用户名: 密码: 验证码:
氩弧熔覆—注射金刚石复合涂层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对目前用于制造金刚石耐磨层的方法存在结合强度低、金刚石烧损等问题,以预置Ni基自溶性合金的Q235钢作为试验用材,选用35~40目(420~500μm)的镀镍金刚石颗粒作为注射材料,采用氩弧熔覆-注射技术制备出低成本的耐磨涂层,为金刚石耐磨层的制备探索一条新途径。
     以工作电流、送粉量、扫描速度等作为可调参数进行工艺试验,确定制备复合涂层的优化工艺参数,并通过SEM、XRD及EDS对复合涂层组织及金刚石与胎体合金的结合情况进行分析;采用显微硬度仪进行显微硬度测量,摩擦磨损试验机进行磨损性能检测。
     实验结果表明,镀镍后的金刚石能够顺利进入熔池并在一定深度均匀分布,涂层内组织致密,金刚石颗粒完整,边缘棱角分明。涂层内相组成主要有(Fe,Ni)固溶体、Fe23B6、Ni和C(金刚石)。单道涂层内金刚石周围有一明显未熔化的Ni层,说明金刚石无烧损现象,Ni层与胎体合金属于冶金结合。熔池内不同深度部位金刚石颗粒周围镍层的溶解量不同,上部颗粒低于中部颗粒。多道搭接涂层的非搭接区与单道涂层相同,镀Ni层保存良好,金刚石无烧损。而搭接区内第一次注入的金刚石在二次加热的作用下,镀Ni层完全溶解于胎体金属,金刚石棱角消失,开始烧损。
     氩弧熔覆-注射金刚石复合涂层的平均显微硬度约为HV0.2360左右,高于氩弧熔覆Ni基合金的硬度值。多道搭接的搭接区自上而下硬度分布均匀波动,未表现出显著的变化。由摩擦磨损实验可得,氩弧熔覆-注射金刚石复合涂层的耐磨性大大提高,单道复合涂层的耐磨性是Q235钢的56倍,多道复合涂层的耐磨性是Q235钢的46倍。金刚石复合涂层的磨损形式以磨料磨损为主,伴随着粘着磨损。磨损后的金刚石颗粒主要有完整、磨耗、破碎三种形态,且其边缘仍保持与胎体合金的良好结合,没有出现裂缝、颗粒脱落。
To solve the problems of low bonding strength and thermal damage of diamond in the diamond wear resistance coatings making processes, argon-arc clad injection(ACI) process was investigated in this thesis. The substrate is a Q235 low carbon steel plate. The injected particles are nickel-coated diamond particles of 420~500μm. A new way to make diamond wear resistant coating was proposed.
     Process experiments were carried on with adjustable parameters, which are operating current, powder flow rate and scanning velocity to determine the optimal parameters. The microstructures and bonding strength of the diamond and matrix were analyzed by means of SEM, XRD and EDS. Microhardness and wear resistance of the coatings were tested.
     The results show that the Ni-coated diamond particles can enter the molten pool smoothly and distribute in the certain depth uniformly. In the coating, the microstructure is compact, and the diamond particle is complete with edges and corners distinct. The coating consists of (Fe,Ni)solid solution, Fe23B6, Ni and C(diamond). There is an obvious un-melted Ni layer around the diamond with metallurgical bonding to the matrix, The diamond is not thermally damaged. The nickel layer around the diamond particle dissolves less upside than in the middle. The microstructures in non-overlapped area of multi-passes and the single pass coatings are the same. The Ni layer is preserved completely, the diamond particles are not thermally damaged. But in the overlapped area, because of the reheating, the Ni layer around the diamond particle which is injected firstly dissolve completely, and the diamond particle is thermally damaged and becomes round.
     The microhardness of the composite coating is about HV0.2360, higher than that of coating produced by argon-arc cladding with nickel-based self-fluxing alloy. The microhardness of overlapped area of multi-passes coating fluctuates evenly. The wear resistance of the composite coating produced by ACI is enhanced greatly. Wear resistance of the single pass coating is ahout 56 times higher than that of the Q235 substrate, and that of the multi-passes coating is about 46 times higher than that of Q235 substrate. The composite coating is of adhesion wear primarily and a little abrasion wear at the same time. After the wear test, the diamond particles are of three kinds of appearance, full, worn, and broken. The diamond particles are bonded to the matrix well. No cracks or spallation of diamond are found.
