用户名: 密码: 验证码:
外来种互花米草和黄顶菊对重金属和盐碱胁迫的生态响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,土壤重金属污染和盐渍化问题正成为国内外土壤环境治理和研究的热点。重金属污染不仅降低了土壤的肥力,而且影响植物生长发育,降低作物的产量和品质,最终通过食物链的富集作用对人类健康和环境安全造成危害。土壤的盐渍化不仅使土壤的可利用性降低,而且对植物生长造成伤害。土壤的盐渍化对植物的影响除了由中性盐(NaCl和Na2SO4等)引起的盐胁迫之外,还有由碱性盐(NaHCO3和Na2CO3等)引起的碱胁迫。与本土植物相比,具有入侵特性的外来植物具有较强的竞争力,能够耐受一系列恶劣的胁迫因子,包括干旱胁迫、温度胁迫、重金属胁迫和盐碱胁迫等。因此,对外来植物适应环境胁迫机制的深入研究,不仅可以揭示外来植物在盐渍土及污染土壤环境下的扩散机理,同时对防控入侵性外来植物的扩散发展,以及合理利用外来植物资源进行污染环境的生态修复,均具有重要的理论和实践意义。本文选择互花米草(Spartina alterniflora)和黄顶菊(Flaveria bidentis)两种典型外来植物为研究对象,其中对互花米草进行了以重金属污染为主的胁迫与适应性研究,对黄顶菊进行了不同发育阶段耐盐碱机理研究。
     本论文在考察了互花米草对天津滨海滩涂重金属积累的基础上,选择四种典型重金属(Cd, Pb, Cu和Zn)对互花米草进行胁迫试验,并研究了盐胁迫对互花米草的生理响应和对Cd积累的影响,最后探究了新型材料碳纳米管(CNTs)在互花米草修复重金属污染过程中所起的作用。结果如下:
     (1)互花米草降低了沉积物的容重和盐分,促进了沉积物对Cd, Cu和Pb的吸附。互花米草和光滩中的重金属含量均为:Zn> Cu> Pb> Cd。在互花米草和光滩的沉积物中,Cd的潜在生态危害系数最高,而重金属Zn、Cu和Pb属于轻微生态危害。互花米草和光滩中的重金属主要以残渣态的形式存在。就生物可利用态(酸溶态、还原态和氧化态)的重金属而言,光滩沉积物中的重金属含量小于互花米草群落。
     (2)互花米草须根对重金属胁迫的耐受性强于叶、茎和根茎。互花米草的重金属含量(Cd, Pb, Cu和Zn)均随着胁迫的增加而增长。Cd和Pb的积累量持续增加,而cu和zn的积累量呈现先增长后降低的趋势。重金属Cd,Pb和Cu主要积累在须根,而Zn主要积累在叶中。在Cd,Cu和Zn胁迫下,互花米草积累了大量脯氨酸和可溶性糖来进行渗透调节。草酸和柠檬酸是互花米草体内主要的有机酸。Cd胁迫下,草酸和柠檬酸可以指示须根吸收和积累Cd; Pb胁迫下,须根中的柠檬酸与Pb含量正相关;Cu胁迫下,叶和茎中的有机酸(草酸和柠檬酸)可能参与Cu积累和解毒;Zn胁迫下,叶中的草酸可能在Zn的积累过程中起作用。
     (3)在不同Cd胁迫下,NaCl对互花米草的生态响应和重金属积累的影响不同。NaCl促进了低Cd胁迫对互花米草的毒害,主要表现为植物生物量,植株高度和叶绿素a+b含量的降低。在低Cd胁迫下,NaCl增加了脯氨酸和ca2+的含量,而在高Cd胁迫下,出现了不变甚至降低的趋势。在低Cd胁迫下,NaCl通过增加CAT和POD的活性来降低Cd引起的氧化胁迫。在低和高Cd胁迫下,Cd含量随着NaCl浓度的增加而分别呈现升高降低的趋势。然而生物量的增加使Cd积累量随着NaCl浓度的增加呈现逐渐增长的趋势。在低Cd胁迫下,NaCl促进了Cd从地下向地上部分的转移系数,增强了互花米草对Cd的植物提取作用;而在高Cd胁迫下,NaCl降低了Cd的转移系数,促进了互花米草根部对Cd的固定作用。
     (4) CNTs对互花米草生态响应和Cd积累的影响取决于Cd胁迫的强度。在高Cd胁迫下,CNTs使受抑制的地上生物量,含水量和株高呈现恢复增长的趋势。CNTs增加了互花米草的K+和Ca2+含量,并降低了Na+/K+和Na+/Ca2+,在一定程度上缓解了Cd胁迫对互花米草的毒害作用。在CNTs和Cd联合作用下的脯氨酸含量显著低于单独的Cd胁迫处理。互花米草的根部积累了大量的Cd,在一定程度上保护了地上部分各种重要代谢活动的正常进行。在Cd胁迫下,CNTs增加了地上部分Cd积累量,这可能与CNTs对植株生长的生物稀释作用有关。在低Cd胁迫下,根部增加的Cd积累量主要是由于植物生长的稀释作用较强,而在高Cd胁迫下,根部Cd积累量降低,表明了植物生长的稀释作用较弱。
     为了研究黄顶菊在盐渍土上的入侵机理,本文模拟出25种不同的盐度和pH的混合盐对黄顶菊的种子进行处理,并选择中性盐NaCl和碱性盐Na2CO3对黄顶菊植株进行了梯度胁迫试验。结果发现:
     (1)黄顶菊种子的发芽率随着盐度和pH的增加而降低。经胁迫处理而未萌发的种子在复萌后大部分萌发,说明在盐渍土环境中,黄顶菊的一部分种子暂不萌发,等到雨水充足,盐碱胁迫减弱时复萌,这可能是黄顶菊避免植株在高盐碱胁迫下大量死亡的一种耐受机制。多元回归表明盐度是影响黄顶菊种子萌发的决定性因素,而其它胁迫因子作用较小;当种子萌发后,碱度(pH)开始作为影响幼苗生长的主要因素,而缓冲量对幼苗生长有一定的保护作用。
     (2)低盐度的中性盐NaCl对黄顶菊生长的影响不明显,但是随着盐度的增加,胁迫效应逐渐明显。碱性盐Na2CO3不仅使黄顶菊的日相对生长率显著降低,叶片电解质渗透率增大,而且增加了丙二醛、可溶性糖和游离脯氨酸含量。因此,与碱性盐渍土相比,黄顶菊对中性盐渍土具有较强的适应性。
In recent years, soil heavy metal pollution and salinization have become the research hotspots in the field of environmental pollution control at home and abroad. Heavy metal pollution not only reduces the soil fertility, but also affects plant growth and crop yield, leading to the hazard on human health and environment security through food chains. Soil salinization reduces the soil availability, and causes harm to plant growth. Generally, the injury caused by soil salinization results from salt stress (NaCl and Na2SO4) and alkali stress (Na2CO3and NaHCO3). Compared to native plants, exotic plants have stronger competitiveness, and can endure a series of stress factors, including drought stress, temperature stress, heavy metal stress and salt-alkali stress. The further study of exotic plants to adapt to environmental stresses, can not only reveal the diffusion mechanism of exotic plants in saline and contaminated soil environment, but also has important theoretical and practical significance in prevention of exotic plants and rational utilization of exotic plants for ecological restoration. This paper has chosen exotic plant Spartina alterniflora and Flaveria bidentis as the research object to study the mechanism of adaptation on heavy metal and salt-alkali stresses.
