.
    [27]汪芳宗,何仰赞,陈德树.基于人工神经网络的电力系统暂态安全域估计[J].电力系统自动.1993.17(4):17-22.
    [28]林飞,刘玉田,邱夕照.基于模糊神经网络的电力系统暂态稳定控制决策[J].电工技术学报.2001.16(2):83-87.
    [29]S.K. Tso, X.P. Gu, Q.Y. Zeng, K.L. An ANN-based Multilevel Classification Approach Using Decomposed Input Space for Transient Stability Assessment[J]. Electric Power Systems Research.1998.46:259-266.
    [30]崔峰,齐占庆,姜萌.基于模糊神经网络的电力系统电压稳定评估[J].电力系统保护与控制.2009.37(11):40-44.
    [31]陈举华,徐楠.电力系统小扰动稳定域应用研究[J].中国电机工程学报.2004.24(12):52-57.
    [32]Han Fuchun, Wang Juanjuan. State Estimation in Power System Based on Neural Network[J]. Proceedings of the EPSA.2002.14(6):49-51.
    [33]张国江,邱家驹,李继红.基于人工神经网络的电力负荷坏数据辨识与调整[J].中国电机工程学报.2001.21(8):104-107.
    [34]姚向华,刘铭,赵磊.基于人工神经网络的电力线路损耗计算[J].电力系统及其自动化学报.2001.13(5):23-25.
    [35]朱少敏,刘建明,刘冬梅.基于模糊神经网络的电力企业数据中心绿色评价方法[J].电网技术.2008.32(19):84-88.
    [36]沈新平1,李小福2,刘回基于RBF神经网络的电力客户信用评估模型[J].现代计算机.2009.313:17-20.
    [37]Alireza Khotanzad, Reza Afkhami Rohani, Dominic Maratukulam. ANNSTLF Artificial Neural Network Short-Term Load Forecaster Generation Three[J]. IEEE Transactions on Power Systems.1998.13(4):1413-1422.
    [38]Alireza Khotanzad, Zhou Enwang, Elraqal Hassan. A Neuro-fuzzy Approach to Short-term Load Forecasting in a Price-sensitive Environment[J]. IEEE Transactions on Power Systems.2003.17(4):1273-1282.
    [39]B R Szkuta, L A Sanabria, T SDillon. Electric price short-term forecasting using artificial neural networks[J]. IEEE Trans on PWS.1999.14(3):851~ 857.
    [40]杨波,赵遵廉,陈允平.韩启业基于小波变换的边际电价神经网络预测新模型[J].电力系统自动化.2007.31(12):40-44.
    [41]胡朝阳,孙维真,汪震.考虑市场力的短、中、长期电价预测[J].电力系统自动化.2003.27(22):16-20.
    [42]杨尚宝.电力竞价上网智能决策支持系统[J].电力自动化设备.2006.26(11):101-103.
    [43]李新武,王丽萍,谢维.基于BP神经网络的南方五省(区)居民生活用电购买力及其省间差异评价[J].电力系统保护与控制.2009.37(9):69-72.
    [44]周林,栗秋华,刘华勇.用模糊神经网络模型评估电能质量[J].高电压技术.2007.33(9):66-69.
    [45]林雁平,周宝林.蒸汽温度优化控制在火电厂的应用[J].热能动力工程.2005.20(4):430-432.
    [46]Vapnik V. N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag.1995:11-13.
    [47]费胜巍,苗玉彬,刘成良.基于粒子群优化支持向量机的变压器故障诊断[J].高电压技术.2009.35(3):509-513.
    [48]田竞,王或.基于最小二乘支持向量机的电力变压器故障诊断[J].仪器仪表与分析监测.2008.8(1):9-12.
    [49]陈特放,钟燕科.基于小波分析和SVM的主变流器故障诊断[J].机车电传动.2009.9(1):57-59.
    [50]周建萍,郑应平,,王志萍 基于Morlet小波核多类支持向量机的故障诊断[J].华东电力.2008.36(8):76-79
    [51]胡清王荣杰1,詹宜巨.基于支持向量机的电力电子电路故障诊断技术[J].中国电机工程学报.2008.28(12):107-111.
    [52]L. S. Moulin, A. P. Alves da Silva, M. A. El-Sharkawi, and R. J. Marks Ⅱ. Support Vector Machines for Transient Stability Analysis of Large-Scale Power Systems[J]. IEEE Transactions on Power Systems.2004.19(2): 818-825.
    [53]Ming-Wei Chang, Bo-Juen Chen, and Chih-Jen Lin. EUNITE Network Competition:Electricity Load Forecasting[J]. Computer Science.2001. 3(1):1-8.