引文
1乔玉林,姜海.应用纳米材料的新型原位自修复技术.工程机械与维修论坛. 2002,(7):100-101
    2方啸虎,陈天鹏.人造金刚石立方氮化硼基础与标准.化学工业出版社. 1993:5
    3 J. E. Field. The Properties of Diamond. Academic Press. 1979:65
    4王艳辉.金刚石磨料表面镀钛层的制备、结构、性能及应用.燕山大学硕士论文. 2002:16
    5殷龙臣,胡国荣.金刚石表面化学镀NiwB及其在高温下的热损伤特征.金刚石与磨料磨具工程. 2000,l(115):5-8
    6孙毓超,刘一波.金刚石工具与金属学基础.中国建材工业出版社. 1999:18-23
    7李立波,唐霞辉.激光烧结金刚石微粉压坯工艺与机理研究.华中科技大学硕士论文. 2005:14-15
    8 Jiandong Hu, Yilong Li, Zhang Li. Microstructure and properties of a Fe-C-Cu-MoS2 alloy prepared by laser sintering. Material Science. 1993,28(10):2664-2668
    9蔡方寒,唐霞辉.高功率CO2激光烧结金属粉末金刚石颗粒的机理研究.华中科技大学硕士论文. 2005:13
    10 V. Kovalenko, L. Golovko. New developments in laser sintering of diamond cutting disks. Annals of the CIRP. 2007,1(56):189-192
    11臧建兵,赵玉成.超硬材料表面镀覆技术及应用.金刚石与磨料磨具工程. 2000(3):8-12
    12李超群.电镀镍锰胎体金刚石钻头的应用.探矿工程. 1998,(2):26-38
    13张绍和.脉冲电镀复合片钻头的试制.探矿工程. 1995,(4):25,29
    14 Y. D. Li, G. D. Li. Study of a new type of matrix material for electroplated diamond tools. Key Engineering Materials. 2003,250:89-93
    15李超群.复合电镀新工艺金刚石钻头的研制与应用.磨料磨具与磨削. 1994,3(81):2-5
    16张绍和.脉冲电镀Ni-W钻头电参数优选.探矿工程. 1997,(4):37-39
    17段隆臣,杨凯华,汤凤林.脉冲电镀金刚石钻头试验研究.现代地质. 1996,10(3):423-426
    18杨凯华,段隆臣.脉冲电镀工艺参数对镀层性能影响的研究.探矿工程. 1996,3:28-30
    19高红字.稀土镧对电镀金刚石工具性能的影响.金刚石与磨料磨具工程.2006,(5):66-68
    20邓海兵,朱琦,叶明友,等.超声波在电镀金刚石钻头工艺中的应用与研究.探矿工艺. 2008,(5):69-71
    21霍宇翔.超声波技术在电镀金刚石钻头制造中的应用研究.成都理工大学硕士论文. 2006:23-36
    22 O. Masahiro,Yoshiki T, Takuma S, etal. Creation of high strength bonded abrasive wheel with ultrasonic aided composition plating. Surface and Coatings Technology, 2003:169-170
    23 A. K. Hattopadhyay, H. E. Hintermrann. Induction brazing of diamond with Ni-Cr hardfacing alloy under argon atmasohere. Surface and Coating Teehnology. 1991:293-298
    24唐安俊,黄本生,刘炯,等.金刚石金属化热力学分析及影响因素研究.四川有色金属. 2007,(1):21-25
    25 Leticia W.de Resende, Multi-layer structure for chemical vapor deposition diamond on electroplated diamond tools. Diamond and Related Materials, 2001,10(3):332-336
    26邓健.钎焊.机械工业出版社. 1979:6
    27章文姣,叶宏煜,杨凯华.钎焊地质金刚石钻头的试验与研究.金刚石与磨料磨具工程. 2009,(1):44-48
    28 A. Trenker, H. Seidemann. High-vacuum brazing of diamond tools. Industrial Diamond Review. 2002,62(592):49-51
    29 W. Tillmann. New CMP pad conditioners from abrasive technology. IDR. 2004(2):12-21
    30 F. A. Khalid, U. E. Klotz. On the interfacial nanostructure of brazed diamond grits. Scripta Materialia. 2004,50(8):1139-1143