     In the present study, the effect of S. alterniflora on sediment heavy metal accumulation was investigated in Tianjin coastal, China. Based on the results of the investigation, we studied the effects of heavy metals (Cd, Pb, Cu, and Zn) on plant growth and heavy metal accumulation in S. alterniflora, respectively. Furthermore, the physiological responses and Cd accumulations of S. alterniflora were also detected under salt stress. Finally, the function of carbon nanotubes on heavy metal phytoremediation of S. alterniflora was evaluated. The results were shown as follows:
     (1) In coastal zones of Tianjin, China, S. alterniflora decreased sediment bulk density and salinity, increased sediment adsorption of Cd, Cu and Pb compared to the mudflat. The heavy metal concentrations in Spartina and mudflat sediments were:Zn> Cu> Pb> Cd. In both Spartina and mudflat sediments, the potential ecological risk (PER) of Cd is higher than other heavy metals including Zn, Cu and Pb. Most of heavy metals exist in the residual form, which were not easy used by plants. In terms of heavy metal available for plants (acid-soluble, oxidable and reducible), heavy metal concentrations in mudflat were lower than Spartina sediments.
     (2) The heavy metal tolerance of fine roots was significantly higher than leaves, stems and rhizomes. In S. alterniflora, the heavy metal contents (Cd, Pb, Cu and Zn) increased with increasing heavy metal stresses. Continuous increases of Cd and Pb accumulation were also detected with increasing stresses. However, total amounts of Cu and Zn increased firstly, and then reduced. Cd, Pb and Cu were mainly accumulated in fine roots, with most of Zn located in leaves. S. alterniflora produced large amounts of free proline and soluble sugar to take part in osmotic adjustment under heavy metal stresses. Oxalic and citric acids were the two most abundant organic acids in S. alterniflora. Under Cd stress, oxalic and citric acids acted as indicator of Cd uptake and accumulation in fine roots. Under Pb stress, citric acid was positively related with Pb accumulation in fine roots. Under Cu stress, oxalic and citric acids may take part in Cu accumulation in leaves and stems. Under Zn stress, oxalic acid may function in Zn accumulation in leaves.
     (3) Under different Cd stresses, the effects of NaCl may be varied on physiological responses and heavy metal accumulation. Under moderate Cd stress, NaCl improved the harm of Cd on plant, which can be determined by lower biomass, plant height and chlorophyll a+b contents. Under moderate Cd stress, NaCl increased proline and Ca2+contents, different from unchanged trends under severe Cd stress. Further, NaCl alleviated the oxidative stress under moderate Cd stress by improving the activities of CAT and POD. With NaCl addition, Cd contents in S. alterniflora increased and reduced under moderate and severe Cd stress, respectively. However, biological dilution caused by improved biomass led to increases of total Cd accumulation with increasing NaCl concentration. Under moderate Cd stress, NaCl increased Cd translocation factor (TF); while, phytostabilization of Cd may be probable under severe Cd stress due to the reduced TF.
     (4) In S. alterniflora, the effects of CNTs on physiological responses and Cd accumulation depend on the degree of Cd stress. CNTs alleviated higher Cd stress because of restored shoot growth reduction, water content and plant height. CNTs alleviated the detrimental effects of Cd stress by increasing K+and Ca2+contents, while reducing Na+/K+and Na+/Ca2+ratios. The proline contents in treatment with only Cd were higher than treatments with both Cd and CNTs, indicating that CNTs reduce production of organic solutes under Cd stress. There were higher Cd accumulation in roots than shoots, and both were improved by CNTs, except for reduction in roots under higher Cd stress. CNTs did not affect the inhibition of Cd on growth of S. alterniflora, but improved Cd accumulation under lower Cd stress. However, under higher Cd stress, CNTs resumed the inhibited plant growth, promoted and reduced the Cd amounts in shoots and roots, respectively.