    [54]World-wide competition within the EUNITE network, http://neuron.tuke.sk/ competition/index.php, Aug.1,2001.
    [55]Schiryaev A N. Probability[M]. New York, Springer.1995:577-579.
    [56]Morgan Kaufmann. Chapelle, O.& Vapnik, V. N. Model selection for support vector machines. Advances in neural information processing systems 12. Cambridge, MA:MIT Press.2000:230-236
    [57]M. E. Tipping. The relevance vector machine[A]. In:Advances in Neural Information Processing Systems[C], San Mateo:CA.2000:74-81
    [58]Michael E. Tipping, Sparse Bayesian Learning and the Relevance Vector Machine[J]. Journal of Machine Learning Research,2001,1(2001):211-244.
    [59]Wei Miao YU, Tiehua DU and Kah Bin LIM. Comparison of the Support Vector Machine and Relevant Vector Machine in Regression and Classification Problems[C].8th International Conference on Control, Automation, Robotics and Vision Kunming, China 2004:1309-1334.
    [60]Michael E. Tipping, Anita C.Faul. Fast Marginal Likelihood Maximization for Sparse Bayesian Models[C]. In:Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West:FL 2006:1-13.
    [61]Carl Edward Rasmussen, Joaquin Qui~nonero-Candela. Healing the Relevance Vector Machine through Augmentation[C]. Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany.2005: 689-696.
    [62]Ankur Agarwal, Bill Triggs.3D Human Pose from Silhouettes by Relevance Vector Regression[C]. In:IEEE International Conference on Computer Vision and Pattern Recognition, Washington, DC, United states.2004:1-7.
    [63]XU Xiang-min, MAO Yun-feng, XIONG Jia-ni. Classification Performance Comparison between RVM and SVM[C]. In:Workshop Anti-counterfeiting Secur. Identif. Xiamen, China.2007:208-211.
    [64]刘晨晖.电力系统负荷预报理论与方法[M].哈尔滨:哈尔滨工业大学出 版社.1987:1-5.
    [65]牛东晓,曹树华,赵磊,等.电力负荷预测技术及其应用[M].北京:中国电力出版社.1998:2-4.
    [66]王锡凡.电力系统优化规划[M].北京:水利电力出版社.1990:25-30.
    [67]Ranaweera DK, Karady G G, Farmer R G. Economic Impact Analysis of Load Forecasting[J]. IEEE Trans on Power Systems,1997,12(3):1388-1392
    [68]Douglas A P, Breipohl A M, Lee F N, Risk Due to Load Forecast Uncertainty in Short Term Power System Planning[J]. IEEE Trans on Power Systems, 1998,13(4):1493-1499
    [69]陈霞,安伯义,陈广林.电力负荷预测理论与方法[J].农村电气化.2004,No.7:6-8.
    [70]孙振,路洋.电力系统负荷预测方式综述[J].黑龙江电力.2005,27(4):260-262.
    [71]孙海斌,李扬等.电力系统短期负荷预测方法综述[J].江苏电机工程.2000,19(2):9-17.
    [72]康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向探讨[J].电力系统自动化.2004,28(17):1-11.
    [73]陈建.电力负荷预测方法[J].渤海大学学报.2006,27(2):142-144.
    [74]王阅峰,杨君,张红.电力系统负荷预测的基本要求及基本原则[J].黑龙江电力.2005,27(5):382-385.
    [75]Alfares H K. Nazeeruddin mohammand. Electric Load Forecasting:Literature Survey and Classification of Methods[J]. International Journal of Systems Science.2002,33(1):23~34.
    [76]Liu K, Subbarayan S. Shoults R R. et al. Comparison of Very Short-term Load Forecasting Techniques. IEEE Trans on Power Systems,1996,11(2): 877~882.
    [77]邓聚龙.灰色预测与决策.[M].武汉.华中工学院出版社,1986:33-80.
    [78]张宁,韩富春等.基于灰色模型的电力系统负荷预测[J].电力学报.2006,21(1):21-24
    [79]王军平,樊文侠等.一种构建灰色预测模型的新算法[J].西北大学学报. 2002,32(6):18-22.
    [80]Srinivasan D, Swee Sien Tan, Chang C S, etal. Parallel Neural Network-fuzzy Expert system Strategy for Short-term Load Forecasting:System Implementation and Performance Evaluation[J]. IEEE Trans on Power Systems,1999,14(3):1100~1105.
    [81]李斌,谭立湘.面向数据挖掘的时间序列聚类方法研究[J].计算机科学,2000,27(12):76-80.
    [82]刘世元,江浩.面向相似性搜索的时间序列表示方法述评[J].计算机工程与应用,2004,27:53-59.