    31 U. E. Klotz, Chunlei Liu. Influence of brazing parameters and alloy composition on interface morphology of brazed diamond. Materials Science and Engineering, 2008,495(1):265-270
    32肖冰.银基钎料钎焊单层金刚石砂轮的研究.金刚石与磨料磨具工程. 2001,(1):36-38
    33马伯江,徐鸿均.高频感应钎焊镀钛金刚石界面特征的研究.金刚石与磨料磨具工程. 2007,3(26):50-54
    34黄辉,朱火明.空气中钎焊金刚石磨粒.焊接. 2004,(1):24-26
    35 Sheng-Fang Huang, Hsien-Lung Tsai, Shun-Tian Lin. Laser brazing of diamond grits using a Cu-15Ti-10Sn brazing alloy. Materials Transactions.2002,10(43):2604-2608
    36张文.焊接传热学.北京机械工业出版社. 1989
    37王龙龙,刘清友.金刚石与硬质合金的复合堆焊研究.大型铸锻件. 2006
    38黄本生,李西萍,刘清友.金刚石与碳化钨的复合堆焊.西南石油学院学报. 2003,5(25):71-73
    39贾晶,B. L. Mordike, A. Weishei.脉冲激光器用于碳钢表面金钢石涂层的尝试.功能材料. 1998,10:1017-1019
    40 J. A. Vreeling, V. Ocelik, Y. T. Pei, etal. Laser melt injection in aluminum alloys on the role of the oxide skin. Acta Materialia. 2000,48(17): 4225-4233
    41 A. B. Kloosterman, B. J. Kooli, D. E. Hosson. Electron microscopy of reaction layers between SiC and Ti-6Al-4V after laser embedding. Acta Materialia. 1998, 46(17):620-621
    42 Y. T. Pei, V Ocelik, D. E. Hosson. SiCp/Ti6Al4V functionally graded materials produced by laser melt injection. Acta Materialia. 2002,50(8):2035-2051
    43 J. A. Vreeling, V. Ocelik, J. T. M., D. E. Hosson. Ti-6Al-4V strengthened by laser melt injection of WCp particles. Acta Materialia. 2002,50(19):4913-4924
    44赵敏海,刘爱国,郭面焕.等离子熔化-注射WC金属陶瓷层组织研究.热处理技术与设备. 2007,28(5):17-20
    45李志杰.氩弧熔化-注射NiCr-Cr3C2表层复合材料的研究.哈尔滨工业大学硕士论文. 2007:53
    46魏晶慧.氩弧熔覆-注射WC-8Co表层复合材料制备.哈尔滨工业大学硕士论文. 2008:52
    47中国机械工程学会焊接学会.焊接金相图谱.机械工业出版社. 1987
    48金相图谱编写组.金相图谱.电力工业出版社. 1980
    49刘国勋.金属学原理.北京冶金工业出版社. 1980
    50王龙龙.基于金刚石和硬质合金复合焊的钢齿钻头齿面强化技术研究.西南石油大学硕士论文. 2006
    51胡木林,谢长生.多道搭接激光熔覆镍基合金中裂纹断口形貌研究.材料热处理学报. 2001,22(6):23-26
    52 G. Abbas, D. R. F. West. Laser surface cladding of ateilite and stellite-SiC composite deposits for enhanced hardness and wear. Wear. 1991,21(143):353-363.
    53张平.热喷涂材料.国防工业出版社. 2006:41-48
    54高彩桥.金属摩擦磨损与热处理.机械工业出版社. 1998:9
    55刘家浚.材料磨损原理及其耐磨性.清华大学出版社. 1993:98-100,144
    56 James Sung, Michael Sung. The brazing of diamond. Journal of Refractory Metals & Hard Materials. 2009,27 (2):382-393
    57齐中华. Miner疲劳损伤累积假说在谱状载荷中的应用.机械设计与制造. 2007,2:34-35
    58 S. Y. Luo. Study of the behavior of diamond saw-blades in stone processing. Journal of Materials Processing Technology. 1995(51):296-308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700