     In order to understand the invasion mechanism F. bidentis in saline soil,25different salinity and pH conditions were simulated and seed germination were determined. On the other hand, we study the effects of neutral salt NaCl and alkaline salt Na2CO3on growth of F. bidentis, which is helpful to illustrate the salt-alkali resistance of F. bidentis in the vegetative growth phase. The results showed that:
     (1) The germination rates of seeds reduced with increasing salinity and pH. Un-germinated seeds germinated well after being transferred to distilled water, demonstrating that parts of F. bidentis seeds are well adapted to salt-alkali stresses due to high capacity for germination recovery. Therefore, the ungerminated seeds under high salt-alkali stresses may be a tolerance mechanism which avoids massive death of plant under severe saline condition. Stepwise regression analysis showed that salinity is the dominant factor affecting seed germination; after seed germination, alkalinity (pH) acted as the main factor which impacted seedling growth. The buffer capacity has some protective effect on seedling growth.
     (2) The influence of lower NaCl stress on plant growth is not significant, and the inhibitory effect becomes significant with increasing NaCl concentration. Na2CO3reduced relative growth rate, improved leaf electrolyte leakage rate, and increased contents of MDA, proline and soluble sugar. Thus, there were stronger resistance and adaptability of F. bidentis to neutral saline soil compared to alkaline saline soil.
引文
[1]李天杰.土壤环境化学.北京:高等教育出版社,1995.
    [2]王焕校.污染生态学.北京:高等教育出版社,2000.
    [3]夏家淇.土壤环境质量标准详解.北京:中国环境科学出版社,1996.
    [4]王焕校.污染生态学.北京:高等教育出版社,1999.
    [5]Sresty T V S, Madhava R K V. Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ Exp Bot,1999,41(1):3-13.
    [6]徐国华,施国新,丁小余等.Cr6+对莼菜也的急性毒害.南京师大学报(自然科学版),2000,23(1):67-71.
    [7]李荣春.Cd、Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响.植物生态学报,2000,24(2):238-242.
    [8]王正秋.铅、镉和锌污染对芦苇幼苗氧化胁迫和抗氧化能力的影响.过程工程学报,2002,2(6):558-562.
    [9]张国军,邱栋梁,刘星辉.Cu对植物毒害研究进展.福建农林大学学报(自然科学版),2004,33(3):289-294.
    [10]李荣春.Cd、Pb及其复合污染对烟叶生理生化指标的影响.云南农业大学学报,1997,12(1):45-50.
    [11]王泽港,骆剑峰.单一重金属污染对水稻叶片光合作用特性的影响.上海环境科学,2004,23(6):240-243.
    [12]杨丹慧.镉离子对菠菜叶绿体光合系统II的影响.植物学报,1989,31(9):702-707.
    [13]Liamas A U, Cornelia I, Sanz A, et al. Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L.) roots. Plant Soil, 2000,219:21-28.
    [14]刘登义,王友保.Cu、As对作物种子萌发和幼苗生长影响的研究.应用生态学报,2002,13(2):179-182.
    [15]Tuleja N, Mohan B S, Mithilesh K M, et al. Molecular mechanisms of DNA damage and repair:progress in plants. Critical Rev Biochem Mol Biol,2001,36(4):337-397.
    [16]Schutzendubel A, Nikolova P, Rudolf C, et al. Cadmium and H2O2-induced oxidative stress in Populus x canescens roots. Plant Physiol Biochem,2002,40(6-8):577-584.
    [17]Gallego S M, Benavides M P, Tomaro M L. Effect of heavy metal ion excess on sunflower leaves:evidence for involvement of oxidative stress. Plant Sci,1996,121(2):151-159.
    [18]邱栋梁,黄水菊,李丽萍等CuSO4对枇杷生长的影响.福建农林大学学报(自然科学版),2006,35(1):111-112.
    [19]范拴喜.土壤重金属污染与控制.中国环境科学出版社,2011.
    [20]余日安,陈学敏.镉对大鼠肝细胞DNA损伤作用的研究.中国公共卫生学报,1998, 17(2):106-107.
    [21]王丕玉,刘海潮.锌失衡与人体健康.中国食物与营养,2007,7:50-51.
    [22]胡耐根.重金属铅、汞污染对人的影响.科技信息,2009,35:1186-1187.
    [23]Lombi E, Sletten R S, Wenzel W W. Sequentially extracted arsenic from different size fractions of contaminated soils. Water, Air, Soil Pollut,2000,124(3-4):319-332.
    [24]Papassiopi N, Tambouris S, Kontopoulos A. Removal of heavy metals from calcareous contaminated soil by EDTA leaching. Water, Air, Soil Pollut,1999,109(1-4):1-15.
    [25]廖敏,谢正苗,黄昌勇.镉在土水系统中的迁移特征.土壤学报,1998,35(2):179-184.
    [26]Manousaki E, Kokkali F, Kalogerakis N. Influence of salinity on lead and cadmium accumulation by the salt cedar (Tamarix smyrnensis Bunge). J Chem Technol Biotechnol, 2009,84(6):877-883.
    [27]Schwitzguebel J P, Kumpiene J, Comino E, et al. From green to clean:a promising and sustainable approach towards environmental remediation and human health for the 21 st century. Agrochimica.2009,53:209-237.