    [83]姚李孝,宋玲芳,等.基于模糊聚类分析与BP网络的电力系统短期负荷预测[J].电网技术,29(1),2005:20-23.
    [84]陈耀武,汪乐宇,等.基于组合式神经网络的短期电力负荷预测模型[J].中国电机工程学报,21(4),2001:.79-82.
    [85]Tranchita C, Torres A. Soft computing techniques for short term load forecasting [C]. In:2004 IEEE PES Power Systems conference & Exposition, New York, US,2004,1:497-502.
    [86]Osowski S, Siwek K. The selforganizing neural network approach to load forecasting in the power system[C]. In:International Joint Conference on Neural Networks, Washington DC, US,1999,5:3401-3404.
    [87]Beccali M, Cellura M, Brano VL. Forecasting daily urban electric load profiles using artificial neural networks[J]. Energy Conversion and Management,45(18),2004:2879-2900.
    [88]Fatima R, Jorge D, Vera F. A comparative analysis of clustering algorithms applied to load profiling[C]. In:The Third International Conference on Machine Learning and Data Mining in Pattern Recognition, Leipzig, Germany, 2003:73-85.
    [89]Duarte F J, Rodrigues F, Figueiredo V. Data mining techniques applied to electric energy consumers'characterization[C]. In:Proceedings of the Seventh International Conference on Artificial Intelligence and soft computing, Banff, Canada,2003:105-110.
    [90]David Hand, Heikki M, Padhraic S. Principles of Data Mining[M], Massachusetts institute of Technology,2001:21-23,186-199.
    [91]Eamonn Keogh. Fast Similarity Search in the Presence of Longitudinal Scaling in Time Series Databases[C]..In:Proceedings of the IEEE 9th International Conference on Tools with Artificial Intelligence, Washington: IEEE Computer Society,1997:578-584.
    [92]Eamonn J, Keogh, Michael J Pazzani. An enhanced representation of time series which allows fast and accurate classification[C]. In:clustering and relevance feedback, Proceedings of the 4th International Conference of Knowledge Discovery and Data Mining, AAAI Press,1998:239-241.
    [93]肖建华.智能模式识别方法[M].广州:华南理工大学出版社.2006:126-129.
    [94]王泳,胡包钢.应用统计方法综合评估核函数分类能力的研究[J].计算机学报.2008,31(6):942-952.
    [95]Ingo Steinwart, Friedrich-Schiller-Universitat. On the Influence of the Kernel on the Generalization Ability of Support Vector Machines. The Journal of Machine Learning Research[J].2002,2(3):67-93.
    [96]张冰,孔锐.一种支持向量机的组合核函数[J].计算机应用.2007,27(1):44-46.
    [97]任双桥,魏玺章,黎湘,庄钊文.基于特征可分性的核函数自适应构造[J].计算机学报.2008,31(5):803-809.
    [98]V. Vapnik, S. Golowich, A. Smola. Support Vector Method for function approximation, regression estimation and signal processing[A]. In:Advances in Neural Information Processing Systems 9[C]. Cambridge, MA, MIT Press: 1997,281-287
    [99]谢晓峰,张文俊,杨之廉.微粒群算法综述[J].控制与决策.2003,18(2):129-134.
    [100]中华人民共和国国家经济贸易委员会 电力系统安全稳定导则(DL/755-2001)[Z].北京:中国电力出版,2002.
    [101]夏道止.电力系统分析(下册)[M].北京:中国电力出版社,1995:95-119.
    [102]刘振亚.特高压[M].北京:中国经济出版社,2005:2-4.
    [103]李光琦.电力系统暂态分析[M].北京:中国电力出版社,1995:13-15.
    [104]倪以信,陈寿孙,张宝霖.动态电力系统的理论分析[M].北京:清华大学出版社,2002:21-22.
    [105]傅书,倪以信,薛禹胜.直接法稳定性分析[M].北京:中国电力出版社,1999:55-57.
    [106]MangnussonP C. Transient energy method of calculating stability[J]. AIEE Transactions.1947,66:745-755.
    [107]Kakimoto N, Ohsawa Y, Hayashi M. Transient stability analysis of electric power system via Lure-type Lyapunov function, Parts I-II[J]. Transactions of IEE of Japan,1978,98(5-6):62-79.
    [108]Chiang H-D, Wu F, Varaiya P. Foundations of direct methods for power system transient stability analysis[J]. IEEE Transactions on Circuits and Systems. 1987,34(2):160-173.
    [109]褚晓东.基于广域测量信息的电力系统暂态稳定预测与控制决策[D].济南:山东大学.2006:1-3.
    [110]Chiang H-D,Wu F, Varaiya P. A BCU method for direct analysis of power system transient stability[J].1994,9(3):1194-1208.