    [28]王海慧,郇恒福,罗瑛等.土壤重金属污染及植物修复技术.中国农学通报,2009,25(11):210-214.
    [29]刘世亮,骆永明,丁克强等.土壤中有机污染物的植物修复研究进展.土壤,2003,35(3):187-192.
    [30]Sridhar S, Victor F M, Steven C M. Phytoremediation:An ecological solution to organic chemical contamination. Ecol Eng,2002,18(5):647-658.
    [31]Kumar N P B A, Dushenkov V, Motto H, et al. Phytoextraction:The use of plants to remove heavy metals from soils. Environ Sci Technol,1995,29(5):1232-1238.
    [32]Salt D E, Smith R D, Raskin I. Phytoremediation. Annu Rev Plant Physiol Mol Biol,1998, 49:643-648.
    [33]Baker A J M, Mcgrath S P, Sidoli C M D, et al. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recy,1994,11(1-4):41-49.
    [34]Blaylock M J, Salt D E, Dushenkov S, et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol,1997,31(3):860-865.
    [35]Meagher R B. Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol,2000,3(2):153-162.
    [36]Rugh C L, Wilde H D, Stack N M. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. PNAS,1996,93(8): 3182-3187.
    [37]Desouza M P, Chu D, Zhao M, et al. Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol,1999,119(2):565-573.
    [38]孙铁珩,周启星,李培军.污染生态学.北京:科学出版社,2001.
    [39]Baker A J M, Brooks R R, Pease A J. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silence L. (Cnyophyllaceae) from Zaire. Plant Soil,1983,73(3): 377-385.
    [40]Brooks R R, Wither E D. Nickel accumulation by Rinorea bengalesis (Wall.).O.K. J Geochem Explor,1977,7:295-300.
    [41]Malaisse F.Gregoire J, Brooks RR, et al. Aeolanthus biformifolius De Wild.:a hyperaccumulator of copper from Zaire. Science,1978,199(4331):887-888.
    [42]束文圣,杨开颜,张志权等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究.应用与环境生物学报,2001,7(1):7-12.
    [43]杨肖娥,龙新宪,倪吾钟等.古老铅锌矿山生态型东南景天对锌耐性及超积累特性的研究.植物生态学报,2001,25(6):665-672.
    [44]Zhao F J, Hamon R E, Lombi E, et al. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot,2002,53(368):535-543.
    [45]Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol,1994,127(1):61-68.
    [46]魏树和,周启星,王新等.一种新发现的镉超积累植物龙葵(Solanum nigrum L.).科学通报,2004,49(24):2568-2573.
    [47]聂发辉.镉超富集植物商陆及其负极效应生态环境.生态环境,2006,15(2):303-306.
    [48]李宁,吴龙华,孙小峰等.修复植物产后处置技术与展望.土壤,2005,37(6):587-592.
    [49]陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报,1999,10(3):379-382.
    [50]董社琴,李小雯,周健等.超积累植物对土壤中重金属元素吸收机理的探讨.太原科技,2004,1:64-66.
    [51]Cieslinski G, Van Rees K C J, Szmigielska A M, et al. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil, 1998,203(1):109-117.
    [52]Yang H, Wong J W C, Yang Z M, et al. Ability of Agrogyron elongatum to accumulate the single metal cadmium, copper, nickel and lead and root exudation of organic acids. J Environ Sci,2001,13(3):368-375.
    [53]Guo Y B, Peng Z L, Han F, et al. Study of low-molecular weight organic acids in maize roots under the stress of cadmium using capillary zone electrophoresis. J Sep Sci,2007,30(16): 2742-2747.
    [54]Bhatia N P, Walsh K B, Baker A J M. Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. J Exp Bot,2005,56(415):1343-1349.
    [55]Krmer U, Pickering I J, Prince RC, et al. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol,2000,122(4): 1343-1353.
    [56]Salt D E, Prince R C, Backer A J M, et al. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol,1999,33(5):713-717.
    [57]Mathys W. The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol Plantarum,1977,40(2):130-136.
    [58]Memon A R, Yatazawa M. Chemical nature of manganese in the leaves of manganese accumulator plants. Soil Sci Plant Nutr,1982,28(3):401-412.
    [59]Kondo N, Imai K, Isobe M, et al. Cadystin A and B, major unit peptides induced in a fission yeast-separation, revision of structures and synthesis. Tetrahedron Lett,1984,25(35): 3869-3972.
    [60]罗春玲,沈振国.植物对重金属的吸收和分布.植物学通报,2003,20(1):59-66.
    [61]邬飞波,张国平.植物螯合肽及其在重金属耐性中的作用.应用生态学报,2003,14(4):632-636.
    [62]Grill E, Winnacker E L, Zenk M H. Phytochelatins, a class of heavy metal binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci,1987,84(2): 439_443.
    [63]Morelli E, Scarano G. Synthesis and stability of phytochelatin induced by cadmium and lead in Phaeodactylum tricornutum. Mar Environ Res,2001,52(4):383-395.
    [64]Sigrid K, Wolfgany F, Ina Z. Hydroxymethyl-Phytochelat [(Glutamylcysteine)n-Serine] are metal-induced peptides of the Poaceae. Plant Physiol,1994,104(4):1325-1332.
    [65]Howden R, Goldsbrough P B, Andersen C R, et al. Cadmium-sensitive, cad1, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol,1995,107(4):1059-1066.
    [66]Nathalie A L M, Hassinen V H, Hakvoort H W J. Enhanced copper tolerance in Silene vulgaris (Moench) garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol,2001,126(4):1519-1526.
    [67]Murphy A, Zhou J, Goldsbrough P B, et al. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol,1997,113(4): 1293-1301.
    [68]王剑虹,麻密.植物修复的生物学机制.植物学通报,2000,17(6):504-510.
    [69]Iiasegawa I, Emiko T, Michio S. Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUPI). Plant Soil,1997,78:227-281.
    [70]杨劲松.中国盐渍土研究的发展历程与展望.土壤学报,2008,45(5):837-845.
    [71]Mashali A, Suarez D L, Nabhan H, et al. Integrated Management for Sustainable Use of Salt-affected Soils[R]. Rome:FAO Soils Bulletin,2005.
    [72]路浩,王海泽.盐碱土治理利用研究进展.现代化农业,2004,8:10-12.
    [73]苏永全,吕迎春.盐分胁迫对植物的影响研究简述.甘肃农业科技,2007,(3):23-27.
    [74]沈禹颖,阎顺国,余玲.盐分浓度对碱茅种子发芽的影响.草业科学,1991,8(3):68-71.
    [75]Ungar I A. Halophyte seed germination. Bot Rev,1978,44(2):233-263.
    [76]孙小芳,郑青松,刘友良等.NaCl胁迫对棉花种子萌发和幼苗生长的伤害.植物资源与环境学报,2000,9(3):22-25.
    [77]谢德意,王惠萍,王付欣等.盐胁迫对棉花种子萌发及幼苗生长的影响.种子,2000, 27(9):12-13.
    [78]Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol,1980,31:149-190.
    [79]Song J, Feng G, Tian C Y, et al. Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to saline environment during seed germination stage. Ann Bot,2005,96(3):399-405.
    [80]Song J, Feng G, Li Z K, et al. Effects of salinity and scarifying seed coat on ion content of embryos and seed germination for Suaeda physophora and Haloxylon ammodendron. Seed Sci Technol,2007,35(3):615-623.
    [81]Li Y, Zhang S R, Song J, et al. Chlorophyll in desiccated seeds of a euhalophyte, Suaeda physophora, and its significancy in plant adaptation to salinity during germination. Sci China Ser C,2008,51(5):410-417.
    [82]Munns R. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses. Plant Cell Environ,1993,16(1):15-24.
    [83]Kuiper D, Schuit J, Kuiper P J C. Actual cytokinin concentration in plant tissue as an indicator for salt resistance in cereals. Plant Soil,1990,42:243-250.
    [84]王洪春.植物抗逆性与生物膜结构功能研究的进展.植物生理学通讯,1985,(1):60-64.
    [85]Munns R, Termaat A. Whole-plant responses to salinity. Australian Journal of Plant Physiology,1986,13(1):143-160.
    [86]陶晶,李铁,孙长彬等.植物盐胁迫研究进展.吉林林业科技,2003,32(5):1-7.
    [87]曾洪学,王俊.盐害生理与植物抗盐性.生物学通报,2005,9(40):1-3
    [88]Gulzar S, Khan M A, Ungar I A. Salt tolerance of a coastal salt marsh grass. Commun Soil Sci Plant Anal,2003,34(17-18):2595-2605.
    [89]Neu-man P M. The role of cell wall adjustments in plant resistance to water deficits. Crop, 1995,35(5):1258-1266.
    [90]Gadallah M A A. Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biol Plant,1999,42(2):249-257.
    [91]仪慧兰,张自立NaCl胁迫对大麦细胞分裂及染色体行为的影响.遗传,2001,23(1):29-32.
    [92]刘宛,胡文玉,郝建军等NaCl胁迫下离体小麦叶片内抗坏血酸与几种生理生化指标变化的关系.植物生理学通讯,1997,33(6):423-425.
    [93]Sreenivasulu N, Grimm B, Wobus U, et al. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet. Phsiol Plant,2000, 109(4):435-442.
    [94]张丽,张华新,杨升等.植物耐盐机理的研究进展.西南林学院学报,2010,30(3):82-86.
    [95]赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993.
    [96]Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol,2000,12(4): 431-434.
    [97]刘国花.植物抗盐机理研究进展.安徽农业科学,2006,34(23):6111-6112.
    [98]梁洁,严重玲,李裕红等Ca(NO3)2对NaCl胁迫下木麻黄扦插苗生理特征的调控.生态学报,2004,24(5):1073-1077.
    [99]Zhu J K. Regulation of ion homeostasis under salt stress. Cur Opin Plant Bio,2003,6(5): 441-445.
    [100]陈淑芳.嫁接番茄幼苗耐盐机理研究:[博士学位论文],南京:南京农业大学,2006.
    [101]Lilius G, Holmberg N, Bulow L. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Bio-Technology,1996, (14):177-180.
    [102]Holmstrom K O, Somersalo S, Mandal A, et al. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot,2000,51(343): 177-185.
    [103]Imlay J A, Linn S. DNA damage and oxygen radical toxicity. Science,1988,240(4857): 1302-1309.
    [104]Mittova V, Tal M, Volokita M, et al. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersion pennellii but not in the cultivated species. Physiol Plant,2002,115(3):393-400.
    [105]朱进,别之龙.植物耐盐机理研究进展.长江大学学报(自然科学版),2008,5(4):87-91.
    [106]单雷,赵双宜,夏光敏.植物耐盐相关基因及其耐盐机制研究进展.分子植物育种,2006,4(1):15-22.
    [107]Strizhov N, Abraham E, Okresz L, et al. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABA2 and AXR2 in Arabidopsis. Plant J,1997,12(3):557-569.