    [111]Burnett R O, Jr Butts M M, Cease T W, Centeno V, Michel G, Murphy R J, Phadke A G. Synchronized phasor measurements of a power system event[J]. IEEE Transactions on Power Systems.1994,9(3):1643-1650
    [112]Martin K E, Benmouyal G Adamiak M G. IEEE Standard for Synchrophasors for Power Systems[J]. IEEE Transaction on Power Delivery.1998,13(1): 73-77.
    [113]Jiang Joe-Air, Lin Ying-Hong, Yang Jun-Zhe, Tong-MingToo and Liu Chih-Wen. An adaptive PMU based fault detection/location technique for transmission lines, II PMU implementation and performance evahmtion[J]. IEEE Transactions on Power Delivery.2000,15(4).1136-1146.
    [114]Wu Jingtao, Kong Wong Chi and Hart Yingduo. Dynamic monitoring and control system based on synchronized phasormeasurement in Heilongjian Eastern Power System[C]. In:Proceedings of IEEE Power Engineering Society 2000 Winter Meeting. Singapore.2000:23-27.
    [115]谭振宇,王少荣,苗世洪,等.基于GPS的电网状态监测系统[C].见:全国高等学校电力系统及其自动化专业第十四届学术年会论文集,哈尔滨:哈尔滨工业大学,1998:579-583.
    [116]时伯年,崔文进,吴京涛等.基于GPS同步向量的电力系统暂态稳定预测控制[J].清华大学学报(自然科学版).2002,42(3):316-320.
    [117]唐巍,陈学允.BP算法应用于电力系统暂态稳定分析的新策略[J].电力系统自动化.1997,21(3):47-50.
    [118]汤必强,邓长虹,刘丽芳.复合神经网络在电力系统暂态稳定评估中的应用[J].电网技术.2004,28(15):62-66.
    [119]仇向东,禹成七,龚仁敏.基于人工神经网络与遗传算法的暂态稳定评估[J].华北电力大学学报.2002,29(3):48-51.
    [120]刘艳芳,顾雪平.基于支持向量机的电力系统暂态稳定分类研究[J].华北电力大学学报.2004,31(3):26-29.
    [121]S.K. Tso, X.P. Gu, Q.Y. Zeng, K.L. Lo. An ANN-based Multilevel Classification Approach Using Decomposed Input Space for Transient Stability Assessment[J]. Electric Power Systems Research,1998,46(1998): 259-266.
    [122]向丽萍,王晓红,王建等.基于支持向量机的暂态稳定分类中的特征选择[J].继电器.2007,35(9):17-21.
    [123]顾雪平,张文朝.基于Tabu搜索技术的暂态稳定分类神经网络的输入特征选择[J].中国电机工程学报.2002,22(7):66-70.
    [124]黄辉,舒乃秋,李自品.基于信息融合技术的电力系统暂态稳定评估[J].中国电机工程学报.2007,27(16):19-23.
    [125]顾雪平,曹绍杰,张文勤.人工神经网络和短时仿真结合的暂态安全评估事故筛选方法[J].电力系统自动化.1999,23(8):16-19.
    [126]于之虹,郭志忠.改进主成分分析法用于暂态稳定评估的输入特征选择[J].电力自动化设备.2003,23(8):17-20.
    [127]李鹏,刘民,吴澄.一种基于特征提取方法的智能预测算法[J],控制与决 策.2007,22(12):1377-1380.
    [128]王海燕,刘天琪,李兴源等.基于蚁群优化算方法的电力系统暂态稳定评估特征选择[J].电力系统保护与控制.2008,36(21):1-6.
    [129]陈磊,刘天琪,文俊.基于二进制粒子群优化算法的暂态稳定评估特征选择[J].继电器.2007,35(1):31-36.
    [130]沈志熙,黄席樾,马笑潇.基于EMD多模态特征融合支持向量机的故障诊断[J].控制与决策.2009,24(6):889-893.
    [131]Jonathon Shlens. A Tutorial on Principal Component analysis, http://www. snl. salk.edu/-shlens/pub/notes/pca.pdf.2005-10-10.
    [132]张翠平,苏光大.人脸识别技术综述[J].中国图像图形学报.2000,5(11):885-895.
    [133]徐建华.计量地理学[M].北京:高等教育出版社,2006:58-60.
    [134]Bernhard Scholkopf, Alexander Smola, Klaus Rober Muller. Nonlinear Comoponet Analysis as a Kernel Eigenvalue Problem[J]. Neural Computation. 1998,10(5):1299-1319
    [135]John Shawe Taylor, Nello Cristianini. Kernel Methods for Pattern Analysis[M]. London:Cambridge University Press.2004:95-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700