    [108]Su H, Golldack D, Zhao C S, et al. The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol,2002,129(4):1482-1493.
    [109]贾兰英,韩建华,刘淑萍等.天津市外来入侵生物黄顶菊调查现状与治理对策.环境整治,2010,(2):59-61.
    [110]邓雄.外来农业杂草薇甘菊研究进展.广东农业科学,2010,.(9):196-198.
    [111]邵华,彭少麟,王继栋等.薇甘菊的综合开发与利用前景.生态科学,2001,20(1,2):132-135.
    [112]周海燕,黄业进.薇甘菊综合开发和利用的研究进展.园林植物资源与应用.2009,(3):46-48.
    [113]张文明,王晓燕.水葫芦在水生态修复中的研究进展.江苏环境科技,2007,20(1):55-58.
    [114]周文兵,谭良峰,刘大会等.风眼莲及其资源化利用研究进展.华中农业大学学报,2005,24(4):423-428.
    [115]李武峥.山口红树林保护区互花米草分布调查与评价.南方国土资源,2008,(7):39-41.
    [116]Powell A M. Systematics of Flavaria. Ann Missou Bot Gard,1978, (65):590-636.
    [117]任艳萍,江莎,古松等.外来植物黄顶菊(Flaveria bidentis)的研究进展.热带亚热带植 物学报,2008,16(4):390-396.
    [1181张秀红,李跃,韩会智等.黄顶菊生物特性及防治对策.河北林业科技,2006,(1):47-49.
    [119]王萌,陈世宝,李娜等.纳米材料在污染土壤修复及污水净化应用前景探讨.中国生态农业学报,2010,18(2):434-439.
    [120]郭媛媛,黄大庄,闫海霞NaCl胁迫对黄顶菊生长及生理生化的影响.北华大学学报(自然科学版),2011,12(3):341-345.
    [121]黄国培,陈颖军,林田等.渤海湾潮间带表层沉积物中多环芳烃的含量分布和生态风险.中国环境科学.2011,31(11):1856-1863.
    [122]张秀玲.米草属引入中国海岸带的利弊分析.生态学杂志,2007,26(11):1878-1883.
    [123]章家恩.生态学常用实验研究方法与技术.北京:化学工业出版社,2007.
    [124]Hankanson L. An ecological risk index for aquatic pollution control:a sediment logical approach. Water Res,1980,14(8):975-1001.
    [125]Verhoeven J T A, Arheimer B, Yin C Q, et al. Regional and global concerns over wetlands and water quality. Trends Ecol Evol,2006,21(2):96-103.
    [126]Gao X L, Chen C T A. Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res,2012, (46):1901-1911.
    [127]安立会,郑丙辉,张雷等.渤海湾河口沉积物重金属污染及潜在生态风险评价.中国环境科学,2010,30(5):666-670.
    [128]Vane C H, Harrison I, Kim A W, et al. Organic and metal contamination in surface mangrove sediments of South China. Mar Pollut Bull,2009, (58):134-144.
    [129]MacDonald D D, Ingersoll C G, Berger T A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol,2000,39(1):20-31.
    [130]秦延文,郑丙辉,李小宝等.渤海湾海岸带开发对近岸沉积物重金属的影响.环境科学,2012,33(7):2359-2367.
    [131]徐圣友,叶琳琳,朱燕等.巢湖沉积物中重金属的BCR形态分析.环境科学与技术,2008,31(9):20-28.
    [132]张立,袁旭音,邓旭.南京玄武湖底泥重金属形态与环境意义.湖泊科学,2007,19(1):63-69.
    [133]文辉,高良敏,刘玉玲等.高塘湖沉积物中重金属赋存状态研究.安徽农业科学,2009,37(24):11666-11669.
    [134]Marchand C, Allenbach. M, Lallier-Verges E. Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia). Geoderma,2011,160(3,4):444-456.
    [135]Cheng X L, Peng R H, Chen J Q, et al. CH4 and N2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms. Chemosphere,2007,68(3):420-427.
    [136]Li, K Q, Wang X H. Adsorptive removal of Pb (Ⅱ) by activated carbon prepared from Spartina alterniflora:Equilibrium, kinetics and thermodynamics. Bioresource Technol,2009, 100(11):2810-2815.
    [137]Lutts S, Kiner J M, Bouharmont J. NaCl-induced senescence in leaves of rice(Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot,1996,78(3):389-398.
    [138]郝再彬,苍晶,徐仲.植物生理实验.哈尔滨:哈尔滨工业大学出版社,2004.
    [139]Cawthray G R. An improved reversed-phase liquid chromatographic method for analysis of low-molecular mass organic acids in plant root exudates. J Chromatogr A,2003,1011(1,2): 233-240.
    [140]张金彪,黄维南.镉对植物的生理生态效应的研究进展.生态学报,2000,20(3):514-523.
    [141]Reddy A M, Kumar S G, Jythsnakumari G, et al. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere,2005,60(1):97-104.
    [142]谢传俊,杨集辉,周守标等.铅递进胁迫对假俭草和结缕草生理特性的影响.草业学报,2008,17(4):65-70.
    [143]许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报,2000,6(4):379-387.
    [144]Li R, Shi F, Fukuda K. Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environ Exp Bot,2010,68(1):66-74.
    [145]孙小霞.高羊茅对铅递进胁迫的生理响应.河南科技大学学报,2006,27(6):75-78.
    [146]张义贤,张丽萍.重金属对大麦幼苗膜脂过氧化及脯氨酸和可溶性糖含量的影响.农业环境科学报,2006,25(4):857-860.
    [147]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报,1998,40(1):56-61.
    [148]Sanita di Toppo L, Gabbrielli R. Response to cadimium in higher plants. Environ Exp Bot, 1999,41(2):105-130.
    [149]Sun R L, Zhou Q X, Jin C X. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil,2006,285(1, 2):125-134.
    [150]Sun R L, Zhou Q X, Wei S H. Cadmium accumulation in relation to organic acids and nonprotein thiols in leaves of recently found Cd hyperaccumulator Rorippa globosa and the Cd-accumulating plant Rorippa islandica. J Plant Growth Regul,2011,30(1):83-91.
    [151]Zhang Y X, Chai T Y. Research advances on the mechanisms of heavy metal tolerance in plants. Acta Botanica Sinica,1999,41(5):453-457.
    [152]Kramer U, Pickering I J, Prince RC, et al. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol,2000,122(4): 1343-1353.
    [153]Salt D E, Prince R C, Backer A J M, et al. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol,1999,33(5):713-717.
    [154]孙瑞莲,周启星,王新.镉超积累植物龙葵叶片中镉的积累与有机酸含量的关系.环境科学,2006,27(4):765-769.
    [155]Ghulam M, Balwant S, Rai S, et al. Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations:effects of pH and index cations. Chemosphere, 2004,57(10):1325-1333.
    [156]Zhang F Q, Zhang H X, Wang G P, et al. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater,2009,168(1):76-84.
    [157]Shafi M, Bakht J, Hassan M J, et al. Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). B Environ Contam Tox,2009, 82(6):772-776.
    [158]Zaier H, Ghnaya T, Lakhdar A, et al. Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea:tolerance and accumulation. J Hazard Mater, 2010,183(1-3):609-615.
    [159]Sharma S S, Dietz K J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot,2006,57(4):711-726.
    [160]Manuel J, Reigosa R. Handbook of Plant Ecophysiology Techniques. Dordrecht:Kluwer Academic Publishers,2001,365-383.
    [161]Ghnaya T, Nouairi I, Slama I, et al. Cadmium effects on growth and mineral nutrition of two halophytes:Sesuvium portulacastrum and Mesembryanthemum crystallinum. J Plant Physiol, 2005,162(10):1133-1140.
    [162]Han RM, Lefevre I, Ruan C J, et al. NaCl differently interferes with Cd and Zn toxicities in the wetland halophyte species Kosteletzkya virginica (L.) Presl. Plant Growth Regul,2012, 68(1):97-109.
    [163]Jiang Y W, Huang B R. Effects of cadmium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J Exp Bot,2001, (52):341-349.
    [164]Suzuki T, Nakajima S, Morikami A, et al. An Arabidopsis protein with a novel calcium-binding repeat sequence interacts with TONSOKU/MGOUN3/BRUSHY1 involved in meristem maintenance. Plant Cell Physiol,2005,46(9):1452-1461.
    [165]Zhang X X, Fan X M, Li C J, et al. Effects of cadmium stress on seed germination, seedling growth and antioxidative in Achnatherum inebrians plants infected with a Neotyphodium endophyte. Plant Growth Regul,2010,60(2):91-97.
    [166]Wang W B, Kim Y H, Lee H S, et al. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Bioch,2009,47(7): 570-577.
    [167]Han R M, Lefevre I, Albacete A, et al. Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions. Physiol Plantarum,2012,147(3):352-368.
    [168]Martinez J P, Kinet J M, Bajji M, et al. NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Exp Bot,2005,56(419):2421-2431.
    [169]Lopez-Chuken U J, Young S D. Plant screening of halophyte species for cadmium phytoremediation. Z Naturforsch,2005,60(3-4):236-243.
    [170]Bingham F T, Sposito G, Strong J E. The effect of chloride on the availability of cadmium. J Environ Qual,1984, (13):71-74.
    [171]Smolders E, Mclaughlin M J. Effect of Cl on Cd uptake by Swiss chard in nutrient solution. Plant Soil,1996,179(1):57-64.
    [172]Smolders E, Lambregts R M, McLaughlin M J, et al. Effects of soil solution chloride on cadmium availability to Swiss chard. J Environ Qual,1998, (27):426-431.
    [173]Manousaki E, Kadukova J, Papadantonakis N, et al. Phytoextraction and phytoexcretion of Cd by Tamarix smyrnensis growing on contaminated non saline and saline soils. Environ Res, 2008,106(3):326-332.
    [174]Ghnaya T, Slama I, Messedi D, et al. Cd-induced growth reduction in the halophyte Sesevium portulacastrum is significantly improved by NaCl. J Plant Res,2007,120(2): 309-316.
    [175]Meers E, Ruttens A, Hopgood M J, Samson D, Tack F M G. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere,2005,58(8):1011-1022.
    [176]Liphadzi M S, Kirkham M B. Heavy metal displacement in EDTA-assisted phytoremediation of biosolids soil. Water Sci Technol,2006,54(5):147-153.
    [177]Cui S, Zhou Q X, Wei S H, et al. Effects of exogenous chelators on phytoavailablilty and toxicity of Pb in Zinnia elegans jacq. J Hazard Mater,2007,146(1,2):341-346.
    [178]Rao G P, Lu C, Su F. Sorption of divalent metal ions from aqueoussolution by carbon nanotubes, a review. Sep Purif Technol,2007,58(1):224-231.
    [179]Shi J W, Park S J, Ryu S K. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon,2001,39(11):1635-1642.
    [180]Li Y H, Wang S, Wei J, et al. Lead adsorption on carbon nanotubes. Chem Phys Lett,2002, 357(3,4):263-266.
    [181]Wang H J, Zhou A L, Peng F, et al. Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb (Ⅱ) in aqueous solution. Mater Sci Eng A,2007,466(1,2):201-206.
    [182]Xie X F, Gao L, Sun J. Thermodynamic study on aniline adsorption on chemical modified multi-walled carbon nanotubes. Colloids and Surfaces A,2007,308(1-3):54-59.
    [183]Gao Z M, Bandosz T J, Zhao Z B, et al. Investigation of the role of surface chemistry and accessibility of cadmium adsorption sites on open-surface carbonaceous materials. Langmuir, 2008,24(20):11701-11710.
    [184]Xu D, Tan X L, Chen C L, et al. Removal of Pb (Ⅱ) from aqueous solution by oxidized multiwalled carbon nanotubes. J Hazard Mater,2008,154(1-3):407416.
    [185]Liu Y, Li Y, Yan X P. Preparation, characterization, and application of L-Cysteine functionalized multiwalled carbon nanotubes as a selective sorbent for separation and preconcentration of heavy metals. Adv Funct Mater,2008,18(10):1536-1543.
    [186]Das P, Samantaray S, Rout G R. Studies on cadmium toxicity in plants:a review. Environ Pollut,1997,98(1):29-36.
    [187]James R, Munns R, Caemmerer S V, et al. Phytosynthetic capability is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat. Plant Cell Environ,2006, (29):2185-2197.
    [188]Wang C Q, Song H. Calcium protects Trifolium repens L. seedlings against cadmium stress. Plant Cell R,2009,28(9):1341-1349.
    [189]Kim Y Y, Yang Y Y, Lee Y. Pb and Cd uptake in rice roots. Physiol Plant,2002,116(3): 368-372.
    [190]Lefevre I, Marchal G, Correal E, et al. Variation in response to heavy metals during vegetation growth in Dorycnium pentaphyllum Scop. Plant Growth Regul,2009,59(1):1-11.
    [191]Dary M, Chamber-Pirez M A, Palomares A J, et al. "In situ" phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater,2010,177(1-3):323-330.
    [192]Ong Y T, Ahmad A L, Zein S H S, et al. A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz J Chem Eng,2010,27(2):227-242.
    [193]Lu C, Liu C, Rao G P. Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon. J Hazard Mater,2008,151(1): 239-246.
    [194]Liu Q L, Chen B, Wang Q L, et al. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett,2009,9(3):1007-1010.
    [195]Kawanabe S, Zhu T C. Degeneration and conservation of Aneurolepidium chinense grassland in Northern China. J Jpn Grassland Sci,1991, (37):173-184.
    [196]刘杰,张美丽,张义等.人工模拟盐、碱环境对向日葵种子萌发及幼苗生长的影响.作物学报,2008,34(10):1818-1825.
    [197]Tobe K, Li X M, Omasa K. Seed germination and radicle growth of a halophyte, Kalidium Capsicum (Chenopodiaceae). Ann Bot,2000,85(3):391-396.
    [198]任艳萍,古松,江莎等.温度、光照和盐分对外来植物黄顶菊种子萌发的影响.云南植物研究,2008,30(4):477-484.
    [199]冯建永,庞民好,张金林等.复杂盐碱对黄顶菊种子萌发和幼苗生长的影响及机理初探.草业学报,2010,19(5):77-86.
    [200]Khan M A, Ungar I A. The effect of salinity and temperature on germination of polymorphic seeds and growth of Atriplex triangularis Wild. A J B,1984,71(4):481-489.
    [201]Qu X X, Huang Z Y, Baskin J M, et al. Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum. Ann Bot,2008,101(2):293-299.
    [202]Kingsbury R W, Epstein E, Pearcy W R. Physiological responses to salinity in selected line of wheat. Plant Physiol,1984,74(2):417-423.
    [203]Thompson D I, Edwards T J, Van Staden J. A novel dual-phase culture medium promotes germination and seedling establishment from immature embryos in South African Disa (Orchidaceae) species. Plant Growth Regul,2007,53(3):163-171.
    [204]Rubio-Casal A E, Castillo J M, Luque C J, et al. Influence of salinity on germination and seeds viability of two primary colonizers of Mediterranean salt pans. J Arid Environ,2003, 53(2):145-154.
    [205]Zia S, Khan M A. Effect of light, salinity, and temperature on seed germination of Limonium stocksii. Can J Bot,2004,82(2):151-157.
    [206]Munns R. Comparative physiology of salt and water stress. Plant Cell Environ,2002,25(2): 239-250.
    [207]Campbell S A, Nishio J N. Iron deficiency studies of sugar beet using an improved sodium bicarbonate-buffered hydroponic growth system. J Plant Nutr,2000,23(6):741-757.
    [208]Lissner J, Schierup H H, Comin F A, et al. Effect of climate on the salt tolerance of two Phragimtes australia populations:Ⅰ. Growth, inorganic solutes, nitrogen relations and osmoregulation. Aquatic Bot,1999,64(3,4):317-333.
    [209]Huff A. Peroxides-catalysed oxidation of chlorophyll by hydrogen peroxide. Phytochemistry, 1982,21(2):261-265.
    [210]Surjus A, Durand M. Lipid changes in soybean root membranes in response to salt treatment. J Exp Bot,1996,47(1):17-23.
    [211]Yang C W, Chong J N, Li C Y, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil,2007,294(1,2):263-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700